

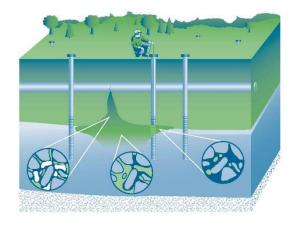
Insights into NSZD Rate Measurements at LNAPL Sites

Keith Piontek, Jason Leik, and Keith Wooburne/TRC Scott MacDonald/BNSF Railway

University of Illinois, Urbana – Champaign, October 29, 2014

Presentation Overview

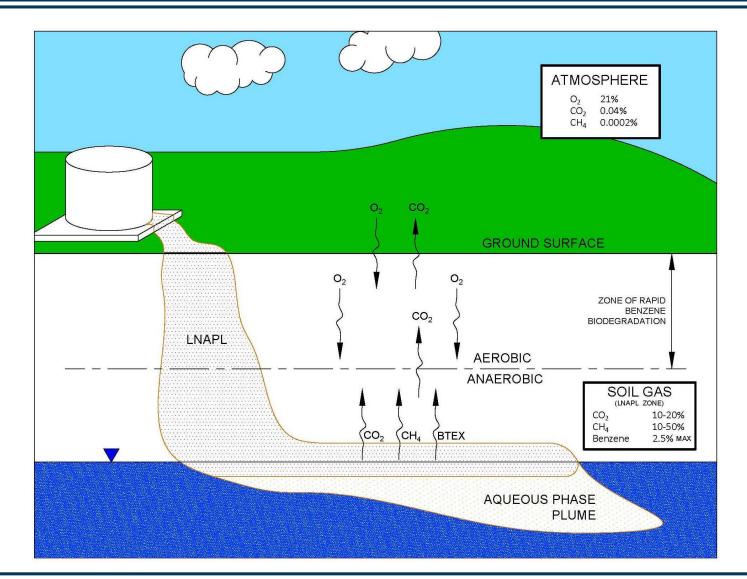
- Basic Principles
- Carbon Dioxide Trap Methodology
- Results from Various Sites
- Observations and Recommendations
- Thermal Flux Approach
- Case Study Niche of NSZD in Regulatory Closure



Natural Source Zone Depletion (NSZD)

Technology Overview

Evaluating Natural Source Zone Depletion at Sites with LNAPL



April 2009

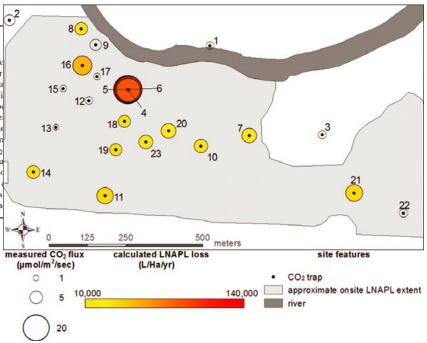
Prepared by The Interstate Technology & Regulatory Council LNAPLs Team

- "NSZD is a combination of processes that reduce the mass of LNAPL in the subsurface"
- Naturally occurring biodegradation is typically the dominant process

LNAPL Biodegradation and Soil Gas Composition

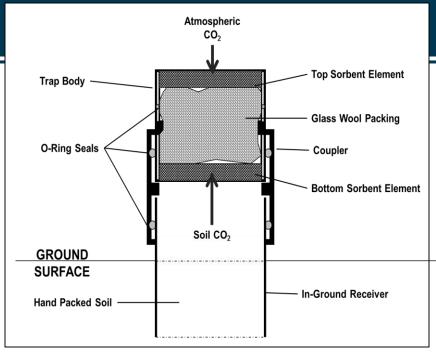
Carbon Dioxide Trap Methodology

Groundwater


Methods Note/

Measurement of Natural Losses of LNAPL Using CO₂ Traps

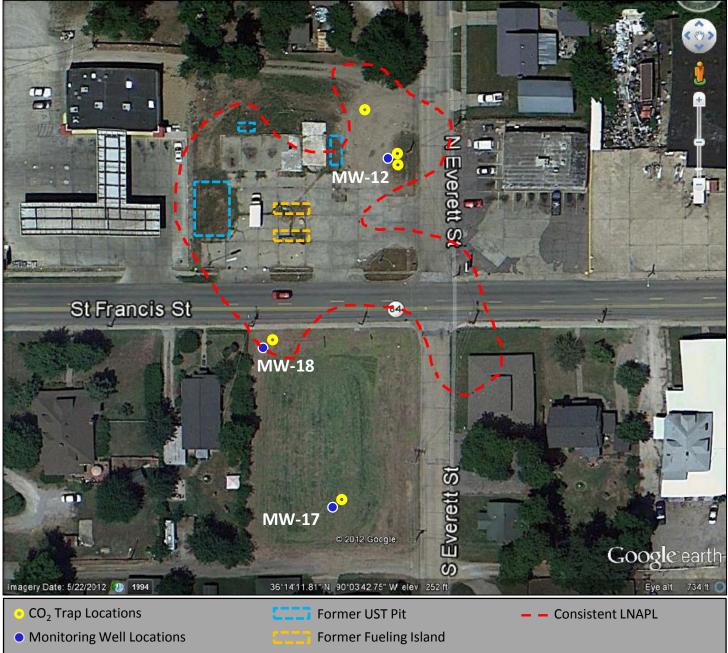
by Kevin McCoy¹, Julio Zimbron¹, Tom Sale², and Mark Lyverse³


Abstract

Efflux of CO₂ above releases of petroleum light nonaqueous phase liquids (LNAPLs) has emerged parameter for resolving natural losses of LNAPLs and managing LNAPL sites. Current approaches fc CO₂ efflux include gradient, flux chamber, and mass balance methods. Herein a new method for CO₂ efflux above LNAPL bodies, referred to as CO₂ traps, is introduced. CO₂ traps involve an u lower solid phase sorbent elements that convert CO₂ gas into solid phase carbonates. The sorbent is an open vertical section of 10 cm ID polyvinyl chloride (PVC) pipe located at grade. The lower sorb captures CO₂ released from the subsurface via diffusion and advection. The upper sorbent eleme atmospheric CO₂ from reaching the lower sorbent element. CO₂ traps provide integral measureme efflux based over the period of deployment, typically 2 to 4 weeks. Favorable attributes of CO₂ traps simplicity, generation of integral (time averaged) measurement, and a simple means of capturing CO₂ isotope analysis. Results from open and closed laboratory experiments indicate that CO₂ traps qu capture CO₂. Results from the deployment of 23 CO₂ traps at a former refinery indicate natural le LNAPL (measured in the fall, likely concurrent with high soil temperatures and consequently high rates) ranging from 13,400 to 130,000 liters per hectare per year (L/Ha/year). A set of field triplicates coefficient of variation of 18% (resulting from local spatial variations and issues with measurement at

- Integral CO₂ flux measurement
- 2 sorbent elements
 - Sodalime media
 - □ Bottom element \rightarrow soil CO₂
 - □ Top element → atmospheric CO_2
- Travel blank for QC
- Lab analysis for total carbonate

Soil CO₂



Basic Scope of Work - NSZD Rate Measurement

- "Snapshot" of LNAPL Intrinsic Bioremediation Rate
- Plant 5 Traps + travel blank
 - 3 locations
 - 1 duplicate
 - 1 background
- Leave in place two weeks
- Analyze for carbon dioxide and ¹⁴C
- Associated measurements
 - Groundwater temperature
 - Vadose zone oxygen, methane and carbon dioxide

Kennett, MO Site – Layout

Sample	Location	CO₂ Flux Rate (GPAY)
TRC-CO2-05	MW-17	819
TRC-CO2-01	MW-18	1,220
TRC-CO2-02	MW-12	738
TRC-CO2-03		480
TRC-CO2-04	NW of MW-12	2,083
Average for		
LN	1,304	

¹ Values are corrected for ¹⁴C

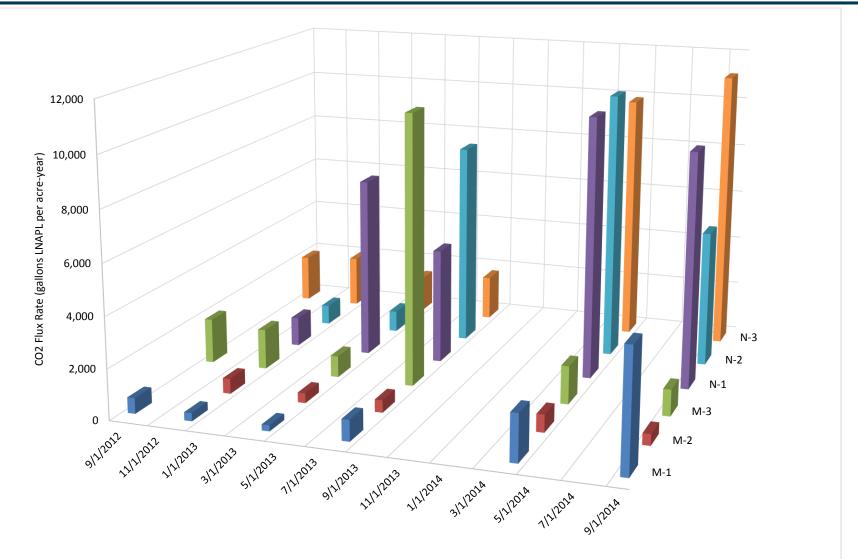
Duplicate	
Background	

Technical Findings - Methodology

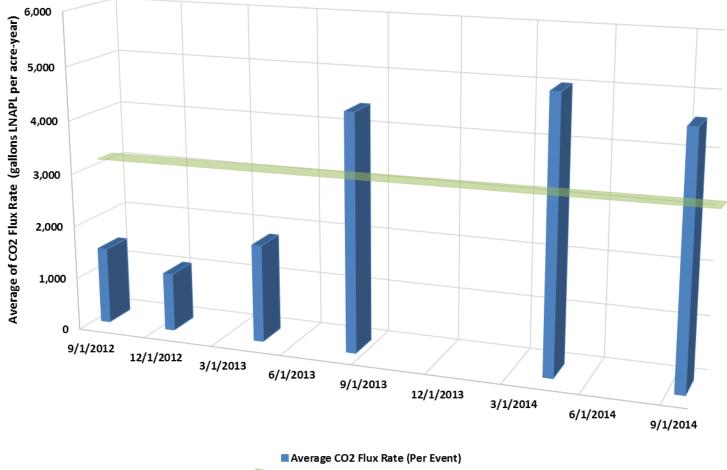
- ¹⁴C Method a More Reliable Method than Background Location for Determining Background
 - Significant ¹⁴C flux at the background location
 - Method based on background location can significantly underestimate the rate
- Overall Rate Estimation is Conservative
 - Traps give flux at a specific location (units of GPAY)
 - Multiple traps give average flux over the LNAPL zone
 - Average flux x LNAPL footprint = overall rate (gallons per year)
 - Does not account for CO₂ flux from the ground surface outside the LNAPL footprint

Results

			Metho			
Location	Fuel Type	LNAPL Zone (acres)	Trap Locations (LNAPL Zone)	Frequency	NSZD Rate (GPAY)	
Kansas City, KS	Weathered Fuel Mixture (Predominantly C_{12} to C_{16})	22	3 to 6	Quarterly, 6 events total to date	3,100	
Kennett, MO	Gasoline	1.3	3	Quarterly - One Year	1,050	
Klamath Falls, OR	Diesel	5.5	4	Once	1,800	
Spanish Lake, MO	Gasoline	0.6	3	Once	300	
West Quincy, MO	Diesel	0.9	3	Once	2,700	


Rates are ¹⁴C Corrected, No Additional Corrections (Background Location)

- Rates ranged from 300 to 3,000 GPAY
- Consistent with range of rates reported in ITRC LNAPL Training (Kansas City, MO – April 2014): "<u>hundreds to</u> <u>thousands of gallons per acre per year"</u>



Kansas City, KS – Variability in Measured Rate by Location

Kansas City, KS – Variability in Average Rate

Average CO2 Flux Rate (Overall)

Factors Potentially Impacting Carbon Dioxide Flux Measurements

- Temperature
- Rainfall, soil moisture content, and soil gas diffusion
- Variability in soil profile
- Wind (Bernoulli's Principle and Stack Effect)
- Water table fluctuations
 - Rising water table and displacement of soil gas
 - Falling water table and influx of atmospheric gas
 - Rate = f (submergence)?

Carbon Dioxide Traps Paired with Monitoring Wells

Site Screening – Soil Gas Measurements

Soil Gas Composition (% v/v)

Site	Average CO ₂ Flux Rate	Most Anaerobic Location			Average for All LNAPL Zone Wells		
	(gallons LNAPL per acre per year)	O ₂	CO ₂	CH4	O ₂	CO ₂	CH4
Spanish Lake, MO	300	0.1	14.5	0.2	5.9	9.2	0.1
Kennett, MO	1,050	0.7	14.4	6.4	1	13.8	5.3
Klamath Falls, OR*	1,800	0	14.2	2.3	4.8	11.1	2.4
Kansas City, KS	3,100	0	9.6	48	0.7	13.7	25.3

* Average does not include apparently anomalous results for MW-7

Methane Measurements Kansas City, KS

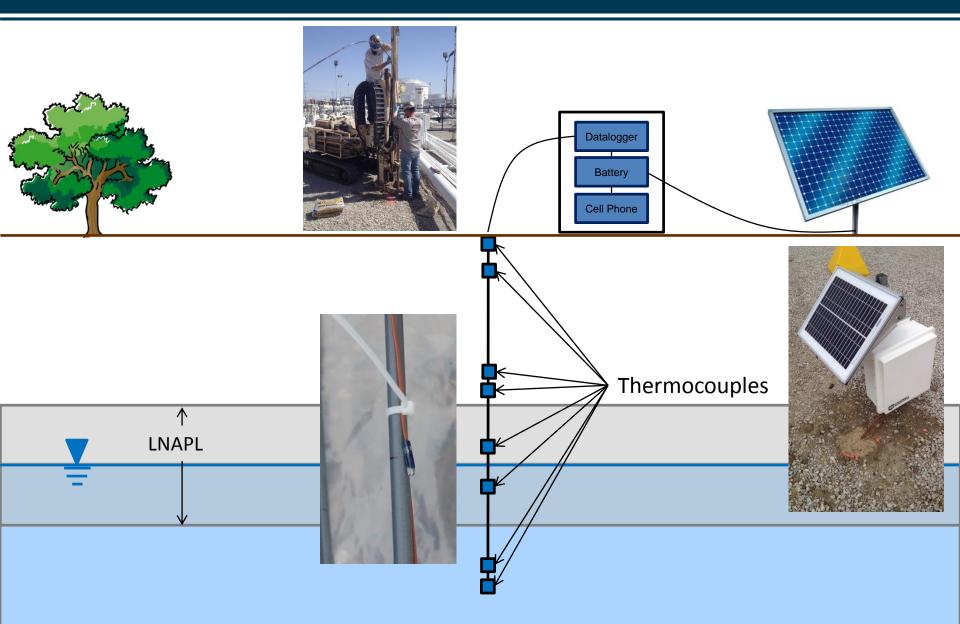
Well	Method	Methane (%)	
DW 200	Laboratory (Summa)	32.0	
RW-209	Field (Meter)	29.3	
RW-229	Laboratory (Summa)	19.0	
	Field (Meter)	18.5	
MW-15	Laboratory (Summa)	11.0	
	Field (Meter)	24.3	
RW-234	Laboratory (Summa)	12.0	
	Field (Meter)	16.4	

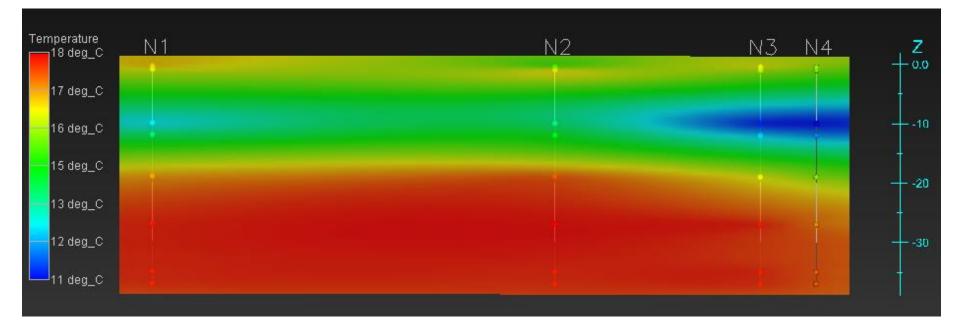
Technical Findings - Methodology

- Soil gas measurements a useful screening step
- Duplicate results indicate small-scale variability in measurement is within reasonable limits
- Two sites allow assessment of accuracy based on a single measurement versus average based on quarterly measurements:
 - Kennett, MO: +/- 30 percent
 - Kansas City, KS: Underestimate by a factor of 3, overestimate by a factor of 2
- A single round of measurements provides a value "in the ballpark"

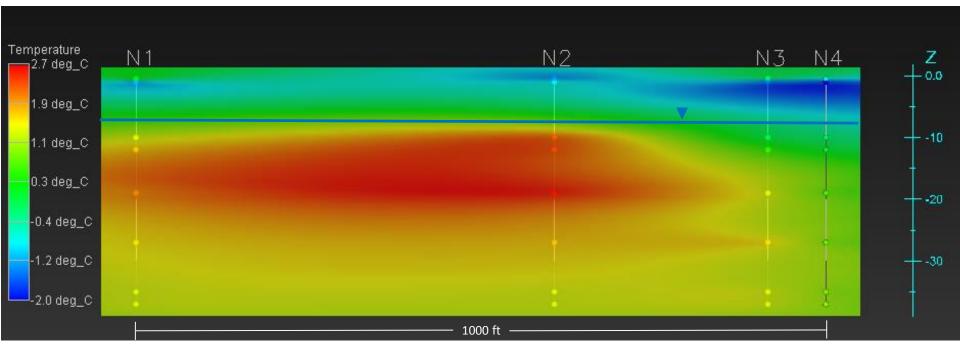
NSZD Rate from Thermal Flux

Hypothesis

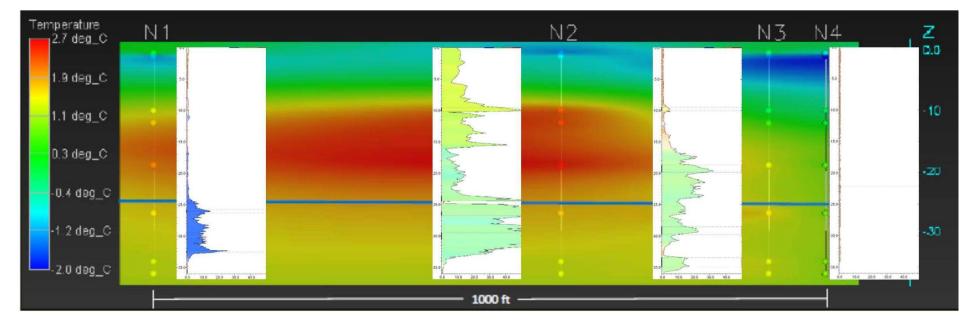

- Fuel oxidation is exothermic
- Heat of reaction can be used to derive NSZD rate measurement
- Continuous temperature monitoring can yield real-time rate monitoring
- Objectives


- Provide another line of evidence for NSZD rate measurement.
- Continuous rate measurement to better quantify annual natural LNAPL losses, assess longevity of impacts.
- Application (in progress)
 - Kansas City, KS Site
 - Collaboration with CSU Center for Contaminant Hydrology

Kansas City, KS Field Setup



Kansas City, KS Temperature Profile



With Background Correction

With LIF LNAPL Profile

Regulatory and LNAPL Recovery Implications

- Requirement to "remove free product to the maximum extent practicable as determined by the implementing agency" (40 CFR 280.64, 1988)
 - Assumption: Any free product posed a particularly significant hazard; e.g., migration to nearby sewers
- Things we have learned since 1988:
 - "Free product" is often a small fraction of total LNAPL, particularly with an aged release
 - "Accumulation in a well" does not equal macroscale mobility, NOT a good metric for recoverability
 - NSZD rate will often far exceed rate of free product recovery, particularly with an aged release

BNSF Yard – Klamath Falls, Oregon

- Key Site Issues:
 - Dissolved-phase diesel plume stability
 - Persistent occurrence of LNAPL in several wells
- Historical LNAPL Recovery Efforts
 - Hand bailing
 - Operation of belt skimmer system between 1997 and 2005
 - Skimmer system efficiency decreased due to the decrease in recoverable LNAPL
 - Seven Vacuum Enhanced Fluid Recovery (VEFR) events conducted in 2012

Phase Approach to NSZD Evaluation

Phase I - Characterize biogeochemistry and determine dominant intrinsic bioremediation processes through groundwater and soil gas sampling

Phase II – Implement NSZD evaluation to provide site-specific intrinsic rate of LNAPL removal

BNSF Yard – Klamath Falls, Oregon

Historic LNAPL Removal

- Total of 589 gallons of LNAPL recovered via hand bailing and skimmer system operation between 1997 and 2005
- Estimate approximately 1,000 gallons of LNAPL recovered during seven VEFR events in 2012

VS.

LNAPL Removal via NSZD

• Approximately 2,500 gallons per year via intrinsic rate of NSZD (based on conservative flux rate)

BNSF Yard – Klamath Falls, Oregon

- June 2013 TRC awarded project
- September October 2013 TRC implemented NSZD field evaluation
- **December 2013** Site-specific intrinsic rate of NSZD established
- February 2014 TRC submitted Summary Technical Report of NSZD Results and Findings
- August 2014 Targeted project outcome achieved

Department of Environmental Quality Eastern Region Bend Office 475 NE Bellevue Drive, Suite 110 Bend, OR 97701-7415 (541) 388-6146 Fax (541) 388-8283

August 4, 2014

Scott MacDonald BNSF Railway Company 2454 Occidental Ave. S, Suite 1A Seattle, WA 98134

Re: Conditional No Further Action Determination, BNSF Midland Market Rail Yard, Klamath Falls, ECSI No. 1732

Regulatory and LNAPL Recovery Implications

- Requirement to "remove free product to the maximum extent practicable as determined by the implementing agency" (40 CFR 280.64, 1988)
 - Assumption: Any free product posed a particularly significant hazard; e.g., migration to nearby sewers
- Things we have learned since 1988:
 - "Free product" is often a small fraction of total LNAPL, particularly with an aged release
 - "Accumulation in a well" does not equal macro-scale mobility, NOT a good metric for recoverability
 - NSZD rate will often far exceed rate of free product recovery, particularly with an aged release
- For regulatory agencies, the most readily acceptable niche for

NSZD: "a polishing step at the end of an active remediation effort"

For More Information

TRC

Keith Piontek <u>kpiontek@trcsolutions.com</u> 314.241.2694 ext. 11

BNSF Railway

Scott MacDonald <u>Scott.Macdonald@BNSF.com</u> 206.625.6376

Keith Woodburne <u>kwoodburne@trcsolutions.com</u> 925.688.2488

Jason Leik jleik@trcsolutions.com 817.522.1026

