The Use of Compound Specific Isotope Analysis to Manage Remediation by ISCO

Robert J. Pirkle and Patrick W. McLoughlin , Microseeps, Pittsburgh, PA

Matt Burns, WSP Environment and Energy, Woburn, MA

Railroad Environmental Conference 2014

Early focus on <u>carbon and hydrogen isotopes</u> Can be determined in <u>continuous flow mode</u> <u>Chlorine isotope</u> capability more recently available Applicable to <u>environmentally interesting concentrations</u>

Compounds with <u>Light isotopes</u> degrade more rapidly than compounds with <u>Heavy isotopes</u>

Product remaining becomes <u>isotopically heavier</u>

□ Process of isotopic change is called **fractionation**

¹³Chocolate Fractionation

□ Compounds with <u>Light isotopes</u> degrade more rapidly than compounds with <u>Heavy isotopes</u>

Product remaining becomes <u>isotopically heavier</u>

□ Process of isotopic change is called **fractionation**

Significant Fractionation Occurs in:

- Biological Oxidation
- Biological Reduction
- Abiotic Degradation
- In-Situ Chemical Oxidation
- In-Situ Chemical Reduction

Little or No Fractionation Occurs in:

- Dilution
- Volatilization
- Sorption

USEPA Guide for CSIA

John Wilson USEPA

Daniel Hunkeler

U of Neuchatel, Switzerland

Rainer Meckenstock

Institute of Groundwater Ecology, Germany

Torsten Schmidt

U of Duisburg-Essen, Germany

Barbara Sherwood-Lollar

U of Toronto, Canada

http://www.microseeps.com/html/technicalarticles.

USEPA Chapters

1. Introduction

- 2. Data Quality Issues
- 3. Collection, Preservation and Storage of Samples
- 4. Interpretation of Stable Isotope Data from Field Sites
- 5. Strategies for Field Investigations
- 6. Use of Stable Isotopes for Source Identification
- 7. Derivation of Equations to Describe isotope Fractionation
- 8. Stable Isotope Enrichment Factors
- 9. Recommendations for the Application of CSIA

10. References

The Stable Isotope Parameters

Ratio

$R = ([heavy] / [light]) = ([^{13}C] / [^{12}C])_{x}$ The "Del" Function $\delta_{x} = \{(R_{x} - R_{std}) / R_{std}\} \times 1000 \%_{0}$

The Stable Isotope Parameters

Ratio

$R = ([heavy] / [light]) = ([^{13}C] / [^{12}C])_{x}$ The "Del" Function $\delta_{x} = \{(R_{x} - R_{std}) / R_{std}\} \times 1000 \%_{00}$ $\delta_{0}^{13}C = -29 \%_{00}$

The Stable Isotope Parameters

Ratio

 $R = ([heavy] / [light]) = ([^{13}C] / [^{12}C])_{x}$ The "Del" Function $\delta_{x} = \{(R_{x} - R_{std}) / R_{std}\} \times 1000 \%_{00}$ $\delta_{0}^{13}C = -29 \%_{0} \qquad \delta_{1}^{13}C = -24 \%_{00}$ +/- 0.5 \%_{0}

Pace Analytical

Degradation of Toluene under Sulfate Reducing Conditions

220 William Pitt Way, Pittsburgh, PA 15238 | Tel: 412-826-5245 | www.microseeps.com | info@microseeps.com/

Pace Analytical

Degradation of Toluene under Sulfate Reducing Conditions

220 William Pitt Way, Pittsburgh, PA 15238 | Tel: 412-826-5245 | www.microseeps.com | info@microseeps.com/-

Pace Analvtical

Application to Recalcitrant Compounds

Application to Recalcitrant Compounds

- Fractionation is unequivocal proof of in-situ degradation
- Related to the mechanism of degradation
- Related to the <u>fraction of component degraded</u>
- Related to the rate of degradation
- Used in groundwater modeling

EMD Guidance Document Contents

Summary of EMDs and guidance on data interpretation Case Studies Survey Results Science Refreshers (Isotope chemistry, Microbiology) Regulatory, Public and Tribal Stakeholder Acceptance and Issues Data Quality Considerations

CSIA & ISCO

- The use of CSIA to track ISCO remedial progress is an emerging application of the CSIA technology
- CSIA has been found to be beneficial to:
 - Confirm contaminant destruction where contaminant concentration data is inconclusive
 - Identify delivery limitations
 - Better time supplemental ISCO applications

Pre-ISCO Application

 Contaminant mass can be present dissolved in groundwater, sorbed to aquifer sediment, and as a separate non-aqueous phase

e

8

e

-

æ

.

2

Pace Analvtical

- Partitioning between these phases is equilibrium-based and dependent on characteristics of:
 - Aquifer sediments (e.g., organic content)
 - Contaminant (e.g., solubility)
 - Groundwater (e.g., pH)

Little or No Fractionation Occurs in:

- Dilution
- Volatilization
- Sorption

Baseline Isotopic Conditions

¹³
$$C_{(aq)}$$
: ¹² $C_{(aq)} \approx$ ¹³ $C_{(s)}$: ¹² $C_{(s)}$
aqueous ratio \approx sorbed ratio

Pre-ISCO Application

 Contaminant mass can be present dissolved in groundwater, sorbed to aquifer sediment, and as a separate non-aqueous phase

R)

Pace Analytical

. .

2

- Partitioning between these phases is equilibrium-based and dependent on characteristics of:
 - Aquifer sediments (e.g., organic content)
 - Contaminant (e.g., solubility)
 - Groundwater (e.g., pH)

Post-ISCO Application

Pace Analvtical

ISCO Application

ISCO effect on carbon isotopic ratios:

ISCO Application

Site data show significant fractionation immediately following ISCO application

With the depletion of the oxidant, a flux of "relatively untreated" contaminant enters the treated groundwater. Desorption is typically the primary mechanism of "rebound":

• Contaminant oxidation reactions are believed to be more efficient in the aqueous phase

8

-

2

e

8

Pace Analvtical

.

- Sorbed contaminant not as efficiently treated
- Contaminants desorb and partition into the aqueous phase

Rebound effect on carbon isotopic ratios:

Isotopic evidence interpreted as desorption rebound

Inefficient oxidant delivery can also cause "rebound"

•Preferential flow paths limit treatment to a fraction of the affected volume

- Desorption rebound occurs from area where oxidant was delivered
- Delivery rebound occurs when untreated water moves into treated zones.

In-situ longevity of oxidant limits transport into less permeable areas

> Preferential Flow Path

Contaminants move from less permeable areas to more permeable treated areas

Delivery rebound effect on carbon isotopic ratios:

Site data show isotopic evidence of delivery rebound

New Jersey Site	MW-1		
	Pre-ISCO	Post-ISCO T-1	Post-ISCO T-2
PCE: CSIA, δ^{13} C (‰)	-27.3	-16.8	-33.1
PCE Concentration (µg/l)	6,000	80	600
	•		
		large isotopic fractionation	large isotopic rebound

Case Study – New Jersey Site

- PCE rebounded/ δ^{13} C decrease greater than baseline conditions can not be explained by bond-breaking reactions. Likely mobilized un-degraded PCE
- Conclude that although the concentrations are decreasing the remediation is not progressing adequately. Isotopic data suggests water is being pushed around
- Enhance delivery by pneumatically fracturing the saturated soils
- Post enhanced delivery results show large contaminant concentration increases accompanied by significant fractionation (i.e., the larger contaminant mass is being treated)
- Conclusions:
 - CSIA data identified delivery inefficiencies where concentration data alone were inconclusive
 - Enhancing delivery has increased contaminant destruction efficiency and will reduce oxidant and application costs significantly (20% estimated) over the duration of the project

CSIA and ISCO Summary

The data presented shows the potential for CSIA to aid in:

- Confirmation of contaminant destruction where contaminant concentration data are inconclusive
- Identify delivery limitations
- Better target and/or time supplemental ISCO applications

Questions???

