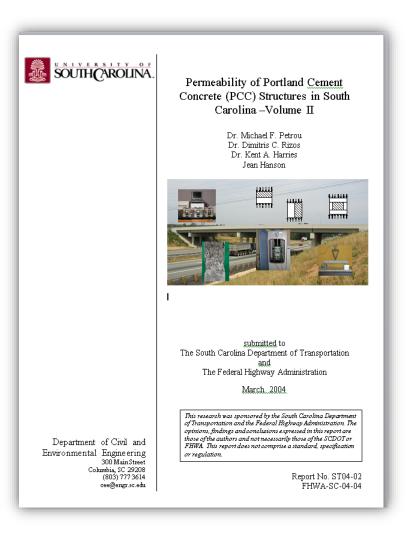
Benefits of Adopting High-Strength High-Resilience Concrete in Prestressed Crossties

Albert R. Ortiz On behalf of Dr. Dimitris C. Rizos University of South Carolina

2016 International Crosstie & Fastening System Symposium

14-16 June 2016



- Historical Background
- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- Conclusions

Historical Background

- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- □ Conclusions

SCDOT Research Project

HPC for Highway Bridges

Local Aggregates

SCDOT Mixture Designs

Performance	Standard Test		FHWA HPC Performance Grade			
Characteristic Method		1	2	3	4	
Strength (x=compressive strength)	AASHTO T22 ASTM C39	41≤x<55 MPa (6≤x<8 ksi)	55≤x<69 MPa (8≤x<10 ksi)	69≤x<97 MPa (10≤x<14 ksi)	x≥97 MPa (x≥14 ksi)	
Elasticity (x=modulus of elasticity)	ASTM C469	28≤x<40 GPa (4≤x<6·10 ⁶ psi)	40≤x<50 GPa (6≤x<7.5 · 10 ⁶ psi)	x≥50 GPa (x≥7.5·10 ⁶ psi)		
Shrinkage (x=microstrain)	ASTM C157	800>x≥600	600>x≥400	400>x		
Creep (x=microstrain/pressure unit)	ASTM C512	75≥x≥60/MPa (0.52≥x≥0.41/psi)	60≥x>45/MPa (0.41≥x>0.31/psi)	45≥x>30/MPa (0.31≥x>0.21/psi)	30/MPa≤x (0.21/psi≤x)	
Freeze-thaw durability (x=relative dynamic modulus of elasticity at 300 cycles)	AASHTO T161 ASTM C666 (Procedure A)	60%≤x<80%	80%≤x			
Scaling (x= visual rating of the surface after 50 cycles)	ASTM C672	x=4,5	x=2,3	x=0,1		
Abrasion (x= average depth of wear)	ASTM C944	2.0>x>1.0 mm (0.08>x>0.04 in.)	1.0>x≥0.5 mm (0.04>x>0.02 in.)	x<0.5 mm (x<0.02 in.)		
Chloride Penetration (x=Coulombs)	AASHTO T277 ASTM C1202	3000≥x>2000	2000≥x>800	800≥x		

Table 2.1 Grades of Performance Characteristics for High Performance Structural Concrete (Goodspeed et al., 1996)

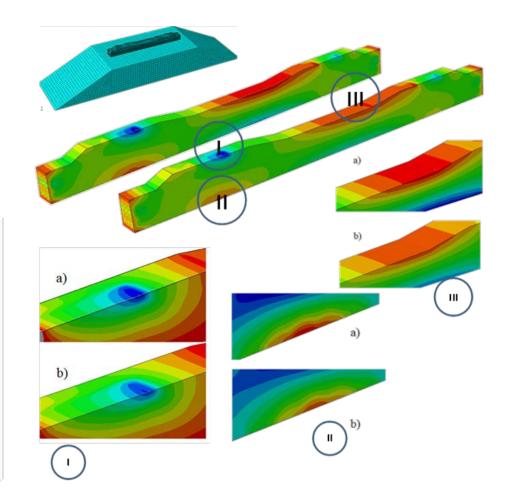
- Aggregates from specific quarries
- HPC Classified as Grade 1 or 2 based on most properties
- Did not meet Grade based on Elastic Modulus

HPC Rejected

Performance Characteristic	Standard Test Method	Batch No.	Experimental Results	FH v Perforv Grade	
	ASTM C39	1	47.5 (6890)	1	
Strength		2	51.9 (7525)	1	
(MPa (psi))		3	55.2 (8003)	2	
		4	57.6 (8360)	2	
		1	21.3 (3089)	< 1	
Elasticity		2	19.4 (2811)	< 1	
(GPa (ksi))	ASTM C469	3	24.1 (3492)	< 1	
		4	24.1 (3501)	< 1	
Shrinkage (microstrain)	ASTM C157	Shrinkage tests were not performed			
Creep (microstrain/pressure unit)	ASTM C512		Creep tests were n	ot performed.	
Freeze-thaw durability		1			
(relative dynamic	ASTM C666	2			
modulus of elasticity at	(Procedure A)	3			
300 cycles, %)		4	>90	2	
Scaling		1	4	1	
(visual rating of the	ASTM C672	2	3	2	
surface after 50 cycles)		3			
surface after 50 cycles)		4			
Abrasion		1	1.410 (0.0555)	1	
(average depth of wear,	ASTM C944	2	1.711 (0.0674)	1	
(average depin of wear, mm (in.))	ASTM C944	3			
mm (m.))		4			
		1	2144	1	
Voride Penetration		2	2632	1	
Coulombs)	ASTM C1202	3	2683	1	
		4	1065	2	

Historical Background

Hypothesis


- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- □ Conclusions

Benefits of Using Higher Resilience Concrete in Prestressed Ties:

- Better load distribution
- Smoother stress gradient
- Lower stress amplitudes
- Delay of onset of damage
- □ Relative rigidity

Critical Location	Stress Reduction due to HSRM-HPC (%)
I	15%
11	50%
Ш	48%

Historical Background

Hypothesis

Material Development and Characterization

Prototype Tie Design and Fabrication

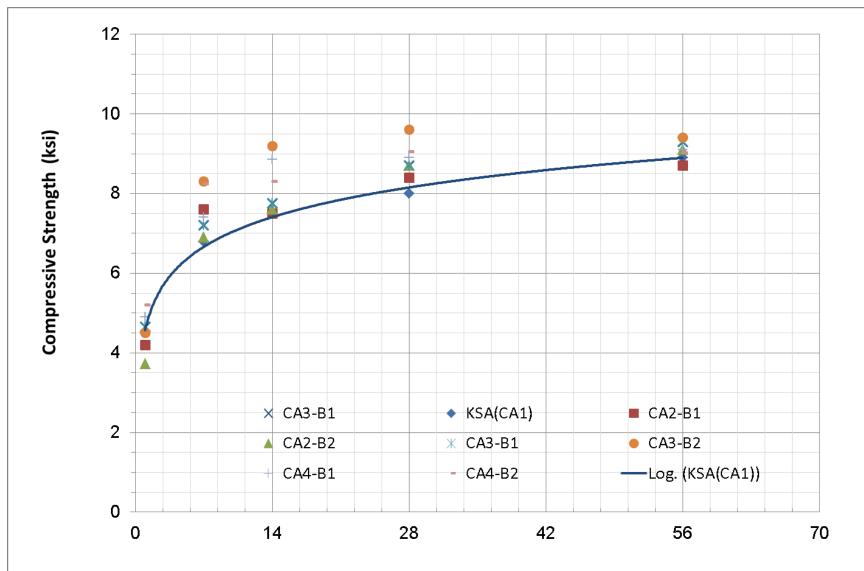
Product Qualification

□ Conclusions

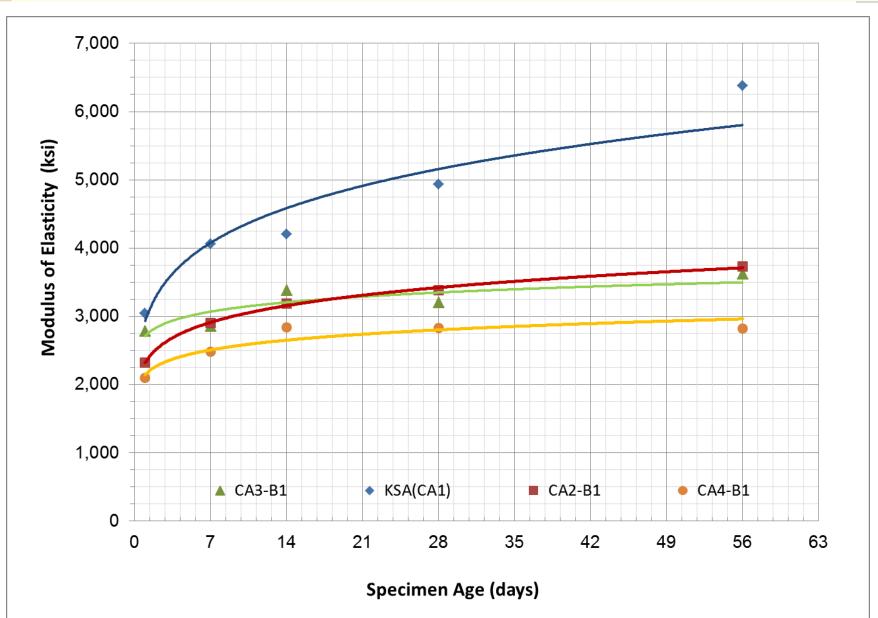
Rocla Design

- Min. 28 Day = 7000psi
- Min. Transfer Strength = 4000psi
- Direct substitution of aggregates
- 4 Aggregate Sources
 - CA1: Plum Run Stone (ROCLA)
 - CA2: Weathered Granite Source A
 - CA3: Weathered Granite Source B
 - CA4: Weathered Granite Source C

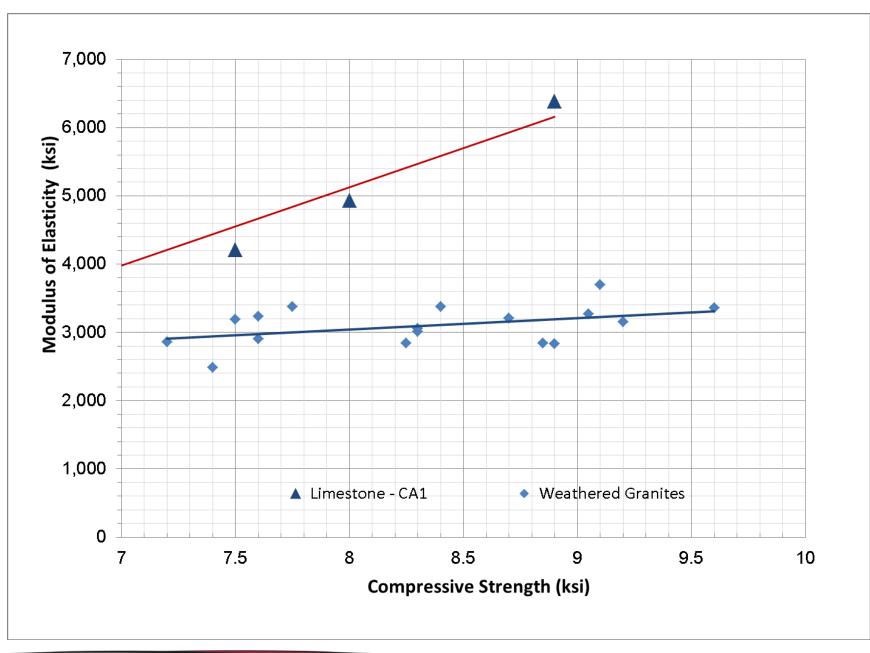
Advantage Material Development and Characterization


Advantage Material Development and Characterization

Tests on Rock, Aggregate, Mortar and Concrete


	Test	ASTM
Coarse Ag.	Los Angles Abrasion Test	C131
	Sieve Analysis (Particle Size Distribution)	C136
	Bulk Density and Voids	C29
0	Density, Specific Gravity and Absorption	C127
Rock	Compressive Strength	D7012 - 14
Ro	Modulus of Elasticity	D7012 - 14
ete	Slump	C143
	Density	C138
	Air Content by pressure method	C231
Concrete	Compressive Strength of Concrete	C39
Ŭ	Flexural Strength of Concrete	C78
	Modulus of Elasticity of Concrete	C469
	Shrinkage	C157
tar	Compressive Strength	C 109- 13
	Tensile Strength	C 307-12
Mortar	Modulus of Elasticity	C 580-02
-	Setting Time (Initial and Final)	C191 - 13

Concrete Strength vs Age



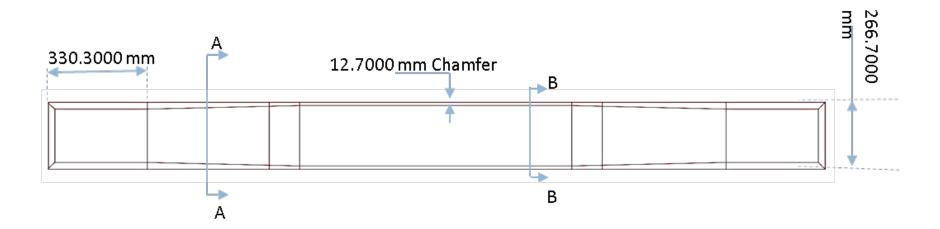
Specimen Age (days)

Elastic Modulus of Concrete vs Age

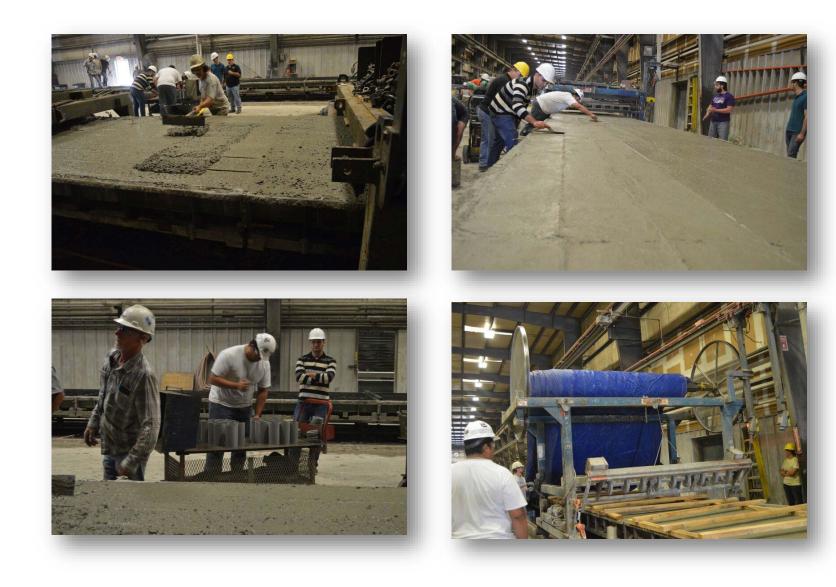
Concrete Modulus vs Strength (fc'>7 ksi)

Property		AGGREGATE				
		KSA (CA1)	CA2	CA3	CA4	
Aggreg	Voids	42.73	42.51	39.90	39.10	
	Density (lb/ft ³)	161.65	164.50	165.00	167.50	
٨gg	Relative Density	2.58	2.60	2.65	2.69	
4	LA Abrasion	27.5%	33.9%	44.3%	46.0%	
r	Density (lb/ft 3)	152.90	153.73	154.14	158.55	
onc	Yield (yd ³)	0.15	0.15	0.14	0.14	
Fresh Concr	Cement Content (lb/yd ³)	618.23	621.53	623.21	632.05	
	Slump (in)	7.00	6.50	7.50	4.00	
ш	Air Content (%)	5.0%	5.9%	4.8%	4.0%	
	Compressive Strength (psi)	8.8E+03	8.8E+03	9.2E+03	8.7E+03	
Concrete	Increase/Reduction %	0%	0 %	4%	-1%	
	Flexural Strength (psi)	0.13fc'	0.125fc'	0.12fc'	-	
	Elastic Modulus (psi)	5.6E+06	3.6E+06	3.2+06	2.8E+06	
ပိ	Elastic Modulus Reduction %	0%	-37 %	-43%	-50%	
	Lapping Test Abrasion Rate (mm/min)	0.042	0.023	0.029	0.039	

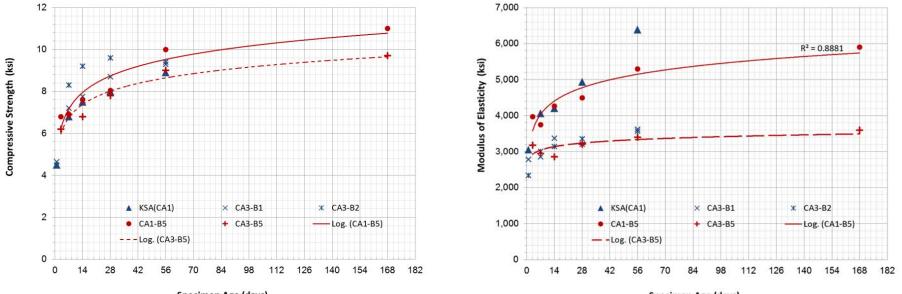
Property		AGGREGATE			
		KSA (CA1)	CA2	CA3	CA4
	Voids	42.73	42.51	39.90	39.10
Aggreg	Density (lb/ft ³)	161.65	164.50	165.00	167.50
√ 99	Relative Density	2.58	2.60	2.65	2.69
4	LA Abrasion	27.5%	33.9%	44.3%	46.0%
L	Density (lb/ft^3)	152.90	153.73	154.14	158.55
Fresh Concr	Yield (yd ³)	0.15	0.15	0.14	0.14
	Cement Content (lb/yd ³)	618.23	621.53	623.21	632.05
res	Slump (in)	7.00	6.50	7.50	4.00
ш.	Air Content (%)	5.0%	5.9%	4.8%	4.0%
	Compressive Strength (psi)	8.8E+03	8.8E+03	9.2E+03	8.7E+03
	Increase/Reduction %	0%	0%	4%	-1%
Concrete	Flexural Strength (psi)	0.13fc'	0.125fc	0.12fc'	-
	Elastic Modulus (psi)	5.6E+06	3.6E+06	3.2+06	2.8E+06
ပိ	Elastic Modulus Reduction %	0%	-37%	-43%	-50%
	Lapping Test Abrasion Rate (mm/min)	0.042	0.023	0.029	0.039

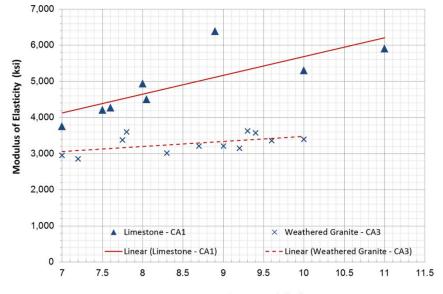

- Historical Background
- Hypothesis
- Material Development and Characterization

Prototype Tie Design and Fabrication


Product Qualification

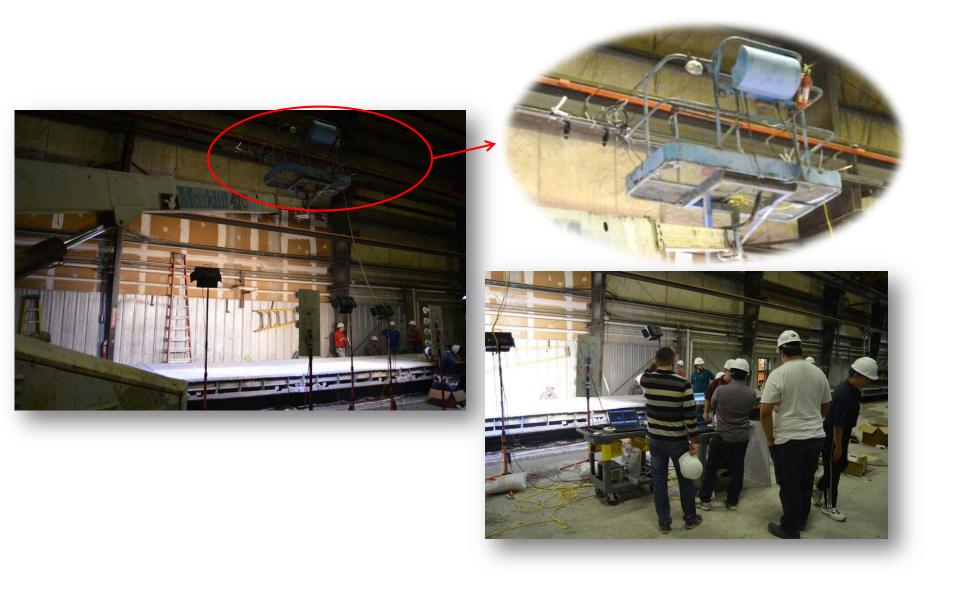
□ Conclusions

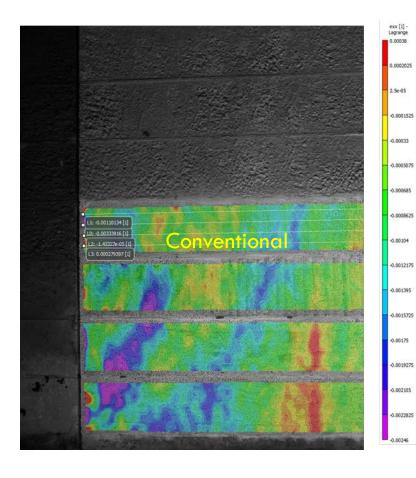


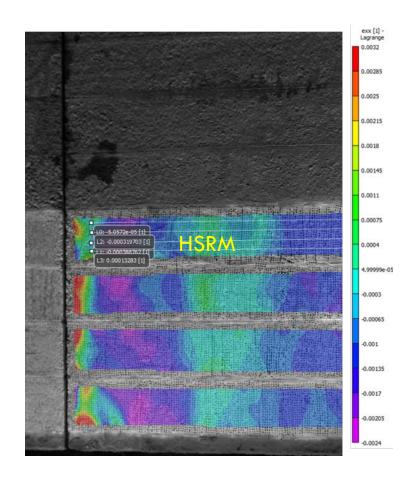


Concrete Properties – Plant Batch

Specimen Age (days)


Specimen Age (days)




Compressive Strength (ksi)

Transfer Length	HSRM-HPC	Standard
Average	11.9 in	16.2 in
Std. Deviation	1.0 in	2.5 in
Coeff. Var.	8.4%	15.4%

- Historical Background
- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Prototype Testing & Qualification
- □ Conclusions

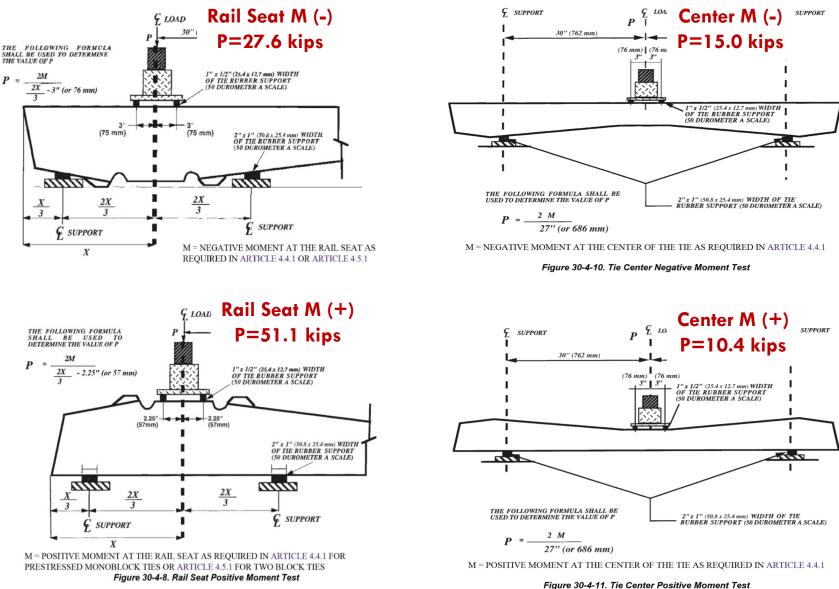
4.9.1.1 Sequence of Design Tests (Tie "1")

Completed

- a. Rail Seat Vertical Load Test Rail seat A (4.9.1.4)
- b. Center Negative Bending Moment Test (4.9.1.6)
- c. Center Positive Bending Moment Test (4.9.1.7)
- d. Rail Seat Vertical Load Test Rail seat B (4.9.1.4)
- e. Bond Development, Tendon Anchorage, and Ultimate Load Test Rail seat A (4.9.1.8)

In Progress

a. Rail Seat Repeated Load Test – Rail seat B(4.9.1.5)

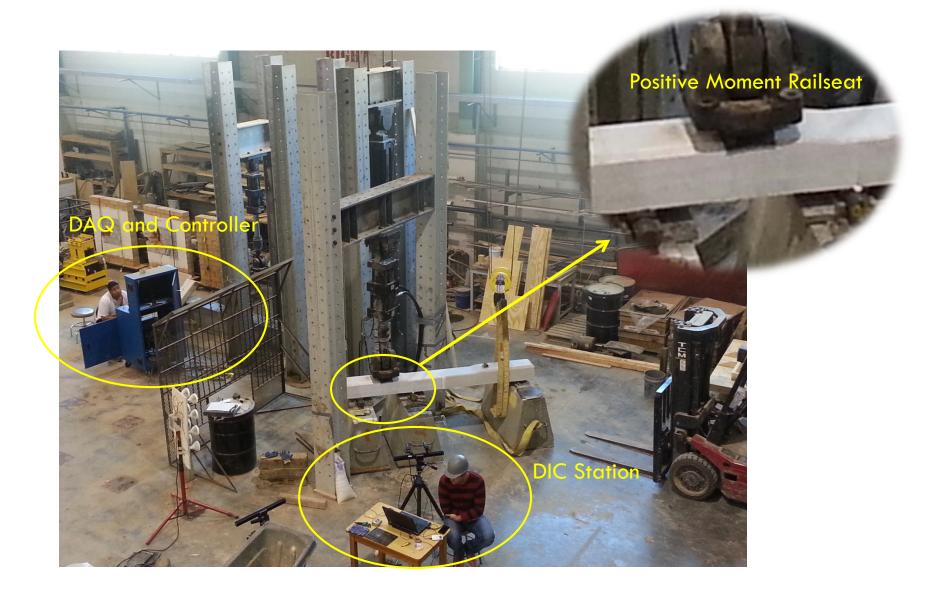


4.9.1.2 Sequence of Design Tests (Tie "2")

Completed

- a. Fastening Insert Test (4.9.1.9)
- b. Fastening Uplift Test (4.9.1.10)
- c. Electrical Resistance and Impedance Test (4.9.1.14)

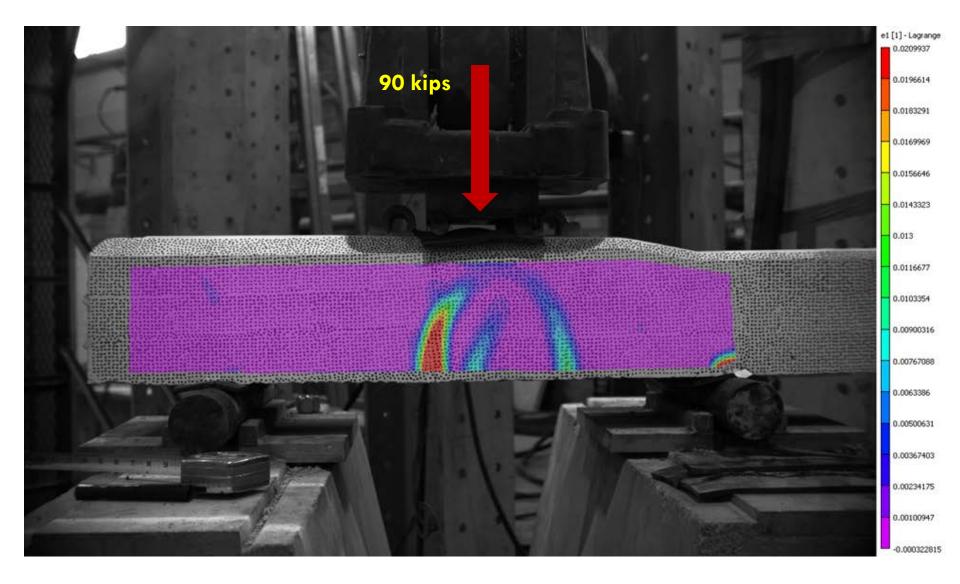
AREMA Sequence of Design Tests (Tie "1")

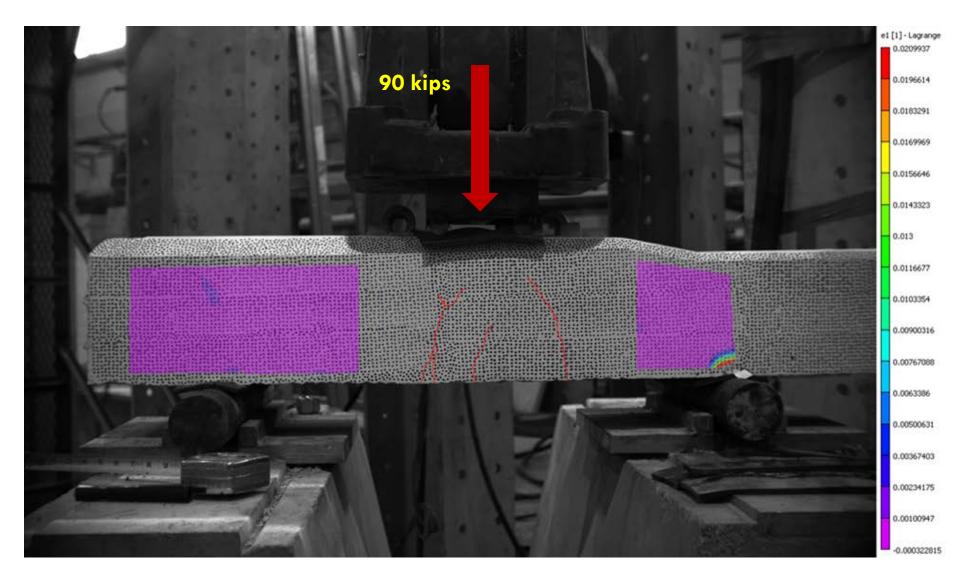

-

Æ AREMA Sequence of Design Tests (Tie "1")

2. 3-D Stereovision System for Strain Field Measurements

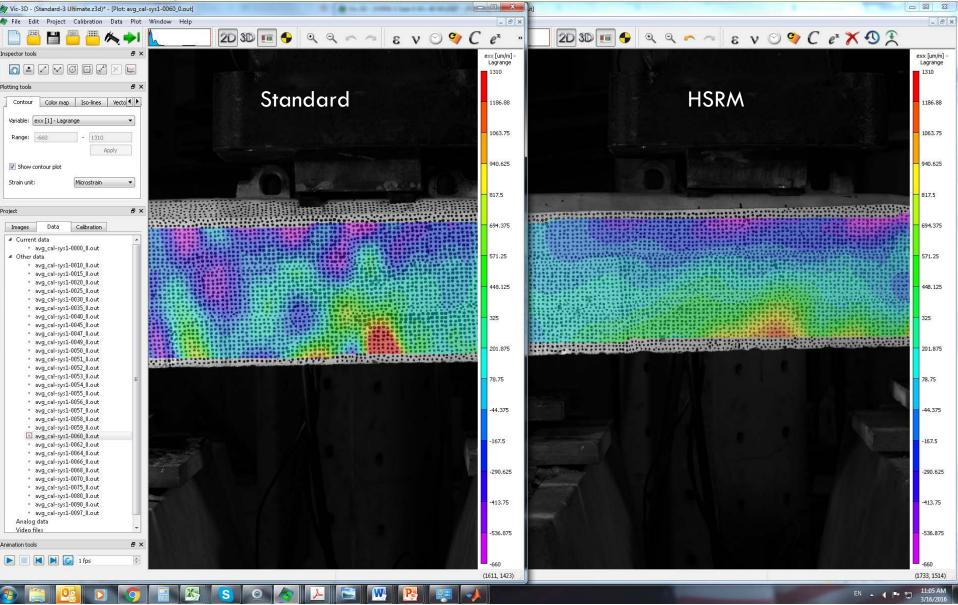
3-D Stereovision System for Strain Field Measurements



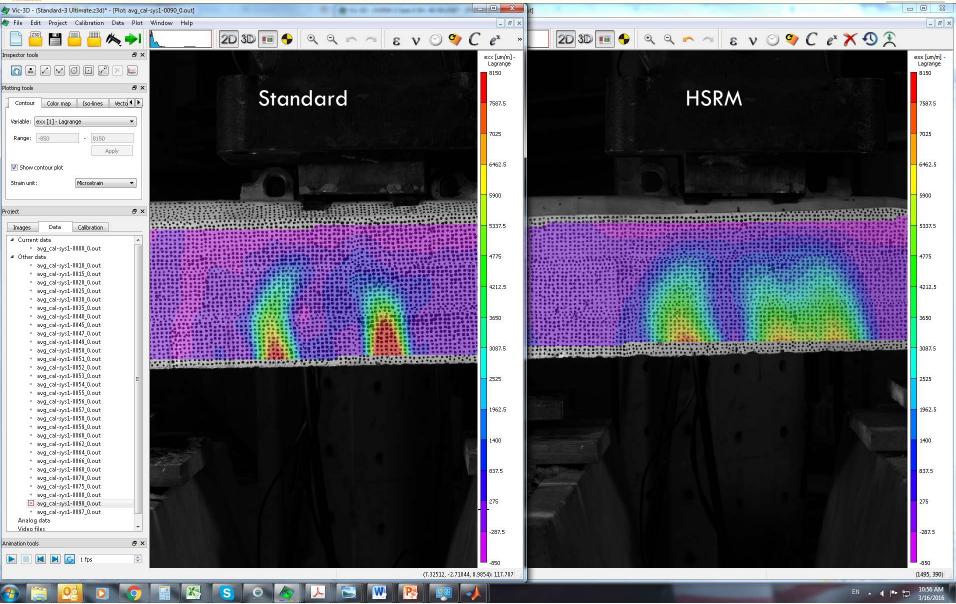


Rail Seat Negative Moment Test 26.7 (Kips) on Seat A 30 25 20 Force (kips) R² = 0.9885 15 10 5 HSRM Standard -Linear (HSRM) Linear (Standard) 0 0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.33 Total Deflection (in)

Design Performance – AREMA: Ultimate Load Tests (In Progress)



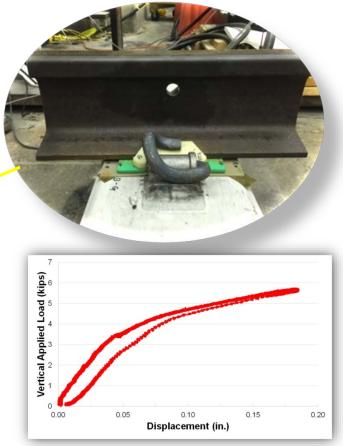
Design Performance – AREMA: Ultimate Load Tests (In Progress)



Tie ID		Rail Seat A					
		Eprestress (+∕- 10%)	E crack	P_{crack}	1.5P	Ρυ	Strand Slippage
Prototype	HSRM-Q1	~800 με	~320με	56	Pass	>100	No
	HSRM-Q2						
	HSRM-Q3			57	Pass	>100	No
	HSRM-Q4						
	HSRM-Q5			52	Pass	96	No
Baseline	STND-Q1						
	STND-Q2						
	STND-Q3 (9-1)	~500 με	~220 με	57.9	Pass	88.9	No
	STND-Q4 (11-3)			52.1	Pass	105.3	No
	STND-Q7			49	Pass	97	No
Other	STND-Q5-A						
	STND-Q6-A						

P=60 kips Same Scale

💂 P=90 kips – Same Scale


Eastener Pullout and Torque Tests

Crosstie	Rail Seat	Location	Pull-out (12kips)	Torque (250lb-ft)
	А	Field	PASS	PASS
Rocla		Gauge	PASS	PASS
Rucia	В	Field	PASS	PASS
		Gauge	PASS	PASS
	^	Field	PASS	PASS
USC Prototype	Α	Gauge	PASS	PASS
030 Flototype	B	Field	PASS	PASS
		Gauge	PASS	PASS

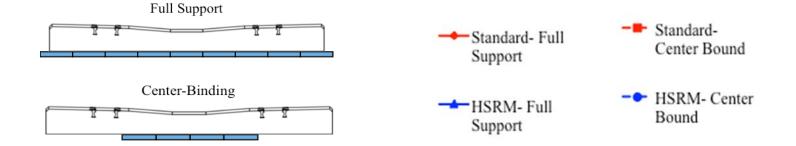
Eastener Uplift Tests

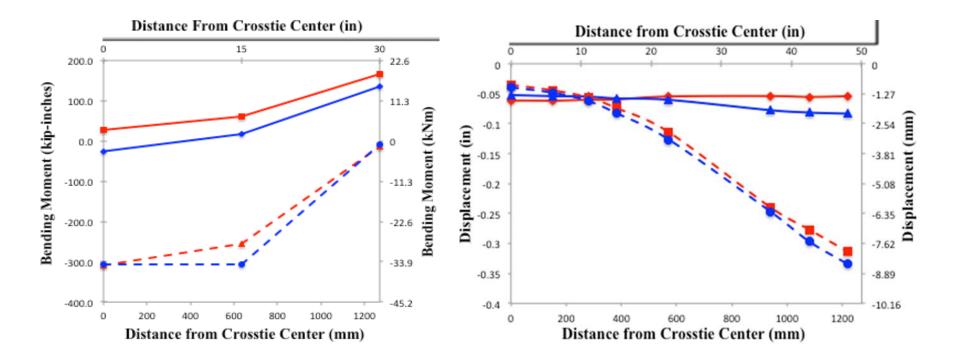


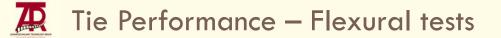
Crosstie	Rail Seat	Result
Standard Crosstie	Α	PASS
	В	PASS
USC Prototype Creedia	Α	PASS
USC Prototype Crosstie	В	PASS

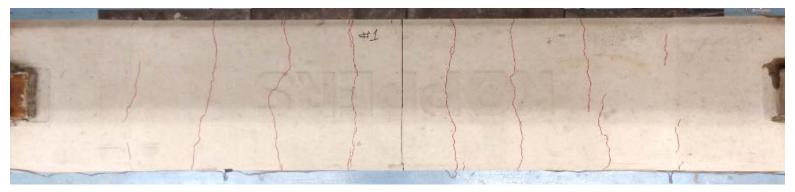
Tie Performance: Fastening Insert Failure Test

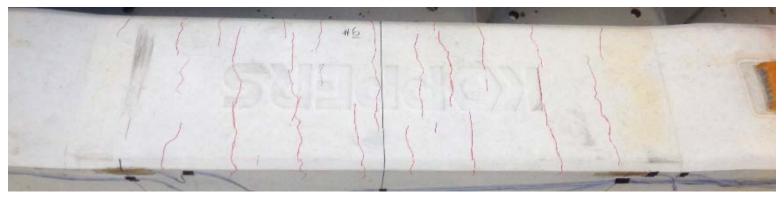
Crosstie	Level of Distress	Load (kips)
Standard	Crack Initiation at	31.6
Stanuaru	Insert Pulled out	34.6
HSRM	Crack Initiation	33.2
	Insert Pulled out	35.1


Standard




HSRM


Tie Performance – Flexural tests



Standard Tie

HSRM Tie

- Historical Background
- Hypothesis
- Material Development and Characterization
- Prototype Tie Design and Fabrication
- Product Qualification
- Conclusions and Current and Future Work

- HSRM-HPC similar properties as Limestone HPC except Elastic Modulus (up to 50% reduction)
- HSRM Ties Passed all AREMA Qualification Tests and meets or exceeds standard tie performance
- □ HSRM Tie provides
 - Better load distribution
 - Stress reduction
 - Delay onset of damage
- A technology based modification in concrete tie technology that will improve the safety of rail service and maintenance operations without impacting fabrication cost and process

Grant Number DTFR53-14-C-00023

Dr. Robert Peterman

Dr. Juan Caicedo Dr. Michael Sutton Dr. Robert Mullen

Ali Abdulqader Sally Bartelmo Albert Ortiz Adam Zeitouni Sreehari Rajan Katil Kevin Barberena Spencer Green Josh Breed Melissa Brueckner Brigitte Shumpert