Lateral Load Performance of Skl-Style Fastening System Laboratory and Field Results

2016 International Crosstie and Fastening System Symposium Urbana, IL 15 June 2016

> Donovan E. Holder, Sean Lin, Matthew V. Csenge, Yu Qian, Marcus S. Dersch, and J. Riley Edwards

Outline

- Motivation
- Overview of Fastening System Components
- Summary of Laboratory Experimentation
- Field Experimentation
 - Overview
 - Distribution of Lateral Load
 - Magnitude of Lateral Load
 - Lateral Stress on Crosstie
- Conclusions
- Contact Information

Motivation

• Lateral forces through the fastening system are believed to contribute to crosstie and fastening system deterioration

Broken/Worn Shoulder

Broken/Worn Insulator

Rail Seat Deterioration

W 40 HH AP Fastening System Components

Lateral Load Path through Fastening System

Lateral Wheel Load Bearing Forces Frictional Forces

Instrumentation Overview

Lateral Load Through Fastening System

- Governing critical questions:
 - What is the lateral stress on fastening system's rail bearing area?
 - Over how many crossties/fastening systems are lateral wheel loads distributed?
- Instrumentation description and methodology

Summary of Laboratory Experimental Results on Lateral Load Magnitude and Distribution

Lab Experimental Setup Track Loading System (TLS)

- RailTEC Track Loading System (TLS) allows for static testing of track infrastructure similar to field conditions.
- L_{input} is obtained from strain gauges attached to the rail
- L_{reaction} is obtained from instrumentation installed in the shoulder or angled guide plate of sleepers being tested.

Global Distribution of Lateral Load

- Lateral load is mainly transferred to three crossties with both fastening systems
- Load distribution further confirmed with data collected from rail base displacement measurements

W 40 HH AP Vert. Wheel Load Applied = 40 kips (178kN) Vert. Wheel Load Applied = 40 kips (178kN) Lat. Wheel Load Applied = 9.9 kips (44kN)

Lat. frictional resistance at rail Lat. force more evenly distributed to 60% 60% three crossties than Safelok I system seat hypothesized to play a Percent Lateral Wheel Load Resisted Percent Lateral Wheel Load Resisted 50% more significant role with Safelok I system by Field Shoulder 30% 50% 10% 0% 0% **Field Field** Gauge Gauge

Safelok I

Lat. Wheel Load Applied = 9.8 kips (43kN)

Contribution of Lateral Friction at Rail Seat

• W 40 HH AP relies less on lateral friction at rail seat to resist lateral wheel load. This is hypothesized to make the system less abrasive to concrete on rail seat

W 40 HH AP Vert. Wheel Load Applied = 40 kips (178kN) Lat. Wheel Load Applied = 9.9 kips (44kN)

Safelok I Vert. Wheel Load Applied = 40 kips (178kN) Lat. Wheel Load Applied = 9.8 kips (43kN)

Lateral Force on Rail Bearing Area

Vertical Load = 40 kips (178kN)

Quantifying Lateral Stress on Components Lateral Stress =

Bearing Area for Lateral Force

W 40 HH AP

Safelok I

Rail Bearing Area for Lateral Force

Crosstie Bearing Area for Lateral Force

Lateral Stress on Rail Bearing Area

Vertical Load = 40 kips (178kN) Lateral Wheel Load (kN) 40 80 20 60 n 8 -ateral Stress on Rail Bearing Area (MPa) Lateral Wheel Load Avg. Lateral Wheel Load -ateral Stress on Rail Bearing Area (ksi) 50 from Locomotive I from Locomotive 7 3.9 kips (17.3kN) (95th percentile) 13.3 kips (59.2kN) 6 40 5 30 W 40 HH AP Lat. Stress: 4 **100% Bearing Area Contact** 3 20 2 Safelok I Lat. Stress: 10 **100% Bearing Area Contact** 0 n 5 10 15 20

Lateral Stress on Crosstie Bearing Area

Field Experimentation

Lateral Load Magnitude Lateral Load Distribution

BNSF Field Instrumentation Layout

- Field experimentation conducted on Crawford Hill in Northwest Nebraska on BNSF Railway's Butte Subdivision
- Grade: 1.31%
- Degree of curvature: 8° (Radius of 218 m)
- Data collected 22-24 March 2016

Trains Captured:

5 – Loaded Coal Trains 3 – Empty Coal Trains 3 – Manifest Trains

Lateral Load Distribution Captured When Wheel Directly Over Tie 3

Captured When Wheel Directly Over Tie 4

Lateral Load from Instrumented Guide Plate

Captured When Wheel was Directly Over The Crosstie Shown

Lateral Force on Angled Guide Plate All 5 Loaded Coal Trains

Conclusions

- A three crosstie distribution of lateral wheel load observed both in the laboratory and in field experimentation on Crawford Hill
- The W 40 system appears to rely less on lateral frictional resistance at the rail seat than the Safelok I. This could help mitigate abrasion of the rail seat, which is a potential cause of rail seat deterioration
- More lateral force enters the field side angled guide plate of the W 40 system than the shoulder of the Safelok I system, but the lateral stress on the crosstie is lower
- From the loaded coal train data collected, higher lateral load was imparted on the low rail due to a combination of the train going uphill and operating below the balanced speed
- Data collected from Crawford Hill showed the lateral stress on concrete crosstie was significantly below the worst case concrete compressive fatigue limit for the W 40 system

Acknowledgements

- For funding this project:
 - Vossloh Fastening Systems America (VFSA)
- BNSF Railroad
 - Assistance with field experimentation
- For assistance with the project:
 - Max Silva, Michael Yang, Emily East, Dan Rivi,
 - Zach Jenkins, Brevel Holder,
- For fabrication of components and sensors:
 - Tim Prunkard and the CEE Machine Shop at UIUC

vossinh

Contact Information

RALLTEC UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Donovan Holder

Bridge EIT email: Donovan.Holder@hdrinc.com

Sean Lin

Graduate Research Assistant email: xiaolin4@Illinois.edu

Matthew V. Csenge Manager of Experimentation email: csenge2@Illinois.edu

Yu Qian

Research Engineer email: yuqian1@Illinois.edu

Marcus S. Dersch Senior Research Engineer email: mdersch2@Illinois.edu

J. Riley Edwards Research Scientist and Senior Lecturer email: jedward2@Illinois.edu

