Track Substructure Influences on Tie Support Conditons

Ted Sussmann

Tie Symposium University of Illinois Urbana Champaign June 2016

Vcipe The National Transportation Systems Center Advancing transportation innovation for the public good

U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology John A. Volpe National Transportation Systems Center

Rail Support
Tie Support
Influence on Tie Vibration
Summary

Rail Seat - Eccentrically Loaded Support

P

Case 1—Resultant within the middle third. $p_1 = (4B - 6a) P/B^2$ $p_2 = (6a - 2B) P/B^2$

Case 2—Resultant at edge of middle third. $p_1 = (4B - 6a) P/B^2 = 2P/B$ $p_2 = (6a - 2B) P/B^2 = 0$

Case 3—Resultant outside the middle third. $p_1 = 2P/3a$ $p_2 = 0$

Source: AREA manual (1958)

Rail Seat Support Measurements - TTCI

Rail Support: Two Way Eccentricity

Rail Support: Two Way Eccentricity

Rail Seat Track Loading

From Selig and Waters, 1994

Rail Seat Load: Effect of Missing or Unsupported Tie(s)

- Unsupported tie
 - Small increase in deflection
 - Large transfer of load to adjacent tie
- Increase rail deflection
 - 1.5-2 times static (Carr, 1999)
- Increase adjacent tie load
 - Up to 3+ times static (Kerr, 2003)
 - Depending on tie support

Rail Seat Support Measurements - TTCI

Effect of Tie Support on Joint

Joint Bar loads can be computed using BOEF Theory.

Poorly Supported and Settled Track

Discretely Supported Track Model required to estimate loads.

What is the tie load?

Tie Support Conditions

Tie Deformation and Load Under Differing Support Conditions

Exaggerated Deflection

Tie Bearing Pressure

Adapted from Kerr (2003).

Tie Support Problems

Tie Type – Ballast Pressure Considerations

Wood

Concrete

Stress Distribution

- Stiff Foundation over soft layer
- □ Solution: Tamp

Tie Vibration and Tie Support

Slurry Abraded Concrete Ties

If Not Identified and Corrected, Poor Track Support May Cause...

