

RPS ASA Modeling Crude-by-Rail Releases Overland and into Aquatic Environments to Assess Risk

Matthew Horn, Ph.D. Senior Scientist Matt.Horn@rpsgroup.com

RPS ASA South Kingstown, RI 02874, USA +1 (401) 789 - 6224

asascience.com rpsgroup.com Secure & Stable

November 2016

Overview

- Introduction to RPS ASA
- Selected Projects of Interest
- Framing the Situation
 - Why we model
 - Regulations
- OILMAP Land
- SIMAP

RPS ASA Overview

- Formally known as Applied Science Associates, now member of the RPS Group plc.
- RPS ASA is a global science and technology solutions company. Through consulting, environmental modeling, and application development, ASA helps a diverse range of clients solve their issues of concern.
- Since 1979 and in over 100 countries, ASA has been providing services and custom solutions to sectors including energy, environment, construction, defense, security, emergency management, transportation, and shipping.
- Developer of commercially available oil spill and contaminant models for nearly 30 years
 OILMAP, SIMAP, CHEMMAP, OILMAP Land,
 OILMAP Deep, as well as other software (EDS, SARMAP)

Provide: Expert Modeling / Technical Reporting / Testimony ...and more

RPS ASA

Selected Projects of Interest

Rail Projects

- Shell Puget Sound Refinery Anacortes Refinery Unloading Facility
- Tesoro Savage Rail Risk Assessment

Pipeline Projects

- Enbridge Northern Gateway Pipeline
- Enbridge Line 3 Replacement Program (U.S. and Canada)
- Kinder Morgan Trans Mountain Pipeline System
- TransCanada Energy East Pipeline
- Energy Transfer Dakota Access Pipeline

Offshore Projects

- Deepwater Horizon Natural Resource Damage Assessment (NRDA)
- Shell Shelburne Basin Exploration Drilling Program

RPS ASA Services

- Trajectory Modeling Services
- Area Risk Assessments (ARA)
- Environmental Risk Assessments (ERA)
- Consequence Analysis
- Environmental Assessments (EA's)
- Environmental Impact Assessments (EIA)
- Net Environmental Benefit Analysis (NEBA)
- Natural Resource Damage Assessment (NRDA)
- Cost / Benefit Analysis
- Biological Services
- Oil Spill Response Planning (OSRP)
- MetOcean, Environmental Data Services (EDS), Environmental Data Connector (EDC)
- Data Management (GIS & Integration)

North American Rail Network and Crude-by-Rail Facilities

Source: http://priceofoil.org/rail-map/

Movements of Crude Oil and Selected Products by Rail

- Large increase in the volume of crude oil shipped by rail between 2011-2015

Source: U.S. Energy Information Administration

 Along with the increase in volume of crude oil shipped by rail, there has also been an increase in the number of barrels spilled (1980-2015).

Movements of Crude Oil and Selected Products by Rail

 Despite >99.9% of cargo arriving safely, the public perception of crude by rail shipments is skewed to a handful of unlikely but catastrophic events

Based on a review of the Pipeline and Hazardous Materials Safety Administration (PHMSA) database of accidents involving crude-by-rail shipments (USDOT 2016).

Pipeline Regulations

Code of Federal Regulations, Title 49, Parts 190 – 199 Hazardous Liquid Integrity Management HCA Analysis provides predictions of intersection of HCA "could affect" areas and oil released from the pipeline

- High Consequence Area (HCA)
 - Drinking water
 - Commercially navigable waterway
 - Urbanized areas and other populated areas
 - Unusually sensitive environmental areas
- Determining Affect
 - Direct HCA crossed by pipeline centerline
 - Indirect –HCA reached by oil spill plume
- HCA boundaries change and new HCAs must be incorporated into the Baseline Assessment Plan within one year

Offshore and Inland Water Regulations

- RPS ASA
- Canadian Waters CEAA and Transport Canada oversees regulatory requirements and are advised by ECCC (previously EC) and DFO
- Offshore (seaward of coastline) BSEE oversees regulatory requirements for pollution control for offshore.
 - 30 CFR 254 requires worst case trajectory modeling
- Inland Waters EPA and ACOE oversees regulatory requirements for pollution control for all inland waters
 - Spill Prevention, Control, and Countermeasure (SPCC) Rule
 - Facility Response Plan (FRP) Rule

Rail Regulations

RPS ASA

Key Players:

- 1. Transport Canada (TC)
- 2. Canadian Transportation Agency (CTA)
- 3. Railway Association of Canada (RAC)
- 4. U.S. DOT Federal Railroad Administration (FRA)
- 5. Pipeline and Hazardous Materials Safety Administration (PHMSA)
- 6. National Transportation Safety Board (NTSB)
- 7. Transportation Security Administration (TSA)
- 8. Federal Emergency Management Agency (FEMA)

Selected Regulations:

- 1. Enhanced tank car design
- 2. Braking controls and speed restrictions
- 3. Proper classification and treatment (conditioning) of transported crude (Bakken)
- 4. Technical information for local officials and first responders (State Emergency Response Commissions SERCs)
- 5. First responder training
- 6. Risk Assessments need for <u>Quantitative Analyses</u>

OILMAP Land - 2D Trajectory and Fates

Modeled Processes – Overland Flow

Modeled Processes – Surface Water Network

OILMAP Land - 2D Trajectory and Fates

noter	tical Spill Loca	tion			
	Oil Type	Season	HCA Type	HCA Sub-Type	HCA Name/Description
_		High Flow	Drinking Water	Ground Water	Municipal
_			Environmentally	Important Species	51 HCAs representing multiple sightings
			Sensitive Area	Area	of several individual species
	Cold Lake		Environmentally	Wildlife Management	Assiniboine Corridor WMA
			Sensitive Area	Area	
			Other Populated Area		Wawanesa
			Other Populated Area		Treesbank Colony
		Average Flow	Drinking Water	Ground Water	Municipal
			Environmentally	Wildlife Management	Accinitoine Corridor WMA
	Winter		Sensitive Area	Area	Assinibolne Corridor WMA
	Blend		Environmentally	Important Species	51 HCAs representing multiple sightings
			Sensitive Area	Area	of several individual species
			Other Populated Area		Wawanesa
			Other Populated Area		Treesbank Colony
5		Low Flow	Drinking Water	Ground Water	Municipal
2			Environmentally Sensitive Area	Important Species Area	3 HCAs representing individual species
			Other Populated Area		Wawanesa
			Other Populated Area		Treesbank Colony
		High Flow	Drinking Water	Ground Water	Municipal
-			Environmentally	Wildlife Management	Assiniboine Corridor WMA
			Sensitive Area	Area	
			Environmentally	Derevie siel er els	Spruce Woods Provincial Park
			Sensitive Area	Provincial park	
Ň			Environmentally	Important Species	273 HCAs representing multiple sightings
-			Sensitive Area	Area	of several individual species
-			Other Populated Area		Wawanesa
1			Other Populated Area		Treesbank Colony
-		Average Flow	Drinking Water	Ground Water	Municipal
	Federated		Environmentally Sensitive Area	Wildlife Management Area	Assiniboine Corridor WMA
	Crude		Environmentally Sensitive Area	Provincial park	Spruce Woods Provincial Park
-			Environmentally	Important Species	156 HCAs representing multiple sightings
me	l l		Sensitive Area	Area	of several individual species
			Other Populated Area		Wawanesa
			Other Populated Area		Treesbank Colony
		Low Flow	Drinking Water	Ground Water	Municipal
			Environmentally	Important Species	3 HCAs representing individual species
)			Sensitive Area	Area	Wasser
7			Other Populated Area		Wawanesa
-			Other Populated Area		Treesbank Colony

Site Specific Inputs

 Elevation
 Land Cover
 Shore Type
 River Width
 River Flow
 Temperature
 Wind Speed

Site Specific Outputs

 Trajectory (pathway)
 Travel Time
 Spatial Extent
 Mass Balance
 HCA's

Predict the overland and downstream trajectory and fate to provide conservative estimates of the extent (where) and timing (when) of potential oiling to better focus response activities.

Hypothetical release at Mt. Carbon, WV in spring

Response and Preparedness with OILMAP Land: Spatial Extent

Provide overland and downstream trajectory and fate predictions to identify the spatial extent and possible high consequence areas (HCAs) along the rail corridor that may be affected in the event of a release.

Hypothetical release on the Hudson River

- Watercourse
- Oil
- Water Supply
- Populated Area
- Environmental Sensitivity

SIMAP - 3D Oil Fate Processes Along Shorelines

Chemical Parameters

Simplify each oil by grouping like-compounds (pseudo-component approach):

Characteristic	Volatile and Highly Soluble	Semi-volatile and Soluble	Low Volatility and Slightly Soluble	Residual (non-volatile and very low solubility)
Distillation cut	1	2	3	4
Boiling Point (°C)	< 180	180 - 265	265 - 380	>380
Molecular Weight	50 - 125	125 - 168	152 - 215	> 215
$Log(K_{ow})$	2.1-3.7	3.7-4.4	3.9-5.6	>5.6
Aliphatic pseudo- components: Number of Carbons	volatile aliphatics: C4 – C10	semi-volatile aliphatics: C10 – C15	low-volatility aliphatics: C15 – C20	non-volatile aliphatics: > C20
Aromatic pseudo- component name: included compounds	MAHs: BTEX, MAHs to C3-benzenes	2 ring PAHs: C4- benzenes, naphthalene, C1-, C2-naphthalenes	3 ring PAHs: C3-, C4- naphthalenes, 3-4 ring PAHs with log(K _{ow}) < 5.6	\geq 4 ring aromatics: PAHs with $\log(K_{ow}) > 5.6$ (very low solubility)

Trajectory in A Small River and Lake

Each point is an individual Lagrangian Element (LE) representing a portion of the total volume of released oil.

The trajectory (movement) of each LE is calculated *individually* using sitespecific and locationspecific wind and current data.

The fate (behavior) of each LE is calculated *individually* for each chemical and physical parameter as well as for various pseudocomponents of the oil.

Biological Impact Analysis

- Use <u>spatially</u> and <u>temporally</u> varying oil concentration, thickness, and mass throughout the modeled domain
- Estimate the short term (acute) exposure of biota to floating oil and subsurface oil contaminants (in-water and sediments).

Exposure is a function of Concentration & Duration

- Determine the acute toxicity (mortality) for multiple sensitivity thresholds (e.g. 5 µg/L and 50 µg/L)
- Present predicted mortality
 - Volume of water affected
 - Area of water affected
 - Length of shoreline affected
 - % mortality

Modeling to Serve Your Needs

Model results have been used to inform

- Emergency Preparedness
- Response Planning
- Contingency Plans
- Environmental / Ecological Assessments
- Risk Assessments
- Regional and Site Specific Assessments
- Net Environmental Benefits Analysis
- Natural Resource Damage Assessments
- …and more

Hypothetical Release from a Chemical Plant Potential Effects: Air, Land and Estuary

Let us know how we can best help you.

Thank You

Matthew Horn, Ph.D. Senior Scientist & Project Manager Matt.Horn@rpsgroup.com

RPS ASA South Kingstown, RI 02874, USA +1 (401) 789 - 6224

rpsgroup.com asascience.com Secure & Stable

Additional Slides

The OILMAP Family ...and a few relatives

SIMAP Oil Fate Processes in Open Water

Stochastic Modeling

- Multiple 3D deterministic model trajectories (>100) are run for one scenario to characterize the consequences of spills under various environmental conditions
- Long term wind and currents records (5-10+ years)
- Randomly selected start date
- <u>Statistical analysis</u> of all trajectories generates maps of overall <u>oiling probability</u> and minimum travel time
- Areas and concentrations affected over prescribed minimum cut-off values or thresholds are evaluated
- Individual worst case and/or representative trajectories are identified and examined in more detail (95th percentile)

Potential Biological Effects of Oil

Smothering / Coating

(floating and shoreline oil)

- Thermal Regulation (birds and mammals)
- Mechanical (smothering, prevention of uptake and depuration, interference with motility, etc.)
- Adsorption of toxic compounds (via skin or gut)

Toxicity

(dissolved aromatics)

- Requires uptake into tissues
- Dissolved components
- Acute and chronic

Mechanical Interference

(subsurface oil droplets)

- Clogging of feeding appendages and gills
- Impeding movements

Behavioral Interference

- Avoidance (leave area or shut down)
- Attraction (more exposure)

(floating and shoreline oil)

