

Outline

- Background on California Industrial General Permit for Storm Water
- Site Plan Requirements
- Compliance Challenges
- Data Collection Approach & Field Inspections
- Data Evaluation (Flow Paths & Drainage Areas)
- Site Plan Development
- Summary and Lessons Learned

California Industrial General Permit

Changes in the Industrial General Permit (IGP) as of July 1, 2015

- IGP includes design storm standards for Dischargers implementing treatment control BMPs
 - The design storm standards include both volume- and flow based criteria
- Dischargers required to submit and certify all reports electronically via the Storm Water Multiple Application and Report Tracking System (SMARTS)
 - Increased public scrutiny of facility storm water compliance

SWPPP Site Plan Requirements

Key components of Site Plans:

- Industrial Activity Areas (IAAs) Based on SIC Code
- Location(s) of municipal storm drain inlets
- Locations of storm water collection and conveyance systems and associated points of discharge
- Storm water drainage areas (within the facility boundary)
- Direction of surface water flow (within those drainage areas)
- Structural control measures that affect storm water discharges and run-on

Compliance Challenges

- Existing Site Plans did not meet IGP requirement to show drainage areas and flow direction
- Relatively flat railyard sites (surface water flow patterns not well understood)
- Urgency to complete SWPPP Updates (by July 2015)
- Multiple Sites across State
- Integration of mobile device data collection

Aerial Topographic Mapping

Data Collection via Drone-Based Aerial Survey

- Faster, easier and safer GIS data collection
- Significant cost savings over airplane surveys
- Ground control points using existing site features
- Multiple overlapping low altitude flyovers provide increased data resolution
- Resolution as high as 100 points per meter (30 ppm standard)
- Topographic Contours at 1 foot (standard)

Facility Compliance Inspections

- Set ground control survey points
- Ground-truth location of drain inlets and surface water diversion features
- Confirmation of Industrial Activity Areas (IAAs) with facility manager (Based on Facility SIC Code)
- Document localized surface water flows (if observation possible during event) and diversion structures

Outdated Stormwater Mapping

Innovative Approach to Mapping

Based on approach used for large rural areas
Software tools specifically for modeling hydrology
Major advancements in elevation data, acquisition
(drones!), and processing techniques

- GIS / Cloud-based data
- Real-time integration with field data acquisition

Automation

How to account for urban complexity?

- Man-made surface features divert flow
- Sub-surface features
- Small drainage basins

Developing Flow & Drainage

Divide Site Into a Grid

A Very Fine Grid

Elevation Values

78	72	69	71	58	49
74	67	56	49	46	50
69	53	44	37	38	48
64	58	55	22	31	24
68	61	47	21	16	19
74	53	34	12	11	12

Downhill Flow Direction

78	72	69	71	58	49
74	67	56	49	46	50
69	53	44	37	38	48
64	58	55	22	31	24
68	61	47	21	16	19
74	53	34	12	11	12

D-8 Direction

Flow Direction

78	72	69	71	58	49
74	67	56	49	46	50
69	53	44	37	38	48
64	58	55	22	31	24
68	61	47	21	16	19
74	53	34	12	11	12

2	2	2	4	4	8
2	2	2	4	4	8
1	1	2	4	8	4
128	128	1	2	4	8
2	2	1	4	4	4
1	1	1	1	4	16

×	×	×	+	+	K
×	×	×	+	+	×
-	-	×	+	*	+
Ħ	1		`*	¥	*
`*	*	-	+	\	+
-	-	-	-	+	-

Stream Linking

D8 for each cell

Result

Updated Site Plan

New Elevation Data

Low Altitude Drone Flight ~ 400 ft.

Traditional airplane altitude ~ 15,000 – 25,000 ft

High Resolution Sensors and Cameras

Easy Deployment

Pre-programmed flight path

Rapid Data Delivery

• 1 – 2 days

3D Point Cloud

3D Point Cloud

3D Point Cloud

View of Point Cloud Data

Remove Cultural & Vegetation

Convert Points to Grid

Digital Terrain Model

Stormwater Mapping Comparison

OLD 🖾	NEW ©	
Subjective	Objective and calculated (math!)	
Incomplete story	Ridiculously complete	
Manual	Automated	
Static	Adjustable and configurable	
Poor resolution	Amazing resolution	
No drain inlets	Yes drain inlets	
Greater environmental impact	Reduced environmental impact	
Expensive(er)	Cheap(er)	

Summary

Advantages

- Drone-based survey faster and more cost-effective for data collection
- High resolution data available for multiple applications
 - BMP Selection, Sizing, and Design
 - Engineering design for facility improvements
 - Linear Construction Project or Inspections
 - Transportation and Right-of-Way (Easement) Mapping
 - Hydrology and Hydraulic Design
- Automation of evaluation process allows for consistent analysis and rapid revisions in response to changes in facility infrastructure

Summary

Limitations/Challenges

- Management of size and complexity of data
- Limited integration of surface and subsurface flow
- Smaller surface flow diversions and linear features (i.e., rails) difficult to model
 - Complicates flow direction evaluation
 - Visual confirmation of flow patterns and diversion structures often required to complete evaluation

