COLUMN STUDY FOR EVALUATION OF IN-SITU IRON FOULING... A CAUTIONARY TALE OF AQUIFER BLOCKAGE

Ryan Oesterreich, PE, PG – Arcadis Mark Klemmer, PE – Arcadis William Parry, PG – CSX Transportation October 28, 2015

HOW TOMORROW MOVES

Who here has spent time and money installing a remediation system only to see it underperform or even fail?

- Geochemistry
- Hydrogeology
- Microbiology
- Infrastructure

PROBLEM STATEMENT

- Many remedial technologies work by changing the reduction-oxidation (red-ox) conditions within an aquifer.
 - Changing red-ox conditions has the potential to mobilize or precipitate red-ox sensitive metals.

Mobilization or precipitation of metals has the potential to reduce effectiveness of a remedial action, or create a new environmental condition.

RED-OX SENSITIVE METALS

Metal	Solubility under oxidizing (aerobic) conditions	Solubility under reducing (anaerobic) conditions
Arsenic	Low	High
Chromium	High	Low
Copper	Low	High
Iron	Low	High
Manganese	Low	High
Mercury	Low	High
Selenium	High	Low
Uranium	High	Low

Note: This represents only a partial list of the most common or most toxic redox sensitive metals

CASE STUDY – BASELINE CONDITIONS

<u>Geology</u>

- 0-6 ft bgs: Unsaturated fill soil
- 6-8 ft bgs: Saturated peat/organics
- 8-20 ft bgs: Fluvial sand aquifer
- 20+ ft bgs: Marine clay

Groundwater

- Chlorinated VOCs
- Petroleum
 hydrocarbons
- Dissolved and total iron 1 to 36 mg/L
- Dissolved and total manganese <1 mg/L

Geochemistry

- pH near neutral
- Moderately to Strongly Reducing
 - Dissolved oxygen
 <1 mg/L
 - Detectable dissolved methane
 - Elevated organic carbon in sand aquifer

Directed Groundwater Recirculation

• Effectiveness of remedy relies on large volumes of clean water being transported through impacted aquifer.

BENCH SCALE TESTING – EXPERIMENTAL SET-UP

ARCADIS Design & Const for natural and built assets

7

BENCH SCALE TESTING – RESULTS

Column Test No.	Sparge Gas	Total Diss. Metals Conc. (mg/L)	D.O. Conc (mg/L)
1	O2 - Aerobic	23.2	8 mg/L
2	N2 > O2, Anaerobic > Aerobic	23.2	1 mg/L > 8 mg/L
3	O2 - Aerobic	3.6	8 mg/L
4	O2 - Aerobic	10.3	8 mg/L
5	N2 - Anaerobic	10.3	< 1 mg/L

BENCH SCALE TESTING – RESULTS

Column Test No.	Sparge Gas	Total Diss. Metals Conc. (mg/L)	D.O. Conc (mg/L)	Flow Loss Due to Mineral Precipitation	No. of Pore Volumes Prior to Blockage
1	O2 - Aerobic	23.2	8 mg/L	Yes	6.8
2	N2 > O2, Anaerobic > Aerobic	23.2	1 mg/L > 8 mg/L	No	NA - 35.1 total
3	O2 - Aerobic	3.6	8 mg/L	Yes	21.6
4	O2 - Aerobic	10.3	8 mg/L	Yes	10.1
5	N2 - Anaerobic	10.3	< 1 mg/L	No	NA - 17.7 total

BENCH SCALE TESTING – RESULTS

REMEDIAL SYSTEM MODIFICATIONS

- Iron removal pre-treatment prior to air stripper
- Nitrogen scrub after LGAC vessels to remove D.O. before reinjection

LESSONS LEARNED

- Understanding in-situ geochemistry is critical prior to installing a remedial system.
 - Shift to aerobic: Potential for red-ox sensitive metals to precipitate and clog aquifer.
 - Shift to anaerobic: Potential for metals mobilization and secondary plume creation.

12

QUESTIONS?

Ryan Oesterreich – ryan.oesterreich@arcadis.com Mark Klemmer – mark.klemmer@arcadis.com William Parry – william_parry@csx.com

HOW TOMORROW MOVES

HOW TOMORROW MOVES

ARCADIS

SUPPLEMENTAL SLIDES

HOW TOMORROW MOVES

BENCH SCALE TESTING – EXPERIMENTAL SET-UP

16

PARCADIS Design & Consultance for natural and built assets

BENCH SCALE TESTING – EXPERIMENTAL SET-UP

ARCADIS Design & Const for natural and built assets