IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

LeeAnn Thomas – Director, Environmental Remediation Aimee Zack – Manager, Environmental Remediation

CORPORATE SUSTAINABILITY CREATES VALUE

 Corporate sustainability creates value

 Improve the efficiency, costeffectiveness and sustainability of environmental remedies

SITE BACKGROUND

- The Shoreham Facility
- 230 acres
- Northeast Minneapolis, Minnesota
- Railroad operations by CP and its predecessors from the late 1880s.

CORRECTIVE ACTIONS: SOIL

- 1926-1972-Wood treating lessee
- PCP release
- Soil Corrective actions included:
 - Excavation
 - On-site soil treatment

CORRECTIVE ACTIONS: GROUNDWATER

 The selected groundwater remedy included 2 groundwater recovery wells

CORRECTIVE ACTIONS: GROUNDWATER

 Groundwater is treated with Granular Activated Carbon (GAC).

 Treated water was discharged under permit to the municipal sewage treatment plant.

CORRECTIVE ACTIONS: GROUNDWATER

Groundwater flow

 The two groundwater recovery wells are screened 155-175 ft bgs

GROUNDWATER REMEDY ASSESSMENT

- Monitoring demonstrated that the treatment system is effective
- Depleted the groundwater resource
- Incurred unnecessary cost
- Long term use of energy resources

REMEDY ENHANCEMENT OBJECTIVES

Reduce

- The impact on the groundwater resource
- The load on the municipal infrastructure
- The cost of the system's operations and maintenance
- Maintain the same remedial effectiveness

GROUNDWATER SYSTEM IMPROVEMENTS

- Objectives achieved
- Constructed an infiltration basin:
 - Regulatory agency support
 - Provided recharge
 - Reduced the load on municipal infrastructure
 - O&M costs significantly reduced

GROUNDWATER SYSTEM IMPROVEMENTS

- Treated water discharged under NPDES permit
- Advantages
 - Space available on property
 - Lithology allows for easy infiltration
- Challenges
 - Directional drilling
 - Procedural changes to maintain water flow in pipes
 - Establish vegetation in sand

GROUNDWATER SYSTEM ENERGY IMPROVEMENTS

- Took advantage of available rebates to install solar panels
 - Southern Solar Array: 60 panel system (11.7 kilowatt total)

GROUNDWATER SYSTEM ENERGY IMPROVEMENTS

– Northern Solar Array: 56 panel system (10.9 kilowatt total)

ENERGY IMPROVEMENT BENEFITS

RETURN ON INVESTMENT: SOLAR PANELS

CONCLUSION

- Infiltration basin created a sustainable groundwater remediation system
- Reduced consumption of grid energy with solar panel arrays
- Long-term operations and maintenance costs were significantly reduced

Questions?

