IMPORTANCE OF CROSS-SECTIONAL SHAPE FACTOR PARAMETER RESOLUTION IN ACCURATE ASSESSMENT OF TRANSFER LENGTH FOR NON-PRISMATIC RAILROAD CROSSTIES

B. Terry Beck MNE Department Kansas State University
Manhattan, KS,USA
\section*{Robert J. Peterman}
CE Department,
Kansas State University Manhattan, KS,USA

Aaron A. Robertson
MNE Department Kansas State University Manhattan, KS,USA

Naga Narendra B. Bodapati
CE Department
Kansas State University
Manhattan, KS,USA

Chih-Hang John Wu
IMSE Department,
Kansas State University
Manhattan, KS,USA

Kyle A. Riding
CE Department,
Kansas State University Manhattan, KS,USA

Presenting Co-Author: B. Terry Beck, Professor MNE Department, Kansas State University Manhattan, KS, USA

2016 International Crosstie \& Fastening System Symposium, RailTEC 14-16 June 2016

Presentation Outline:

Introduction-Importance of Transfer Length
Transfer Length Measurement from Strain
P Parameters Affecting Transfer Length Assessment
Objectives-Importance of Shape Factor
Role of 3D Scanning for Cross-Sectional Parameters
Effect of Shape Factor Resolution
Conclusions and Future Work

Importance of Transfer Length

The Transfer Length

The Transfer Length (TL) is the distance required to transfer the entire prestressing force into the concrete cross-tie member

The Transfer Length

Goal: Avoid In-Track Cross-tie Failure

Transfer Length Measurement-Role of Automated Surface Strain Measurement

Historical Development of Non-Contact (Optical) Automated Transfer Length Measurement System

Early Rail-Mounted Manual Prototype

Modular System Design; Patented Patent No.: US 8,917,384 B2 Date of Patent: Dec. 23, 2014

Automated Dual-Camera System (Computer-Controlled Traversing)

Current Prototype 6-Camera System (Full-Field Strain Capture)

Automated Transfer Length Measurement for In-Plant Quality Control

The Zhao-Lee (ZL) Method of Unbiased (Least Squares)
Transfer Length Assessment

The Need for Unbiased Transfer Length Algorithm

Prismatic Members

Non-Prismatic Members

Importance of Accounting for Tie Shape Variation

The Statistical ZL Strain Fitting Algorithm:

$P_{\text {max }}$

$$
\begin{aligned}
& S_{\text {meas }}\left(x, P_{\max }, \mathrm{T}_{L}, T S\right)= \\
& \quad \frac{1}{L} \int_{x-\frac{L}{2}}^{x+\frac{L}{2}}\left[\operatorname{Strain}\left(x, P_{\max }, T_{L}\right)+T S\right] d x
\end{aligned}
$$

Averaging over Finite Gauge Length

Strain $=R(x) P(x) / E$

Shape Factor, $R(x)$

20
distance to the tie end, in

Generalized "Zhao-Lee" (ZL) Transfer Length Algorithm:

Find T_{L} and TS to Minimize MSE:

$$
\operatorname{MSE}\left(P_{\max }, T_{L}, \mathrm{TS}\right)=\frac{\sum_{i}\left(S_{\text {meas }}\left(x_{i}, T_{L}, T S\right)-y_{i}\right)^{2}}{N}
$$

Where
MSE = Mean Squared Error $\mathrm{y}_{\mathrm{i}}=$ Measured Strain Data
$S_{\text {meas }}=$ Theoretical Measured Strain TS = Thermal Strain Offset

Parameters Affecting Transfer Length Measurement from Longitudinal Surface Strain

Parameters that Affect Transfer Length Measurement

Surface Strain Measurement Accuracy

Strain Measurement Span and Sampling Interval

Strain Instrument Gauge Length
Assumed Shape of Prestressing Force Distribution
Effect of Thermal (Offset) Strain
Extraction Algorithm (95\% AMS or Zhao-Lee)
Cross-Section Shape (Shape Factor Variation)

Complex Crosstie Strain Distribution

Effect of Thermal (Offset) Strain

What is the Average Maximum Strain (AMS)?

Automated Strain Measurements at Various Strain Sampling Intervals, S

Independence of Transfer Length Assessment (ZL Method) at Various Sampling Intervals

Sampling Interval (in.)	Estimated Transfer Length (in.)	
0.125		9.1
0.25	6-Camera System	9.0
0.5		9.2
1		9.5
2		9.0
4		9.6
6		9.0
8		10.3

The Role of 3D Optical Scanning in Current Research Efforts

In-Service Crossties at Pueblo Colorado Facility (TTCI)—Major Source of Ties

CXT Crossties from In-Track TTCI Facility

KEY Role of 3D Scanning:

Quantify Surface Geometry of Previously Manufactured Ties that have been in Service

Produce Accurate 3D Solid Body Models of In-Service Ties for Later Analysis

Direct Comparison of Overlapping Images of 3D Scanned Ties

Quantify the Amount of Abrasion Which Has Occurred During the Life of In-Service Ties

Schematic of 3D Optical Scanning of Railroad Crosstie Using Commercial Device

Commercial 3D Scanner Specifications:

7 Pair Intersecting Laser Light Sheets
Local Scanning Area: $275 \times 250 \mathrm{~mm}$ ($10.8 \times 10 \mathrm{in}$.)
Resolution: 0.050 mm (0.002 in .)
Accuracy: 0.030 mm (0.0012 in .)
Volumetric Accuracy: $0.020 \mathrm{~mm}+0.060 \mathrm{~mm} / \mathrm{m}$
(0.0008 in. + $0.0007 \mathrm{in} . / \mathrm{ft}$)
Depth of Field: 250 mm (10 in.)

Slicing of Solid Model \& Parameter Analysis

3D to Point Cloud Model of Tie

Photograph Crosstie End Wire Configuration (Establish Wire centroid Position, CW)

Extract Cross-section Parameters

Extracting Slices from Crosstie Point Cloud

$1-\Delta x \rightarrow \quad \Delta x=$ Resolution

Collapse Section Of Point Cloud

Extraction of Tie Parameters From CAD or Scan

Shape Factor, R(x), for Crosstie

$$
\begin{aligned}
& \operatorname{Strain}(x)=\frac{P(x) R(x)}{E} \\
& R(x)=\frac{1}{A(x)}+\frac{e(x) y(x)}{I(x)}
\end{aligned}
$$

where
$P(x)=$ Prestressing force
$\mathrm{A}(\mathrm{x})=$ Cross-sectional area
$e(x)=$ Eccentricity
$y(x)=$ Distance to neutral axis
$\mathrm{I}(\mathrm{x})=$ Area Moment of Inertia
$\mathrm{E}=$ Young's Modulus

Effect of Shape Factor Resolution on Crosstie Shape Parameters And Transfer Length

Question: How Does Shape Factor Resolution Affect Transfer Length Assessment?

$$
|-\Delta x \rightarrow| \quad \Delta x=\text { Resolution }
$$

Cross-Section
 Variation

Photographs of Typical CXT Ties

(a) Left tie end

(c) Enlarged left end

(b) Right tie end

(d) Enlarged right end

Extracted CXT Crosstie Cross-Section Parameters

Cross Sectional Area, A

Neutral Axis Position, y

Area Moment of Inertia, I

Eccentricity, e

CXT Crosstie Shape Factor

Reduced Resolution Crosstie Area, A

Reduced Resolution Area Centroid, y

Reduced Resolution Crosstie Area Moment, I

Reduced Resolution Crosstie Eccentricity, e

Reduced Resolution Crosstie Shape Factor, R

Effect of Resolution on Strain Profile

Transfer Length Assessment-Effect of Reduced Slicing Resolution (CXT Tie Results)
CAD (Simulated)
CAD (Real Data)

$\Delta \mathrm{x}(\mathrm{in})$	$\mathrm{L}_{T}(\mathrm{in})$
0.5	10.0
1.0	10.0
2.0	10.0
4.0	9.9
5.0	10.4
6.0	10.0
7.0	9.8
8.0	10.2

$\Delta \mathrm{x}(\mathrm{in})$	$\mathrm{L}_{\mathrm{T}}(\mathrm{in})$
0.5	9.6
1.0	9.6
2.0	9.6
4.0	9.4
5.0	10.0
6.0	9.5
7.0	9.3
8.0	9.9

Photographs of Scanned Rocla Tie

Extracted Rocla Crosstie Cross-Section Parameters

Cross Sectional Area, A

Neutral Axis Position, y

Area Moment of Inertia, I

Eccentricity, e

Reduced Resolution Crosstie Shape Factor, R

Effect of Resolution on Strain Profile

Transfer Length Assessment-Effect of Reduced Slicing Resolution (Rocla Tie Results)

Rocla CAD Tie

$\Delta \mathrm{x}$ (in)	$\mathrm{L}_{\mathrm{T}}(\mathrm{in})$
0.5	11.7
1.0	11.7
2.0	11.7
4.0	11.7
5.0	11.7
6.0	11.7
7.0	11.7
8.0	11.8

Conclusions

Detailed 3D Geometrical Cross-Section Parameters Were Extracted (I, y, A, ε) from Crossties.

Excellent Agreement with Existing 3D CAD Models
Preliminary Results Indicate that Shape Factor Resolution Effect on Transfer Length is Small

Gauge Length Smooths Influence of Complex Shape Factor (Scalloping)

Coarse Shape Factor Resolution Even Less Sensitive when Complex Scalloping is Absent.

3D Scanning Work in Progress:

Systematically Scan Large Sampling of In-Service Ties
Extract 3D Geometrical Cross-Section Parameters (I, y, A, e).

High-Speed Algorithm for Cross-Section Parameter Assessment is Nearly Complete.

Assessment of Parameter Measurement Uncertainty is in Progress.

Support Ongoing Testing of In-Service Crossties

Project Sponsors:

Federal Railroad Administration

LBFoster
 CXT ${ }^{\circledR}$ Concrete Ties

KSU Participants:

Questions?

Laser Speckle Imaging (LSI)

Painted Reflective Particle Imaging

Concrete Surface Roughness Imaging

New Continuous Scanning/Traversing (CST) Strain Measurement System

Features Improved Depth of Focus "Ring Light" (Strobed) Illumination Jog and Continuous Motion Option (inches/sec) Measurement Resolution (10-20 microstrain) LabVIEW Interface with "Stitching Capability"

Local Strain from Adjacent Image Displacement Pairs:

$$
\text { Camera, } \mathrm{c}_{\mathrm{j}} \quad S_{\text {meas }}\left(x_{m j}\right)=\frac{\delta_{C j+1}-\delta_{C j}}{L_{G}}
$$

Comparison of Simulated Crosstie strain and effective bilinear strain profiles
 $\left(L_{\text {meas }}=40 \mathrm{in}\right)$

Bias in traditional assessment of transfer length based on bilinear surface strain

Flow Chart of Crosstie 3D Scan Processing

Current Work is being Conducted Under FRA Research Project Titled:

"Developing Qualification Tests

to Ensure Proper Selection and Interaction of Pretensioned
Concrete Railroad Tie Materials"

Geometry of Concrete Railroad Crosstie Yields Complex Shape Factor Variation

3D Shape of Crosstie (CAD Model or 3D Scan)

Normalized Shape Factor

Traditional 95\% AMS Transfer Length

