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ABSTRACT 
 

The North American rail system requires billions of dollars annually to be maintained in 

proper working order. Therefore, it is critical that maintenance is performed on the right 

components, at the right time, and in the right location. Application of decision support tools that 

use objective analysis methods can result in more efficient and effective maintenance plans. This 

requires quantifying both direct costs associated with the performance of maintenance and the 

indirect costs of train delay, disruption risk, and equipment routing. To thoroughly assess these 

costs, an integrated approach is needed that incorporates degradation modeling, project selection, 

and maintenance scheduling for the entire track structure. Planning track maintenance in this way 

allows for the effects of changing maintenance timing to be seen explicitly through the disruption 

risk while considering equipment and other constraints. Managers can then combine the output 

from the decision support tools with their practical experience to account for location- or 

situation-specific characteristics that are not easily quantifiable.  

This dissertation presents new methods for determining the indirect costs associated with 

both planned and unplanned disruptions. Train delay cost models were developed that consider 

train operating characteristics such as terminal dwell and trainset configurations. These costs 

were combined with a train delay calculator adapted from the highway domain to determine the 

operational impact to trains during both disrupted and recovery operations. Degradation models 

were also developed or modified to estimate unplanned disruption risk for slow orders and acute 

disruptions such as rail breaks and derailments. Combined, these new methods allow for the 

costs of unplanned disruptions to be estimated and accounted for when planning track 

maintenance.  
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A maintenance plan costing model was developed that incorporates the direct and indirect 

costs associated with a proposed maintenance plan. The model determines the complete cost of 

the plan based on capital maintenance timing, level of maintenance aggregation, and detour use. 

Incorporation of maintenance aggregation allows for the efficiencies of performing multiple 

maintenance activities simultaneously on long work windows to be explicitly considered. 

Alternative maintenance plans that adjust a base schedule to use maintenance aggregation can be 

compared to determine if the reduced direct and delay costs outweigh the additional indirect 

costs. Since the best way to modify a plan to reduce costs is not always obvious and can be 

tedious to determine manually, an optimization model was developed and solved using simulated 

annealing. While optimality is not guaranteed when using simulated annealing, it was shown to 

provide lower cost maintenance plans. 
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CHAPTER 1.  

INTRODUCTION 

1.1 Study purpose 

The primary purpose of this research is to develop decision support tools for railroad track 

maintenance planning. These tools will provide maintenance personnel with objective guidance 

to evaluate maintenance timing alternatives and enable more cost-effective decisions.  

1.2 Background and research motivation 

Ensuring efficient and effective railroad operations requires that all aspects of the system be 

kept in proper working order. North American railroads spend billions of dollars each year on 

track maintenance to achieve this (Association of American Railroads 2017). With expenditures 

of this magnitude, even incremental improvements in maintenance planning or execution can 

result in substantial savings or the ability to complete more projects. In general, using objective 

methods to evaluate management decisions have been shown to improve outcomes, especially 

when the most efficient alternative is not obvious (Davenport & Harris 2007). This is especially 

true in track maintenance planning where interactions within both the track structure and the 

railroad network can make it difficult to identify the optimal project set. The methods I develop 

in this dissertation inform decision support tools that can quickly consider multiple alternatives 

to recommend a maintenance plan. Managers can combine their qualitative knowledge of the 

system with the recommendations from the decision support tools to develop a more efficient 

final plan. In this dissertation, I describe several new tools that can be used for objective 

maintenance planning and an optimization model that integrates them.  
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This research also advances the theoretical understanding of how maintenance decisions 

affect the total cost of track ownership and operation. These costs will be greatly affected by the 

maintenance plan. Direct costs (e.g. labor, equipment, and material) are explicitly incurred when 

performing maintenance. These are typically tracked by railroads and can be determined on a per 

unit basis. Direct costs are normally considered in maintenance analysis because they are readily 

available; however, indirect costs are not always included and are harder to quantify. Indirect 

costs are secondary effects of either performing or deferring maintenance and consist of train 

delay impacts and disruption risk. Train delay can be further divided into line delay and network 

effects, although these are not always treated separately. Line delay is from trains on the 

disrupted line, while network effects are incurred on other parts of the network, including 

adjacent lines and rail yards. A model to estimate disruption-caused line delay is discussed in 

Chapter 5. 

Disruption risk is the expected cost of unplanned service disruptions, e.g. accidents or slow 

orders, and decreases when track maintenance is performed. Over time, the disruption risk will 

increase until maintenance is performed again, so deferring maintenance activity will eventually 

increase this risk. The relationship between track maintenance and disruption risk is not well 

understood, and in this dissertation, I explore how it can be approximated using currently 

available data. Operational benefits may also accrue due to improved track condition, but 

insufficient information is available to quantify them at this point.  

Most maintenance personnel have a qualitative understanding that deferring maintenance 

increases disruption risk. This is closely related to a relatively new concept developed to reflect 

the costs of deferring information technology investments, termed the direct cash flow (DCF) 

trap (Figure 1.1a) (Christensen et al. 2008). I modified this concept and applied it to railroad 
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track maintenance using disruption risk as the cost of deferring maintenance (Figure 1.1b). While 

the DCF trap concept is not the primary focus of this dissertation, it provides a conceptual 

framework to visualize the effects of maintenance timing and balance direct and indirect costs. 

Visualization can enhance maintenance personnel’s understanding of how disruption risk 

changes based on maintenance timing. Quantifying this risk will provide additional perspective 

and a metric for how changing maintenance schedules affects traffic disruptions on a section of 

track. This will also enable better theoretical analysis of how to balance maintenance efficiency 

and effectiveness with traffic impacts. Improved understanding of these relationships may 

influence how maintenance thresholds are determined to improve safety while further reducing 

the total cost of track ownership. 

a)  

b)  

Figure 1.1: Direct cash flow (DCF) trap a) original concept (Christensen et al. 2008)  
b) modified for railroad track maintenance 
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1.3 Objective and scope 

Without an objective method to compare the indirect effects of maintenance, it would be 

difficult to effectively evaluate the best time, location, and method for it to occur. Decision 

support tools that use objective metrics will allow management to effectively evaluate the total 

cost of their decisions. This is especially true when deferring maintenance since the additional 

cost of disruptions can be difficult to estimate but may outweigh the perceived benefits. 

Quantifying the relationship between disruption risk and maintenance timing allows these costs 

and benefits to be compared and provide more effective planning.  

This research will focus on maintenance planning in the context of North American freight 

railroads. They have a number of characteristics that differ from most other rail systems in the 

world. They are privately owned, vertically integrated, and substantial portions of their network 

are single track with passing sidings. North American railroads are particularly focused on 

economic efficiently, so costs and benefits are the primary metrics in this study. Vertical 

integration means that all costs are incurred by the same organization, so both track maintenance 

and traffic disruption costs must be included in the analysis. The primarily single-track network 

complicates this because closing a track for maintenance prevents trains from using that route. 

While the North American rail network allows for rerouting onto other lines or railroads, these 

options may not be available or cost effective. This dissertation introduces simplified 

methodologies for considering re-routing and double track sections to show their application, but 

they will not be addressed in detail. This scope will limit this research’s applicability in some 

international contexts that operate on highly structured timetables or with multiple main tracks.  
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Based on the above objectives and scope, the main research questions addressed in this 

dissertation are: 

- How to effectively assess and account for the cost of slow orders and other traffic 

disruptions (Chapters 3, 5, and 6). 

- How to adequately consider the risk of traffic disruptions when evaluating a 

maintenance plan (Chapters 4, 6, and 7). 

- How to balance disruption risk against the benefits of schedule modification  

(Chapters 7, 8, and 9). 

- How to minimize the total cost of a network maintenance plan (Chapter 9). 

1.4 Dissertation organization and research summary 

This dissertation consists of eight body chapters (Figure 1.2), each with specific objectives 

for development of the holistic maintenance plan costs. In general, each chapter builds on the 

Integrated planning framework (Ch. 2) 

Delay cost (Ch. 3)

Slow order impacts (Ch. 5)

Aggregation & extended 
work windows (Ch. 8)

ExecutionCost Risk

Life-cycle costing (Ch. 4)

Slow order risk (Ch. 6)

Risk-based costing (Ch. 7)

Optimization model (Ch. 9)
 

Figure 1.2: Dissertation structure  
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previous ones to develop a comprehensive understanding of the costs associated with a 

maintenance plan.  

Chapter 2 presents an overarching framework for how the track maintenance planning steps 

can be integrated so all the costs associated with a maintenance plan can be considered. 

Historically, track maintenance planning has been segmented into degradation, project selection, 

and scheduling for each of the major components. This chapter gives an overview of each step 

and explains how integrating the three planning steps for the entire track structure can provide 

more cost-effective decisions. Subsequent chapters will focus on tools for project selection since 

that appears to be the least developed of the three planning steps. 

Chapter 3 describes a train delay costing model that can be used for a variety of 

applications. Train delay is not always considered in maintenance planning, but it can account 

for a substantial share of operating cost. Detailed methods to determine route- and train-type-

specific delay costs are critical to ensuring that they are as accurate as possible. This analysis 

showed how route lengths, operating characteristics, and the amount of line delay influences 

train delay cost. A central finding is how terminal operations affect delay accumulation and 

when delay mitigation efforts would be most effective. Average costs from this chapter were 

used to evaluate train delay in the rest of this dissertation.  

Chapter 4 presents an initial attempt to consider disruption costs in a planning framework. 

Rather than looking explicitly at maintenance timing, this analysis compared the life-cycle costs 

of timber and concrete crossties to identify the conditions where each material would be most 

cost effective. Component upgrades are one way to improve track performance, so this analysis 

is effectively a long-term comparison between maintenance alternatives. One observation from 
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this analysis was that the slow-order costs were much lower than expected based on industry 

experience, so additional study into that cost category was pursued.  

Chapter 5 presents a methodology for determining the impacts of traffic disruption since 

there does not appear to be an established closed-form method to estimate these impacts, 

particularly for slow orders. This methodology adapts concepts from road traffic analysis to 

calculate the cumulative train delay based on the normal operating and disruption characteristics. 

This approach allows delay to be calculated without simulations. This chapter also discusses the 

model sensitivity to input parameters and how probabilistic models can be used to determine 

average slow order train delay.  

Chapter 6 builds on the work in Chapter 5 by developing a new approach using 

probabilistic models to estimate slow order costs as a function of time since capital maintenance 

was last performed. This chapter describes probabilistic models that were used to predict the 

occurrence of rail, crosstie, and ballast defects and their associated costs. This analysis showed 

how slow order costs vary over time and between components. It also shows the relationship 

between direct and delay costs and discusses insights on how to effectively reduce them.  

Chapter 7 presents the development of a risk-based approach for track-maintenance 

costing. This model enhances the general framework from Chapter 4 by incorporating the models 

from Chapters 5 and 6 and adding a methodology for estimating the risk of acute disruptions, 

such as broken rails and accidents. The mathematical formulation allows maintenance planners 

to see the cost effects of plan changes. This analysis also shows the importance of including all 

applicable costs and establishing the correct planning period to prevent inaccurate comparisons.  
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Chapter 8 expands the model from Chapter 7 to include the effects of maintenance 

aggregation on long work windows and the possibility of detours. Aggregating maintenance on 

long work windows provides economies associated with improved efficiency and reduced track 

time but frequently requires adjusting maintenance schedules. This is a problem because 

changing when maintenance is performed will result in either reduced component utilization or 

increased disruption risk. Including slow orders and acute disruptions allows schedule 

adjustment costs to be balanced against maintenance aggregation benefits. Since detours can 

allow traffic to continue flowing when a track is removed from service, considering them 

provides a more reasonable maintenance disruption cost estimate. This analysis showed the 

benefits of aggregating track maintenance on elongated work windows and how they vary based 

on how aggregation is implemented.  

Chapter 9 further expands the mathematical model to include double track territories and 

applies a metaheuristic to optimize the track maintenance plan for a system. While the 

mathematical model allows evaluation of a given maintenance plan, it would be inefficient and 

time consuming to evaluate multiple routes and optimize the maintenance schedule manually. 

The sub-model complexity makes it difficult to apply a commercial solver to the problem, so a 

metaheuristic was used to adjust a base schedule and find a near-optimal solution. This approach 

can allow for substantial savings off the base schedule with limited manual effort.  

Each chapter of this dissertation provides specific insights on how to quantify the costs 

associated with maintenance or unplanned disruptions. While each can be beneficial on their 

own, the greatest benefit will be achieved when they are used together because the track system 

can be evaluated holistically. This will allow decision makers to plan maintenance for all track 
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components on an entire network in a manner that effectively balances maintenance needs and 

service quality. 

1.5 Contribution summary  

As will be discussed in Chapter 2, there are several aspects of track maintenance planning 

including the individual track components and the various steps in the process. This dissertation 

will focus on improving maintenance project selection since that appears to be the area with the 

greatest potential for improvement. The main area where this research will contribute to the state 

of the art is by integrating indirect costs into the maintenance-planning process, specifically 

maintenance-related delay and disruption risk. Since accurate train-delay costs are required to 

realize either of these benefits, this dissertation also advances the state of the art by presenting a 

methodology to calculate delay costs based on train operating characteristics. Topic-specific 

literature reviews are included in each chapter, so this section will focus on a broader look at 

how this research improves the state of the art in maintenance planning.  

When train delay is considered in the context of track maintenance, it is usually focused on 

planning specific maintenance activities and adjusting train schedules to accommodate them. 

This is especially true in research for networks where a precise timetable is used (Higgins et al. 

1999; Albrecht et al. 2013; Forsgren et al. 2013; Lidén & Joborn 2016, 2017; Vansteenwegen et 

al. 2016). While this approach is important for determining precise maintenance timing, it is 

most beneficial after specific maintenance projects have been selected, so the impacts can be 

modeled in a detailed fashion. It is also less applicable in the North American freight railroad 

context where train schedules are relatively flexible (Mussanov et al. 2017; Shih et al. 2017).  
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Another approach in the literature is to negate train delay because maintenance is either 

performed on lines with low volumes or at times when there is no traffic (Simson et al. 2000; 

Martland 2008; Zhang et al. 2013). While this may be applicable on certain predominantly 

passenger or low-volume freight lines, the greatest need for optimized maintenance planning in 

North America is on high tonnage main lines where delay costs can be substantial. A 

shortcoming of many of these models is the lack of consideration for post-maintenance slow 

orders and cascading delays. Zoeteman (2001) includes post-maintenance slow orders but 

neglects cascading delays, and he states that a dedicated simulation tool would be required to 

estimate these effects. The model described in Chapter 5 overcomes these shortcomings by 

estimating train delay for track outages and slow orders in a closed form. This allows train delay 

to be considered during project selection without detailed simulations. The consideration of 

maintenance-caused delay costs is expanded in Chapters 8 and 9, where adjustments to consider 

rerouting and multiple track territory are discussed to give a more complete view of maintenance 

disruption costs.  

Another area where this research contributes to the state of the art is consideration of 

unplanned disruptions. Some models discuss them without detailing their costs or explicitly 

accounting for them (Famurewa et al. 2015). Others account for unplanned disruptions through a 

penalty cost for degraded conditions but do not explain how it would be calculated (Zhao et al. 

2006; Zhang et al. 2013). Without details of how to calculate the penalty costs, a maintenance 

planner would be unable to effectively quantify the impact of a disruption. Simson et al. (2000) 

presents a methodology to address slow orders but assumes that trains are short enough to only 

encounter one at a time. This assumption would often be incorrect in North America where 

relatively long trains increase the likelihood that a train would be affected by multiple slow 
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orders simultaneously. Zoeteman (2004) considers the direct component of unplanned 

maintenance costs and post-maintenance speed restrictions but not defect-caused slow orders or 

accidents. This may be because European railway networks are largely passenger focused and 

have stricter train schedules. Therefore, they have a lower tolerance for service disruptions and 

are willing to have more preventative maintenance to ensure train operations proceed according 

to plan. Despite flexible operations, service disruptions, particularly slow orders, are a substantial 

concern for North American railroads, so it would be unreasonable to neglect their impacts. The 

delay model in Chapter 5 and the acute disruption costing methodology in Chapter 7 overcome 

these shortcomings to include disruption risk in maintenance project selection.  
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CHAPTER 2.  

AN INTEGRATED MODEL FOR THE EVALUATION AND PLANNING OF 
RAILROAD TRACK MAINTENANCE1 

2.1 Introduction 

The track maintenance planning process has historically been treated as distinct steps with 

each track component managed separately (Figure 2.1a). Different levels of management 

evaluate each step for each major element of the track system, e.g. rail, crossties, and ballast. 

Due to this segmented process, maintenance may be performed on a component because funds 

are available even if it is not the most effective way to improve the overall track condition. The 

framework proposed here integrates the maintenance planning steps in a new way to allow for 

more cost-effective maintenance decisions (Figure 2.1b). 

1 This chapter is modified from Lovett, A.H., C.P.L. Barkan, and C.T. Dick. 2013. An integrated model for the 
evaluation and planning of railroad track maintenance. In: Proceedings of the American Railway Engineering and 
Maintenance-of-Way Association Annual Conference, Indianapolis, Indiana, September 2013, pp. 1029-1044. 

  
a. b. 

Figure 2.1: Maintenance planning methodologies a) traditional maintenance planning  
b) proposed maintenance planning framework  
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The three general steps in track maintenance planning are track evaluation, maintenance 

selection, and project scheduling. Track evaluation is the process of determining the track quality 

to identify maintenance needs. Maintenance selection consists of evaluating either individual 

projects or a complete maintenance plan to determine what work to perform. Project scheduling 

consists of determining when each planned activity will be performed to ensure the plan is 

feasible and maintenance crews are assigned efficiently. Integrating these three steps allows 

management to holistically compare maintenance alternatives and quantify the potential effects 

of deferring maintenance. In order to understand how to plan maintenance effectively, it helps to 

understand the ways it can occur.  

Maintenance can be performed either reactively or proactively, known respectively as 

corrective and preventive maintenance. Corrective maintenance consists of waiting until a 

component has failed and then repairing or replacing it (Granström 2005, 2008). A track failure 

is defined in this dissertation as a specified tolerance being exceeded or an acute failure, such as 

a broken rail. Either will disrupt service by stopping or slowing trains and result in costly delays. 

Additionally, acute failures can result in derailments with potentially severe consequences. 

Corrective maintenance has the benefit of ensuring that all of the component’s utility has been 

used by deferring maintenance as long as possible. This can result in increased costs because of 

the above-mentioned disruptions and the fact that, since it is unknown exactly when a component 

will fail, maintenance crews may need to be dispatched at a time when they are not prepared or 

convenient to the area. Corrective maintenance is unavoidable to an extent but should be 

minimized due to these additional costs.  

Alternately, preventive maintenance consists of using a plan to maintain components before 

they fail. This could consist of either a predetermined cycle or thresholds to indicate maintenance 
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should be performed in the near future (Granström 2005, 2008). Preventive maintenance can be 

up to 80 percent less expensive than corrective maintenance (Granström 2005) and has the 

potential to improve planning so work is performed when it is most convenient and cost 

effective. Preventive maintenance may also result in premature component replacement and 

increased costs from maintenance being performed more frequently than necessary. Current 

railroad practice is a combination of both approaches. Preventive, or capital, maintenance 

restores the track condition, while corrective, or ordinary, maintenance keeps it above a 

minimum threshold. Capital maintenance has also been found to be more efficient than ordinary 

maintenance due to economies of scale (Grimes & Barkan 2006).  

Advanced preventive, or predictive, maintenance planning can improve procedures by using 

models to estimate the future track condition and determine when maintenance can most 

effectively be performed (Wireman 2008). This approach seeks to realize the full benefits of 

preventive and corrective maintenance by scheduling maintenance activities to balance the 

amount of premature maintenance against the failure risk. This chapter will discuss the current 

state-of-the-art in each planning step and a framework that can be used for track  

maintenance planning.  

2.2 Framework overview 

While research has been performed on parts of the maintenance planning process, an 

extensive literature review did not reveal any comprehensive models covering the entire 

maintenance planning process from predicting track condition to detailed scheduling. Some 

frameworks have integrated the track evaluation and maintenance selection steps, but they focus 

more on identifying when track components will exceed a maintenance threshold (Zarembski 
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1991; Uzarski & McNeil 1994). Adjustments would need to be made to include disruption risk in 

the analysis. Considering the entire planning process is important because the track system is 

part of a network. The interrelated nature of the rail system means that performing maintenance 

on a track component will affect how other components in the same track section perform. It also 

means that resource constraints may prevent that same type of maintenance from being 

performed in another part of the network. An integrated planning approach allows for these 

interactions to be explicitly considered.  

In this chapter, I present an integrated track maintenance planning (ITMP) framework that 

can be used to make decisions based on a comprehensive view of the entire maintenance 

planning process. It is comprised of three modules representing each major planning step. The 

modular framework enables consideration of the entire process while allowing the individual 

modules to be updated without significantly affecting the rest of the model. The remainder of this 

chapter provides more detail about the individual modules and describes how the framework can 

be implemented.  

2.3 Track evaluation 

The first step of the track maintenance planning process is to determine the track condition 

during the maintenance-planning period. This may include degradation models, projections 

based on trend data, established intervals, rules of thumb, or maintenance personnel’s intuition 

and experience. An ideal evaluation tool would be a degradation model capable of considering a 

wide range of parameters including operating conditions, the existing track condition, and 

maintenance history. Track degradation can be considered either by looking at the components 

separately or considering track component interactions. There are many models that represent 
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individual track component degradation (MacLean 1957; Wells 1982; Reiner & Staplin 1983; 

Davis 1987; Chrismer 1988; Martland & Auzmendi 1990; Acharya 1994; Chrismer & Selig 

1994; Kumar 2006; Garnham et al. 2007; Walton-Macaulay et al. 2014; Qian et al. 2014), but the 

components do not exist in isolation (Hay 1982). Integrated models allow for a more 

comprehensive look at how the track performs (Hay 1982; Ferreira & Murray 1997; Zhang et al. 

1997, 2000). For example, track with fouled ballast has a lower track modulus and results in 

higher rail bending stresses and accelerated fatigue (American Railway Engineering and 

Maintenance-of-Way Association 2012). If the model only looks at rail fatigue, improving the 

ballast condition may not be reflected in condition predictions, and maintenance such as grinding 

or rail replacement may be performed prematurely. 

Beyond the differences of viewing the track system on a component or system level, 

different methods can be used to model track degradation including mechanistic and empirical 

modeling. Mechanistic modeling considers the actual physical interactions within materials or at 

component interfaces that cause degradation. This method can be computationally intensive and 

time consuming as materials are not homogeneous and the component interactions may be 

difficult to measure or are poorly understood. Alternately, empirical modeling is statistical in 

nature and uses historical data. Two major drawbacks of empirical modeling are that the 

relationships are only as good as the input data and not all combinations of input parameters may 

be found in the historical record. The optimal method for degradation modeling is a combination 

of both that allows for some consideration of the physical properties of the track structure while 

taking into account the statistical variation of how degradation will occur  

(Arthur D. Little Inc. 1992).  
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Many industries have shifted to mechanistic-empirical modeling including pharmaceutical 

(Yamashita & Hashida 2003), chemical reactor (Duarte et al. 2004), and highway design 

(Roesler & Hiller 2013). Specifically, AASHTO’s Pavement ME software analyzes the 

mechanistic aspects of pavement degradation based on the expected loading while considering 

material behavior variation (Roesler & Hiller 2013). Similar methods can be applied to the track 

structure since there is inherent variability in the track component life. Although some failure 

mechanisms are fairly well understood, further investigation is needed to determine the factors 

that cause them (Lamson & Dowdall 1985; Cannon & Pradier 1996; Indraratna et al. 1998; 

Cannon et al. 2003; da Silva et al. 2003; Zeman et al. 2009). Whichever method is selected for 

modeling track degradation, specific focus should be given to the track parameters that have the 

possibility of disrupting service, such as FRA track class specifications or potential derailment 

risks such as rail flaws.  

There are also some common statistical distributions to predict component life. The Weibull 

distribution has frequently been used to model component degradation and failure rates, 

including all major track structure components (MacLean 1957; Orringer 1990; Shyr & Ben-

Akiva 1996; Lim et al. 2004; Kumar 2006; Jeong & Gordon 2009; Modarres et al. 2017). The 

Weibull distribution is advantageous due to its simplicity and limited number of parameters 

(Equation 2.1). The shape factor, α, determines how sinusoidal the distribution is, and the scale 

factor, β, is related to the average failure interval and determines distribution spread. As will be 

discussed further in Chapter 6, the Weibull parameters can be functions of input variables to 

consider variable operating situations (Mishalani & Madanat 2002; Kleinbaum & Klein 2012). 

This is one way that the physical interactions could be integrated into an empirical model. The 

exponential and Rayleigh distributions are two other common component life models, but they 
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are special cases of the Weibull (Modarres et al. 2017). Other distributions may have a better fit 

but would need to be evaluated based on available data.  

F(t) = 1 – exp(-(t/β)α) 2.1 

Where:  
α = shape factor 
β = scale factor (MGT or years) 
x = component age (MGT or years) 

 

Big data techniques are another approach to predicting track maintenance needs. These 

methods analyze large unstructured datasets and extract relationships directly from the data 

without making assumptions about its nature (Davenport et al. 2012; McAfee & Brynjolfsson 

2012; Davenport & Kim 2013). Since some mechanistic relationships may be difficult to 

represent, these techniques could allow them to be estimated using operating parameters and 

track measurements. Big data analysis has been explored for many railroad applications and 

could be beneficial for future development (Kaewunruen 2014; Nunez & Attoh-Okine 2014; 

Núñez et al. 2014; Carr 2015; Clark 2015; Thaduri et al. 2015; Kalay 2015; Pace 2015; Pace & 

Kontokostas 2015; Palese 2015; Rice 2015). 

Data to develop degradation models can come from a variety of sources, including both 

manual and automated inspections. Most railroads use data from track geometry and rail defect 

inspection vehicles, and at least one railroad uses high-speed cameras with machine vision to 

monitor track conditions (Clouse et al. 2006; Sawadisavi et al. 2008; Carr et al. 2009; Wanek-

Libman 2012, 2014). These provide information that can be directly linked to track components 

for maintenance evaluation. Some railroads have also started using vehicle/track interaction 

(VTI) sensors on rolling stock to monitor track conditions (Hicks & Stevens 2009; Clark et al. 

2015; Cowie et al. 2015; Crump et al. 2015). These measurements can be used for predicting 
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when track maintenance should be performed, but they may not be as helpful in determining 

what maintenance activities would best improve the track condition. If this could be overcome, 

VTI measurement data could be a viable source of data for degradation modeling due to the near 

continuous monitoring they provide and possible relationship to derailment risk. 

2.4 Maintenance selection 

The maintenance selection module uses degradation information to either evaluate a defined 

maintenance plan or select which projects should be completed in a given year. The limited 

research published on this topic in the rail sector has focused on the use of degradation models to 

determine when to conduct maintenance, rather than project selection explicitly (see references 

in Section 2.3). Research has been performed on related elements in other fields. For example, in 

highway infrastructure planning, research has been done on optimizing what maintenance should 

be performed and when (Ouyang & Madanat 2004; Ouyang 2007; Gu et al. 2012), but it does not 

appear that work has been published on optimizing the maintenance of multiple components. 

Therefore, some general evaluation criteria and approaches were examined.  

Two common methodologies used in investment decisions are to calculate the net present 

value (NPV) and internal rate of return (IRR). NPV has a long history of use in the railroad 

industry since it was pioneered by Arthur Wellington in the late 1800’s to evaluate how timing 

influences revenues and investments (Dulman 1989). These methods, especially IRR, rely on 

having positive revenues to determine if a project is satisfactory, and both are sensitive to the 

selected discount rate (Ross et al. 2013). NPV can be applied to maintenance planning by 

discounting the costs and finding the least cost plan. It is important to include disruption costs in 

the analysis to avoid the DCF trap (see Chapter 1).  
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Another method that is increasingly being used in transportation project evaluation is cost-

benefit analysis (CBA). This method evaluates the costs and benefits of a potential project to 

determine its suitability. The output is commonly reported as the benefit to cost (B/C) ratio. CBA 

is commonly used when determining the impact of social projects, where the benefit is derived 

from a reduction in future costs (Andersson et al. 2004; Bryan et al. 2007; Vatn 2008; Australian 

Rail Track Corporation 2010; Landau et al. 2015). CBA was used by Liu et al. (2010) to evaluate 

the cost effectiveness of track class upgrades, and it could also be applicable for maintenance 

activities because there are no additional revenues associated with the decision, only decreases in 

cost. The benefit of a given maintenance project could be calculated as the disruption risk 

reduction associated with it. Risk is defined as the probability of an event multiplied by the event 

severity or consequence (Erkut & Verter 1998; Zhao et al. 2007), so the benefit is the reduction 

in the disruption probability multiplied by the expected incident cost. The costs would be those 

incurred during maintenance, including both the direct and delay costs. As all costs incurred will 

be experienced by the railroad, minimizing the maintenance plan cost using the NPV method 

would accomplish the same goal as CBA in a simpler manner.  

Another common method used in similar transportation applications is case-based reasoning 

(CBR) (Jarmulak et al. 1997; Cui et al. 2005; Chou 2009). In CBR, the method that historically 

resulted in the least cost and best result is selected by comparing the current situation with a 

database of historical conditions and outcomes (Bengtsson 2004; Chou 2009). CBR could be 

beneficial for use in railroad track maintenance, as not every condition requires the same 

treatment. For example, a crosslevel problem may result from differential ballast settlement or a 

surface bent rail and require tamping or rail replacement respectively. For this distinction to be 

made, the database must contain the necessary historical condition and maintenance data. As 
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maintenance is completed, the database grows and predictions will become more accurate. One 

shortcoming of CBR is the lack of data accessibility that prevents model development without 

railroad partnership. If the necessary data were available, big data techniques could also be used 

to find relationships between the track conditions and the maintenance cost.  

Based on the options discussed here and the publically available data, using a modified NPV 

approach to compare the costs of different maintenance plans will be the simplest and most 

applicable option. If there are concerns over selecting the appropriate discount rate, a range of 

values could be used to determine if there are significant differences in the least cost plans. 

These discount rates should conform to standard practices to ensure they are reasonable and valid 

(Ross et al. 2013). 

One of the most common methods for activity selection is the knapsack model, and it can be 

applied in the ITMP framework. With this model, projects are chosen to maximize benefits while 

constraining the cost and time requirements (Alanne 2004; Kellerer et al. 2004; Gabriel et al. 

2006). In the rail industry, Lai (2008) used the knapsack model to select capacity improvement 

projects. For track maintenance, the criteria would need to be adjusted to minimize total costs, 

not just the cost to perform the selected maintenance activities, while constraining the direct 

maintenance costs to a budget. Constraints could be applied to exclude maintenance on track 

segments in good condition from consideration or requiring maintenance on track that has a high 

likelihood of a disruption. This should be accommodated by including disruption risk in the 

costing methodology, but if there are safety concerns with accident risk getting too high, a 

constraint could require maintenance when the accident rate exceeds a given threshold.  
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2.5 Project scheduling 

Once the optimal project mix has been selected, they must be scheduled to ensure the most 

effective implementation. This is another area where substantial research has been performed. 

The track maintenance scheduling problem (TMSP) model as developed by Peng et al. (2011) is 

one that has beneficial characteristics. This model was specifically designed for the rail industry 

and minimized transportation costs while considering the effects of work windows, activity 

sequencing, and linear project clustering for a preselected set of projects. Previous attempts to 

address railroad maintenance scheduling have considered minimization of train disruptions 

(Higgins 1998; Higgins et al. 1999), minimization of maintenance costs including set-up and 

take-down times (Lake et al. 2002), consideration of job prioritization (Budai et al. 2006), and 

balancing the impacts of maintenance and when the activity needs to be completed (Cheung et al. 

1999). Peng et al. (2011) improved on other large-scale TMSP models by considering travel 

costs and exact consideration of network distances. 

It would be important to ensure that the scheduling model does not repeat aspects of the 

other modules, e.g. aggregation of maintenance or work window length. While this does not 

appear to be a problem with the Peng et al. TMSP model, it should be considered and may result 

in selection of a simpler project scheduling model. It may also be beneficial to have a simpler 

scheduling model in the ITMP framework that estimates crew and equipment routing costs while 

ensuring feasibility when developing the maintenance plan. A more complex and precise model 

could then be applied to determine exact project schedules.  
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2.6 Framework operation 

The ITMP framework combines the three planning steps to determine the total cost of a 

given maintenance plan. Although it could be used to prioritize and select maintenance activities, 

evaluating pre-defined maintenance plans appears to be the best approach. This would be 

accomplished by using each module to calculate their associated costs (i.e. disruption, 

maintenance, or routing) for each year in the maintenance planning period. The project 

scheduling module will also verify the plan is feasible. Those costs would be discounted to 

compute the total cost of the maintenance plan. Combining the three maintenance-planning steps 

in this manner will allow for a more comprehensive and objective evaluation of potential 

maintenance plans.  

Simply evaluating maintenance plans is not enough to develop an optimal one. Adjustments 

need to be made to determine if there are lower cost alternatives. It would be inefficient to adjust 

the maintenance plans for multiple routes manually while balancing budgets, equipment 

constraints, and disruption costs. This is especially true if the network is large. To resolve this, 

the ITMP framework could be integrated with an optimization model. This could develop a 

network-wide maintenance plan to balance the disruption, maintenance, and routing costs while 

meeting any necessary budgetary or equipment constraints. This approach will be expanded in 

Chapter 9. 

It is anticipated that this model would be run more than once per planning period. As 

discussed in Chapters 7 and 8, when maintenance is deferred outside of the planning period those 

costs would be removed from the analysis even though they will still occur. Repeated application 

in a rolling horizon approach will allow those costs to be considered in the next run. This 
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iterative approach would also allow for new information about the track condition to be 

considered as inspections and capital maintenance projects are performed. Planners may also 

want to use the model to determine the capital maintenance budget. The model can estimate the 

total cost of operations with multiple budgets to see if allowance for additional maintenance 

would reduce the overall costs.  

2.7 Conclusions and future work  

Integrating the track maintenance planning steps into a single framework can provide a 

holistic approach to track maintenance planning and the possibility to reduce costs. This is 

because the ITMP framework allows for quantitative comparisons between disruption and 

maintenance costs while explicitly considering resource constraints. In addition to the benefits of 

reducing costs, an improved understanding of track degradation will aid in budgeting decisions 

since planners will have a better understanding of when maintenance expenditures will need to 

be made.  

Some of the potential future work has been described throughout the chapter, but there are 

specific areas where additional work is needed to further progress the framework applicability. 

Since the least amount of work appears to have been performed on maintenance project 

selection, that will be the focus of the remainder of this dissertation. Subsequent chapters will 

explore the development of train delay effects, disruption risk, cost models, and how to optimize 

the maintenance plan, but there is room for improvement on the other steps as well.  

For degradation modeling, the identification or development of more advanced models will 

assist with making the maintenance-planning framework more robust and applicable. Models 

actively used by North American Class 1 railroads could be viable options since they would be 
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validated and aligned with the needs of an operating railroad. If new railroad data could be 

acquired, it could be used to validate existing models or develop new ones specifically aligned to 

the needs of both railroads and the framework. New data analysis could also use big data 

techniques to generate more robust insights and relationships based on historical operations and 

maintenance data. For maintenance scheduling, further examination is needed to find or develop 

one that can both effectively schedule the activities but also work within the larger ITMP 

framework. While the Peng et al. (2011) TMSP model looks promising, it needs to be further 

evaluated to ensure that it can be fully integrated. A simpler model may be needed to allow the 

full optimization model to operate in a reasonable time and ensure it does not conflict with 

aspects considered in the other modules.  
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CHAPTER 3.  

DETERMINING FREIGHT TRAIN DELAY COSTS ON RAILROAD LINES IN  
NORTH AMERICA1 

3.1 Introduction 

Rail traffic disruptions and congestion create train delays that increase the operating cost of 

freight rail transportation. Quantifying the cost of these delays is important to justify investment 

in railroad infrastructure to relieve congestion. North American freight railroads typically own 

the track and operate the trains, so delay costs are considered internally. Therefore, it is difficult 

to obtain specific values for use with public projects or research. In some foreign rail systems, 

delay penalty costs are negotiated explicitly in contracts between train operators and rail 

infrastructure owners (Gibson et al. 2002).  

In the early 20th century, North American delay costs were one dollar per train-minute 

payable by the contractor responsible for the delay (AREA Committee No. I 1904), but more 

recent estimates range from $200 to over $1,000 per train-hour (Smith et al. 1990; Federal 

Railroad Administration Railroad Safety Advisory Committee 1999; Schafer & Barkan 2008; 

Lai & Barkan 2009; Dingler et al. 2011; Schlake et al. 2011). Each of these approaches included 

different cost categories and none of them appear to have considered the impact of yards and 

terminals on delays. In some cases, the authors do not describe the methodology used to 

determine costs, making it difficult to update the values or apply them to specific  

operating scenarios.  

1 This chapter is modified from Lovett, A.H., C.T. Dick, and C.P.L. Barkan. 2015. Determining Freight Train Delay 
Costs on Railroad Lines in North America. In: Proceedings of the International Association of Railway Operations 
Research (IAROR) 6th International Conference on Railway Operations Modelling and Analysis, Tokyo, Japan, 
March 2015. 
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Train delays affect railroad operating costs in five general categories: crew, locomotives, 

fuel, railcars, and lost revenue (Schafer 2008; Dingler 2010). Depending on how freight trains 

are operated, these costs will accumulate differently when delays are encountered, and yards and 

terminals have the potential to either mitigate or exacerbate delay. This chapter provides a 

framework to determine the delay cost for three common types of freight trains, unit, manifest, 

and intermodal, that each accumulate such costs in different ways. Although the cost formulation 

here is for major North American freight railroads, it can be adapted for systems where the 

infrastructure owner is not the train operator as is common in some other parts of the world. 

Individual shipper-specific late fees are not considered in this analysis, as the costs involved will 

vary widely depending on particular contracts and thus are difficult to generalize. 

3.2 Methodology 

Unit, manifest, and intermodal freight trains all operate differently. The unique operational 

aspects of each type of train and their associated costs must be modeled differently to get a 

complete picture of the cost of train delay. Operational aspects must be considered in the 

calculation of train delay costs. These aspects include available buffer time at terminals, the 

probability of a railcar or locomotive missing its connection to the next train, or the number of 

trainsets needed for dedicated, or captive, service. This improves upon previous attempts to 

model train delay that isolated delay costs from other operational impacts (Schafer 2008; Dingler 

2010; Schlake 2010). An isolated approach may be appropriate for irregular delay incidents, such 

as an accident or maintenance, but systematic delays due to regular meets and passes or planned 

stops between yards will affect how the whole system operates in the long term. 
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In North America, freight trains do not operate on rigid schedules based on a precise system-

wide timetable. Train departure times from originating terminals have varying degrees of 

flexibility depending on the type of train and railroad business objectives. Without a fixed 

schedule, it is not possible to calculate train delay as the difference between the scheduled and 

actual arrival times at the final destination or a specific point along the route. Instead, it is 

common practice in North America to calculate freight train delay as the difference between the 

actual runtime between origin and destination, or over a route segment of interest, and the 

minimum runtime between these points (Martland 2008). The minimum runtime is calculated 

using a train performance calculator and represents the least amount of time required for the train 

to travel between origin and destination while obeying all permanent speed restrictions but 

without interference from other trains on the line. By this definition, train delay includes the 

additional time spent traveling on a route due to meets and passes with other trains and any other 

condition that causes a train to stop or otherwise travel below the maximum authorized speed. 

The following sections develop equations that relate train delay to various freight railroad 

cost categories for the specific operating aspects of unit, manifest, and intermodal trains. 

3.2.1 Unit trains 

Unit trains carry a single type of freight, usually a bulk commodity, between the same origin 

and destination. In this way, they effectively work as a conveyor belt, moving goods from a 

source terminal to a consumption terminal without intermediate stops for “switching” to add, 

remove, or reorder railcars in the train. For example, a coal train may transport loaded railcars 

from a mine to a power plant and then return the empty railcars back to the same mine to be 

reloaded for the next trip back to the same power plant. Each such round trip is termed a “cycle.” 

Due to the lack of any specific data, this approach assumes the unit train experiences the same 
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amount of delay on both legs of this cycle when determining the minimum runtime (Equation 

3.1). Since returning empty railcars may have a lower priority and more delay, Equation 3.1 can 

be modified if average delay times for each leg are known. 

TT = 2(LR/V + TA + TD) 3.1 
Where:  

TT – time a train is active (transporting, loading, or unloading freight) per cycle  
LR – length of the route  
V – maximum allowable train speed  
TA – average processing time at the origin and destination terminals  
TD – delay time per leg 

Cycle time may or may not be the limiting factor in determining the amount of freight that 

can be shipped between origin and destination. If the production or consumption rates are such 

that less than one train load of freight is produced or consumed over the duration of the unit train 

cycle, the trains may not be able to depart or be processed immediately. These inherent system 

delays act as an implicit buffer that mitigates the impact of train delay along the route. The 

maximum or desired shipment frequency based on contractual agreements for delivery intervals 

will determine the actual cycle that a train operates on and the number of trainsets needed for the 

service (Equation 3.2). 

QT = ⌈TT/TPT⌉ 3.2 
Where:  

QT – number of trainsets required for the service 
TPT – average departure period or interval to a given location for the railcars 
Other variables as defined above 

The operational cost of the unit train can be computed on a per-cycle basis. This approach 

includes the cost of all trains operating during the time between two subsequent departures of the 

same trainset from the same location (Equation 3.3).  
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CP = QT(⌈TT,TPT⌉(CLQL + CCQC) + TT(QL(CO + CF) + CW)) 3.3 
Where:  

CP – total train cost per cycle ($/cycle) 
⌈TT,TPT⌉ – cycle time, TT rounded up to the next integer multiple of TPT  
CL – locomotive ownership cost ($/locomotive-hour) 
QL – number of locomotives per trainset 
CC – car hire rate ($/car-hour) 
QC – number of railcars per trainset 
CO – locomotive operating cost ($/locomotive-hour) 
CF – fuel cost ($/locomotive-hour) 
CW – crew wage ($/train-hour) 
Other variables as defined above 

The average hourly train delay cost can then be computed by dividing the cycle cost by the 

amount of delay per cycle and the number of trains. As noted above, the level of delay per cycle 

will be double the delay per leg, TD, because each train travels the route twice (once in each 

direction) per cycle. 

3.2.2 Manifest trains 

In manifest freight train operations, the rolling stock is not assigned to dedicated service in a 

train between a single origin and destination. Railcars and locomotives are used on any route and 

are temporarily grouped together to form a manifest train operating between major classification 

yards as dictated by transportation demand. Upon arrival at the next yard, the railcars will be 

sorted again to make connections with different trains originating at the terminal and bound for 

various destinations. Each manifest train can be considered independently from other trains when 

calculating delay costs between yards, but each delayed train has a probability of either delaying 

a subsequent train or having its railcars miss their connection at the next yard. This analysis 

assumes that there are always sufficient crews and locomotives, so subsequent trains departing 

the destination yard will not need to wait for delayed inbound trains. Delayed railcars that miss 

connections will be rescheduled to the next eligible train.  
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In some instances, outbound trains may be delayed leaving a terminal because there are 

insufficient locomotives or crews available. In these cases, the outbound railcar ownership and 

revenue opportunity costs would need to be accounted for rather than the crew and locomotive 

ownership costs since they would be in continuous use.  

Given the above assumptions, the delay cost of manifest trains operating between yards 

consists of three parts: the operating delay cost, the cost of locomotives missing their connection, 

and the cost of railcars missing their connection (Equations 3.4 – 3.9). Equations 3.8 and 3.9 are 

the locomotive and railcar PMAKE functions. The PMAKE concept was developed to represent 

the probability of a railcar or locomotive making its next scheduled connection based on the yard 

availability time and operational efficiency (Tykulsker 1981). The yard availability time is 

measured as the difference between the railcar or locomotive arrival time at the yard and the 

planned departure time of its connecting outbound train. While the PMAKE function can be any 

probability distribution, it is often represented as a uniform distribution based on the minimum 

time required to make a connection and the minimum time required to guarantee a connection 

(Tykulsker 1981; Martland 1982). 

CD = TD(QL(CO + CF) + CW) 
+ CLQLTPL(⌈(TD - TAL)/TPL⌉ + 1 - PL(TL')) 
+ (CC + CG')QCTPT(⌈(TD - TAC)/TPT⌉ + 1 - PC(TC')) 

3.4 

CG' = 2CGPA/(TPPR) 3.5 

TL' = TAL - TD + ⌈TD - TAL, TPL⌉ 3.6 

TC' = TAC - TD + ⌈TD - TAC, TPT ⌉ 3.7 

𝑃𝑃𝐿𝐿(𝑡𝑡) = �

1, 𝑡𝑡 > 𝑇𝑇𝐿𝐿𝐿𝐿
𝑡𝑡 − 𝑇𝑇𝐿𝐿𝐿𝐿
𝑇𝑇𝐿𝐿𝐿𝐿 − 𝑇𝑇𝐿𝐿𝐿𝐿

,   𝑇𝑇𝐿𝐿𝐿𝐿 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿𝐿𝐿

0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 3.8 
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𝑃𝑃𝐿𝐿(𝑡𝑡) = �

1, 𝑡𝑡 > 𝑇𝑇𝐿𝐿𝐿𝐿
𝑡𝑡 − 𝑇𝑇𝐿𝐿𝐿𝐿
𝑇𝑇𝐿𝐿𝐿𝐿 − 𝑇𝑇𝐿𝐿𝐿𝐿

,   𝑇𝑇𝐿𝐿𝐿𝐿 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝐿𝐿𝐿𝐿

0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 3.9 

Where:  
CD – delay cost per cycle ($/train-hour) 
TPL – average locomotive departure interval 
TAL – average planned yard availability for locomotives 
TL' – adjusted availability between a locomotive's arrival and the next eligible departure 
PL(t) – locomotive PMAKE function 
CG' – lost revenue from railcar delay ($/car-hour) 
TAC – average planned yard availability for railcars 
PC(t) – railcar PMAKE function 
TC' – adjusted availability between a railcar’s arrival and the next eligible departure 
CG – average revenue ($/car) 
PA – availability rate 
TP – cycle time 
PR – empty return ratio (ratio of total trips to loaded trips) 
TLM – amount of time when a locomotive to guaranteed to make the next connection  
TLC – minimum amount of time (cutoff) to switch a locomotive onto another train for on-

time departure  
TCM – amount of availability for a railcar to guarantee the next connection 
TCC – minimum amount of time to switch a railcar onto the next train for an on-time 

departure 
Other variables as defined above 

The first term of Equation 3.4 includes the locomotive operations, fuel, and crew costs that 

only depend on delay incurred in transit, not yard operations. The second and third terms are for 

the locomotive and railcar delay respectively. As delay increases, the probability of a locomotive 

or railcar missing the planned connection will increase until it is not possible to make the 

connection. At that point, the locomotives and railcars will be assigned to the next eligible train 

based on locomotive requirements or train destination. The delay will not increase until the 

adjusted availability, TL’, is less than the maximum guaranteed connection time, TLM. If a railcar 

or locomotive has a long planned connection time, the delay in arriving at the yard only acts to 

shorten the connection time but not lengthen the overall trip time. In this way, the yard 

connection time acts as a buffer to absorb delay. If a railcar or locomotive has a short connection 
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time, there is a higher probability that even a small delay in arriving at the yard will cause the 

railcar to miss its connection, greatly extending the overall trip time. In this manner, the yard 

connection time multiplies the original delay and its associated costs. This phenomenon will be 

demonstrated further in the case study. The revenue lost, CG', is based on the methodology of 

Dingler (2010) and considers the actual revenue per car along with the amount of time the railcar 

is available for moving freight (Equation 3.5). As the potential for additional revenue from 

increased capacity decreases, CG' will approach zero. 

3.2.3 Intermodal trains 

Intermodal trains use specialized railcars to transport containers and highway trailers 

between specialized loading and unloading facilities commonly referred to as intermodal 

terminals. From an operations perspective, intermodal trains have some characteristics of both 

unit and manifest trains. Intermodal trains often travel in dedicated service between two 

intermodal terminals. If containers or trailers are continuing by rail beyond the destination 

terminal of a given train, they are typically unloaded from an inbound railcar and repositioned by 

truck for loading onto an outbound train, rather than the intermodal railcars themselves being 

switched between trains (Rickett 2013). This cycling of intermodal railcars between terminals 

results in the railcar cost being similar to unit train service. Since there are likely multiple train 

departures from the same intermodal facility each day, locomotives shift from one train to 

another similar to manifest operations. 

Due to the higher priority of intermodal freight and its suitability for highway transport, 

there is a possibility of mode shift to trucks as delays increase. The mode shift can be estimated 

using a freight mode choice model. The model developed by Hwang and Ouyang (2013) is based 

on the value of the shipment, truck travel distance, and the price of oil, with different model 
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coefficients for each of ten freight classifications (Equations 3.10 and 3.11). Since this 

formulation does not explicitly consider transportation delays, the distance traveled by truck was 

reduced proportionally to reflect the additional time required to transport the delayed freight by 

train (Equation 3.12). Due to the difficulty in gathering mode shift data, default values are 

included here based on published sources. If proprietary data or models are available for specific 

circumstances, they can be applied instead.  

Pn(t) = exp(Un(t))/(exp(Un(t)) + 1) 3.10 

Un(t) = an + bnCV + cnLR'COil 3.11 

LR'(t) = LR2/(LR + V×t) 3.12 
Where:  

Pn(t) – proportion of freight of a particular type being transported by truck  
an,bn,cn – variables used in the utility calculation 
CV – value of goods shipped in an intermodal container ($/ton) 
LR' – adjusted route length to consider train delay (miles) 
COil – cost of crude oil ($/barrel)  
Other variables as defined above 

The above equations can be combined with the pertinent parts of Equations 3.3 and 3.6 to 

obtain the intermodal cycle cost (Equation 3.13). 

CP = QT(QC(⌈TT,TPT⌉CC + QICG(Pn(0) - P(TD))/(Pn(0))) 
+ TT (QL(CO+CF)+CW) 
+ QLCL(TT + 2(TPL(⌈(TD - TAL)/TPL⌉ + 1 - PL(TL')) - 
TD))) 

3.13 

Where:  
QI – Average intermodal containers or trailers per car 
Other variables as defined above 

3.3 Application and discussion 

To demonstrate how train delay costs vary, the equations developed in the previous section 

were applied to operating scenarios using representative input values. The following sections 

summarize the inputs used in the analysis and describe the resulting train delay costs. 
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3.3.1 Input parameters 

The relationships between train delay and operating costs developed in Section 3.2 include 

several input parameters that describe baseline hourly costs common to all types of trains. This 

section will detail values for some of the input parameters that were developed from public data. 

Where applicable, additional details on calculating the parameters are provided in Appendix A.  

3.3.1.1 Crew costs 

Train crews are often paid through a combination of time and mileage rates with a certain 

minimum for each trip or shift. In the absence of knowledge about the compensation details for 

specific operating agreements on a route, an average hourly crew cost provides a reasonable 

estimate for the extra crew working time when trains are delayed. In 2015, North American 

Class 1 train crews made an average wage of $34.38 including straight and overtime, as well as 

other compensation (Surface Transportation Board 2016a). As North American freight trains 

typically operate with two crewmembers, the average crew cost would be $68.76. This approach 

considers the total average cost of an employee per hour, including benefits to consider the case 

where delays would require additional employees. This value can be adjusted if the wage rate is 

known for a specific route.  

3.3.1.2 Locomotive costs 

Train delay increases the amount of time a locomotive spends moving a particular train. As 

train delay increases, railroads must own more locomotives to move a given number of trains 

during a set period. Locomotive ownership costs vary depending on their particular attributes and 

if they were purchased or leased. Most modern mainline diesel-electric locomotives in long-

distance freight service were purchased for between $1 and 2 million depending on the model 

and the options selected (Murray 2008). As of 2015, the cost of a newly-manufactured line-haul 
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freight locomotive with the additional equipment and systems required to meet current emissions 

standards is approximately $3 million per unit (Black & Clough 2014).  

For seasonal fluctuations in traffic demand, locomotives may be leased on a short-term basis 

during specific periods when additional power is needed. Locomotive lease rates range from 

under $100 to over $500 per day depending on the model and condition (Kruglinski 2008). Since 

only one-fifth of locomotives in the United States are leased (Association of American Railroads 

2015a) and the lease rates are highly variable, this analysis derives the hourly locomotive 

ownership cost from its purchase price. The discounted annual purchase cost was determined 

from the reported $1.93 million purchase price of one common mainline locomotive (Murray 

2008), a discount rate of 10.65% (Surface Transportation Board 2016b), assumed $200,000 

salvage value, and a 25-year economic life (Dingler 2010). The resulting locomotive ownership 

cost is $25.71 per locomotive-hour. There is also a cost to operate the locomotive, including 

maintenance, inspections, and depreciation. In the absence of explicit operating costs, the 

average expense per hour was estimated as $61.38 (Association of American Railroads 2015a). 

3.3.1.3 Fuel costs 

Since 1981, all line-haul freight rail operations on the major North American railroads have 

been powered by diesel-electric locomotives (Marchinchin 2013; Association of American 

Railroads 2015b). The amount of fuel used by diesel-electric locomotives to move freight varies 

greatly according to the type of locomotive, train handling, speed, route topography, and 

operating conditions. For this analysis, the fuel consumption rate was estimated using the 

average duty-cycle throttle notch occupancy for mainline freight operations (U. S. 

Environmental Protection Agency 1998) and the throttle-notch specific fuel consumption of a 

4,000-horsepower SD70 locomotive (Frey & Graver 2012). Using the calculated average fuel 
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consumption rate of 58.79 gallons per hour (222 liters/hour) and an average diesel fuel price of 

$2.95 per gallon ($0.78 per liter) (Association of American Railroads 2015a), the average fuel 

cost is $173 per locomotive-hour. If actual train and route data are available, energy models or 

rail simulators may provide more accurate fuel use values for specific train delay conditions. 

3.3.1.4 Railcar costs 

Train delay increases the amount of time a railcar spends moving a particular freight 

shipment. As train delay increases, more railcars are needed to move a given number of 

shipments during a set period. To meet freight transportation demand, railroads use a 

combination of railcars owned by shippers, leasing companies, and railroads. When using 

railcars they do not own, including those owned by other railroads, a railroad must pay the owner 

of the car a fee called “car hire.” Car hire rates may have a time and distance component, but 

typically only the time-based rate is used (Buchanan 2009). If applicable, the additional distance 

cost can be calculated if a train is detoured onto a longer route. Some car hire rates are 

contractually agreed upon, while others are published as standard rates based on the railcar type, 

age, value, and amenities (R.E.R. Publishing Corporation 2007). For railcars that are owned by 

the railroad, the car hire rate equates to an opportunity cost associated with the railroad either not 

being able to use that railcar elsewhere or having to lease a railcar. For this analysis, it was 

assumed that the railcar costs are $0.58, $0.84, and $1.00 per railcar-hour for unit, manifest, and 

intermodal railcars respectively (R.E.R. Publishing Corporation 2007; Dingler 2010). 

3.3.1.5 Revenue opportunity cost 

Unless a shipper includes an on-time incentive or other late penalty in their contracts with 

the railroad, there is no explicit railroad cost for delayed freight. The railroad is subject to an 

opportunity cost of foregone demand (i.e. revenue) when train delays prevent movement of 
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additional freight due to insufficient capacity or cause freight to shift to a competing carrier. If 

track capacity is not fully utilized, trains can be run with shorter headways to recover from 

delays (American Railway Engineering and Maintenance-of-Way Association 2012). If the delay 

is too large or the line is operating too close to its theoretical capacity, some trains may need to 

be canceled in order to maintain traffic flow, potentially resulting in lost revenue. As railway 

lines carry different types and amounts of freight, the revenue opportunity cost will be different 

for each line, but average values can be used for illustration.  

To determine revenue opportunity costs, the average carload revenue is needed. It was 

assumed that all freight, outside of the “All Other” category are shipped in manifest service. That 

category includes apparel and textiles, empty semi-trailers, and miscellaneous mixed shipments 

and is primarily shipped via intermodal (Association of American Railroads 2015a, 2015b). 

Since unit and intermodal trains are in captive service, it was assumed that their ability to fulfill 

demand was not affected by train delay. This results in an average manifest train revenue of 

$3,212 per car. Assuming an availability ratio of 0.75 (Dingler 2010), a cycle time of 26.88 days 

(Kwon et al. 1995), and an empty return ratio of 1.91 (Association of American Railroads 

2015a), the lost revenue will be $3.91 per railcar-hour. While the lost revenue cost may seem 

small, it will be accumulated over the entire train and delay time. If actual average lading values 

and rates are known, they can be used to more precisely determine lost revenue and mode shift. 

The mode shift calculations require the per-ton value of the freight being shipped in addition 

to the direct revenue that will be lost. Due to the limited number of car types in intermodal 

service, the revenues could be calculated more explicitly and came to $950 per car (Surface 

Transportation Board 2015). An intermodal car is defined here as a single well that can carry up 

to two intermodal containers (Dingler 2010), but in practice, a car can consist of multiple wells. 
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The lost revenue cost for intermodal was calculated for comparison and came to $8.94 per 

container-hour. To apply the mode shift model, a freight category must be assumed. For this 

analysis, intermodal shipments are assumed to be “Furniture, mixed freight, and miscellaneous 

manufactured product” (Hwang & Ouyang 2013), although a variety of goods are shipped via 

intermodal containers (Association of American Railroads 2015b; Surface Transportation Board 

2015). The average freight value for these categories is $4,710 per ton (Center for Transportation 

Analysis 2017).  

3.3.2 Unit train delay cost 

Since unit trains are in captive service, the route length and baseline cycle time will directly 

affect the delay cost. Equations 3.1 – 3.3 were applied to 500-, 1,000-, and 1,500-mile (805-, 

1,609-, and 2,414-km) routes using the values given in Section 3.1 and representative operating 

parameters (Table 3.1) to produce average unit train delay costs over a range of train delay 

amounts (Figure 3.1). As train delay increases, additional trainsets are required to maintain 

service frequency, causing a sudden increase in operating costs. This is reflected by the increase 

in average delay cost in Figure 3.1. Since each route length starts out with different buffer times 

between the cycle time and train departure interval, the amount of delay that must be 

accumulated before a new trainset is required is not constant. The 1,000-mile (1,609-km) route 

 Table 3.1: Assumed unit train values  

 Parameter (Variable) Value  
 Operating speed (V) 25 mph1  
 Locomotives (QL) 2  
 Railcars (QC) 992  
 Terminal processing time (TA) 6 hours  
 Departure interval (TPT) 24 hours  
 1. 1 mile = 1.6 km 

2. (Cambridge Systematics 2007; Dingler 2010) 
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requires a new trainset after only two hours of delay, so the delay cost per train-hour is relatively 

high. The magnitude of the increase declines as the delay and number of trainsets in service rises 

because the costs are being averaged over longer delay and more trainsets.  

For moderate levels of delay, trainset ownership during buffer times causes the average unit 

train delay cost to fluctuate in the range of $500 to $1,500 per train-hour but appears to be 

converging around $1,000 per train-hour. This is much higher than the isolated delay cost of 

$670 per train-hour. The discrepancy is likely due to the lumpy trainset costs that make up 

approximately 46-percent of the average cost. 

3.3.3 Manifest train delay cost 

Since manifest trains run largely independent of each other, the length of the route will not 

directly affect the hourly delay costs, although longer routes may have a higher likelihood of 

accumulating delay. Yard operations will have an impact since they affect how much buffer time 

 

Figure 3.1: Average unit train delay costs 
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is available to recover from delays. Equations 3.4 – 3.9 were used with the values in Section 

3.3.1 and representative manifest train operating parameters (Table 3.2) to calculate average 

manifest shipment delay over a range of train delay amounts (Figure 3.2). The figure shows that 

the average amount of actual delay experienced by a shipment increases according to the 

PMAKE function for each departure. After the rolling stock has no chance of making the 

planned connection, no delay is accumulated until the probability of making the next train 

departure decreases below one, meaning all the additional buffer time has been consumed. 

Comparing the railcar and locomotive delay shows that as eligible departure frequency increases, 

the delay curve approaches a straight line. 

Table 3.2: Assumed manifest train values 

Parameter (Variable) Value 
Planned locomotive availability (TAL) 6 hours 
Locomotives (QL) 3 
Railcars (QC) 81 railcars1 
Planned railcar availability (TAC) 12 hours 
Loco. departure interval (TPL) 2 hours 
Block departure interval (TPC) 24 hours 
Railcar cutoff (TCC) 2 hours 
Railcar max time (TCM) 12 hours 
Locomotive cutoff(TLC) 2 hours 
Locomotive max time (TLM) 6 hours 
1. (Cambridge Systematics 2007) 

 

 

Figure 3.2: Average manifest delay accumulation 
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Since demand limitations will affect lost revenues, the average manifest train delay cost was 

plotted using GC’ of zero and the calculated value of $3.92 per car-hour (Figure 3.3). The 

inclusion of the lost revenue costs makes the delay cost much more sensitive to railcar delay, and 

the two lines converge to approximately $1,300 per train-hour with lading and $950 per train-

hour without lading. These values are slightly higher than the respective $1,255 and $938 per 

train-hour isolated delay costs. In this case, the yard initially amplifies delay costs since the yard 

schedule does not provide any initial buffer before the maximum guaranteed connection time. 

After all the railcars have missed their connections, the extra time before the next departure acts 

as a buffer mitigating delay. As more yards are added to a railcar trip, there will be increased 

uncertainty as to when the railcar will arrive at subsequent yards, potentially increasing the effect 

of a single hour of delay at the beginning of the trip. These observations can be used by planners 

to ensure sufficient yard dwell is built into the system for high priority cars or those that are 

frequently delayed. 

 

Figure 3.3: Average manifest delay cost 
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3.3.4 Intermodal train delay cost 

As with unit trains, the cyclical nature of intermodal operations means that route length will 

affect how many railcars are required. Route lengths of 500, 1,000, and 1,500 miles (805, 1,609, 

and 2,414 km) were used with Equations 3.10 – 3.13, the values in Section 3.1, and 

representative intermodal train operating parameters (Table 3.3) to calculate average intermodal 

train delay costs for a range of train delay (Figure 3.4). 

Similar to the unit train average delay costs, the additional rolling stock costs are incurred at 

different times for different route lengths. Although the locomotive yard impacts are present, 

they are not noticeable in Figure 3.4 due to the frequency of train departures. The effect of mode 

shift can be seen in the initial part of the curves in Figure 3.4 between a delay of zero and the 

point where the first additional set of railcars are needed. Figure 3.1 shows that unit trains have a 

constant hourly delay cost until the first trainset is added. For intermodal operations, mode shift 

effects will begin occurring with the first instance of delay and are not linear (Figure 3.5). 

Table 3.3: Assumed intermodal train values 

Parameter (Variable) Value 
Operating speed (V) 60 mph (97 km/h) 
Locomotives (QL) 4 
Railcars (QC)  771 
Average containers per car (QI) 1.81 
Total loading and unloading time (TA) 8 hours2 
Train Departure interval (TPT) 24 hours 
Loco. departure interval (TPL) 2 hours 
Planned loco. availability (TAL) 6 hours 
Locomotive cutoff (TLC) 2 hours 
Locomotive max time (TLM) 6 hours 

1. (Cambridge Systematics 2007; Association of 
American Railroads 2015b) 

2. (Rickett 2013) 
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Figure 3.4: Average intermodal delay cost 

 

Figure 3.5: Intermodal mode shift effects 
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In general, mode shift becomes less sensitive to train delay as delay increases. This may be 

due to the way the adjusted truck shipping distance, LR’, was formulated, but it could also be 

because each hour of delay is a smaller proportion of the total travel time, reducing the impact of 

each additional hour. The mode shift costs also impact the convergence value for the average 

intermodal train delay cost because the initial proportion of freight traveling by rail is different 

for each route length, resulting in different average intermodal train delay costs per hour. The 

average intermodal train delay costs per train-hour converge between approximately $2,000 and 

$3,000 per train-hour but are higher for more moderate levels of delay. Using the lost lading cost 

as a proxy for mode shift, the $2,436 isolated train-hour cost is within the calculated range. In 

this case, mode shift opportunity costs are typically no more than a third of the total delay costs, 

but further analysis may be needed to ensure that it is not over represented.  

3.4 Conclusions and future work 

The type and length of train operations can have a large effect on how hourly train delay 

costs are accumulated. The methodology and equations described here can help in determining 

the added cost of delay for a particular train operation. Although crew, locomotive operation, and 

fuel costs are accrued at rates proportional to train delay, the cost of rolling stock is affected by 

operations at the terminals. The amount of buffer at the origin and destination terminals directly 

affects how much delay can be absorbed before additional unit train and intermodal rolling stock 

are required. Yard operational efficiency and planned yard availability will determine the extent 

that a yard acts as either a delay buffer or multiplier for manifest trains and intermodal 

locomotives. Intermodal trains also have the complexity of mode shift that introduces additional 

non-linearity to the train delay cost calculation. These complicating factors combine to show that 

for long-term changes in travel times, a single train delay cost is insufficient to describe what is 
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happening in the entire operation. If planners do not consider the entire cost of train operations 

when determining the train delay costs, they risk underestimating the operational impacts of 

changes that affect train runtimes. Planners can also use the location of discontinuities in the 

intermodal and unit train delay cost curves to identify if there are rolling stock savings that might 

come from relatively small investments to reduce train delay.  

Since the railroads are not the only stakeholders affected by train delay, an extension of this 

work is to identify the train delay costs accrued by other stakeholders, namely shippers and the 

public. Shipper and public costs associated with delayed trains are typically externalities, and 

therefore do not directly affect railroad costs; however, understanding these costs can assist the 

railroads in getting public and shipper support and assistance for projects that will reduce train 

delay. This is an area where additional research is warranted to improve modeling and 

understanding of comprehensive effects of train delay. 
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CHAPTER 4.  

COST AND DELAY OF RAILROAD TIMBER AND CONCRETE CROSSTIE 
MAINTENANCE AND REPLACEMENT1 

4.1 Introduction 

North American railroads spend billions of dollars each year on track maintenance, and 

crossties are one of the largest expenditures (Surface Transportation Board 2014). Therefore, 

crosstie investments should be made based on sound economics and maintenance performed in 

the most cost-effective manner. Track maintenance strategies differ in how frequently various 

components are renewed. In all cases, there are wide ranges of associated costs that vary based 

on operating conditions and affect which alternative is the most cost effective.  

In order to accurately assess the cost-effectiveness of a maintenance procedure, the initial 

direct cost of labor and materials cannot be considered in isolation. Previous research has 

discussed life-cycle costing (LCC) for track maintenance and construction (Zarembski & Gauntt 

1997; Zoeteman & Esveld 1999; Zoeteman 2001; Andrade 2008; Patra et al. 2009), but initial 

and recurring direct costs of labor and materials are not the only costs that should be considered. 

In an operating railroad environment, it is difficult to perform all required maintenance without 

at least some delay of trains. Transportation and engineering departments are frequently 

competing for track time. Delay costs due to track maintenance may be incurred by trains using 

the line undergoing maintenance, but may also affect other parts of the network. Traffic density 

on North American railroads is expected to increase, further exacerbating the delay associated 

1 This chapter is modified from Lovett, A.H., C.T. Dick, C.J. Ruppert Jr. and C.P.L. Barkan. 2015. Cost and delay of 
railroad timber and concrete crosstie maintenance and replacement. Transportation Research Record: Journal of the 
Transportation Research Board. 2476: 37-44. DOI: http://dx.doi.org/10.3141/2476-06. It is being reproduced with 
permission of the Transportation Research Board and does not imply endorsement by TRB of any product, method, 
practice, or policy. 
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with maintenance (Cambridge Systematics 2007). If the overall impacts and costs of 

maintenance-caused train delay are not fully accounted for, suboptimal decisions regarding 

infrastructure investment and maintenance strategies may result. Specific to the comparison of 

concrete and timber crossties, a frequently cited economic analysis of North American crossties 

states that its methods do not adequately account for the maintenance differences between the 

two types (Railway Tie Association 2006a; Zarembski & Kondapalli 2007). Therefore, a new 

method is needed to understand the economic comparison between these two crossties types.  

4.2 Life-cycle costs 

Life-cycle cost analysis is best applied in situations where the asset has substantial upkeep 

costs and must consider not just the costs directly related to the component in question, but also 

any costs affected by the component selection (Brown & Yanuck 1985). The methodology set 

forth in this research considers four main cost categories: renewal, accident, slow order, and 

other track maintenance. Each of these categories can be further divided into direct, delay, and 

network costs. Previous research on track maintenance has considered direct costs and some 

have included delay costs in their LCC analyses, but none appear to have factored in network 

effects or additional delay during the time for normal service levels to resume after the track has 

reopened (Zarembski & Gauntt 1997; Simson et al. 2000; Patra et al. 2009). Understanding 

network effects and delay beyond just those trains interrupted by the track outage is important 

because they can have a significant effect on the indirect costs of track maintenance. 

Two parameters essential to LCC analysis are the discount rate and the analysis time period. 

The applicable discount rate for an LCC analysis will vary between owning entities and is 

largely based on the cost of capital. Proper selection of the discount rate can have a substantial 
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impact on the results of LCC and other present-value cost analysis techniques. Higher discount 

rates will favor alternatives with comparatively low initial costs and higher operating costs, such 

as timber crosstie track, while lower discount rates will favor the opposite conditions, such as 

track constructed with concrete crossties (Dimson 1989; Brealey et al. 2007). 

The time period considered by an LCC analysis is based on the lifetime of the components 

in question (Brown & Yanuck 1985; Flanagan et al. 1989). For crossties, this is somewhat 

ambiguous as timber-crosstie track does not have a finite lifetime per se. Failed crossties are 

renewed as needed at a rate that will vary based on operating conditions, such as climate and 

traffic levels, and renewal threshold (Wells 1982). A commonly used approach to determine the 

distribution of failed timber-crosstie ages is the Forest Service Products Curve (FSPC) (MacLean 

1957; Wells 1982; Railway Tie Association 2006b). Previous research has shown that crosstie 

replacements are most efficient when over 800 are replaced per mile at a time (Elkaim et al. 

1983). Therefore, I developed a model using the FSPC to predict years when a track is expected 

to have over 800 failed crossties per mile as an aid to determining when and how many need to 

be replaced. This model was used to determine when renewals will take place on a track with 20” 

(508 mm) crosstie spacing and an average life of approximately 30 years. This analysis shows 

that renewals occur every 9 to 10 years when between 800 and 900 crossties per mile have failed 

(Figure 4.1). For analysis purposes, the renewal rate was set as a 850 timber-crosstie-per-mile 

renewal every nine years. In practice, railroads can use historical maintenance data to develop 

average crosstie renewal rates for specific track segments as the average life will vary based on 

operating conditions and environmental factors. 
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Concrete crossties are typically modeled as being renewed out-of-face, i.e. every crosstie is 

replaced at the end of their estimated 40- to 50-year service life (Zarembski et al. 2004; 

Zarembski & Patel 2010; Railway Tie Association 2012; Cloutier 2014). This is more like a 

typical component replacement and makes for a simpler LCC analysis. Concrete crosstie life was 

taken as 45 years, as this was an average value and resulted in it being a multiple of the timber-

crosstie renewal cycle. This also results in LCC time horizon finishing the year before a renewal 

for both alternatives. It should be noted that concrete crossties have not been in service in North 

American heavy haul applications long enough to satisfactorily estimate if the exact 

circumstances when the end of life cycle replacements will take place and what the costs of 

replacement will be. 

4.2.1 Direct costs 

4.2.1.1 Renewal costs 

Direct renewal costs (i.e. labor and materials) can be determined in several ways. One 

method uses unit equipment, labor, and crosstie costs (Elkaim et al. 1983), and would be 

 
Figure 4.1: Failed timber crosstie replacement pattern for 20" spacing and 30-year life 
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reasonable for a railroad or other entity with access to current values. This method’s results 

would be questionable if historical costs were simply updated to current dollars without knowing 

how relationships between the parameters have changed with the development of new 

maintenance techniques and equipment. Another method is to use published industry values of 

installation costs. The Railway Tie Association (RTA) uses $95 per timber crosstie and $200 per 

concrete crosstie installed, including all material and labor costs (Railway Tie Association 

2006a). Although these values were used for analysis in this paper, some industry sources have 

said current concrete crosstie costs are much closer to those of timber crossties. The impact of 

varying costs will be examined in the sensitivity analysis. In the LCC, these values are multiplied 

by the number of crossties replaced during each renewal to determine the direct cost.  

4.2.1.2 Accident Costs 

Accidents are unscheduled events that can be modeled based on average frequency and 

consequence. The Federal Railroad Administration (FRA) maintains a database of rail accidents 

with damages above a monetary threshold (Federal Railroad Administration 2011), but this 

database includes limited information about the track structure at derailment locations. Thus to 

make comparisons between the accident rates and costs on concrete and timber-crosstie track, 

additional analysis using track structure data provided by a Class 1 railroad was conducted. 

The railroad data indicated that 17% of track-caused accidents occurred on concrete-crosstie 

track. This rate needs to be normalized by ton-miles as not all track has the same annual tonnage, 

and industry professionals indicate that concrete crossties are typically used on track segments 

with more traffic. The length of concrete-crosstie track on the railroad was estimated by 

assuming 6.5% of all crossties are concrete (Railway Tie Association 2015) and a standard 

concrete crosstie spacing of 24 inches (609.6 mm). The railroad also provided the average annual 
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tonnage for concrete and timber-crosstie track. This resulted in a concrete-crosstie track accident 

rate of 0.152 per billion-ton-miles (0.104 per billion-Mg-km) and a timber-crosstie track accident 

rate of 0.208 per billion-ton-miles (0.142 per billion-Mg-km). This is not to imply a causal 

relationship with crosstie type. Accident rates vary based on a number of factors, including track 

class, annual tonnage, and other operating characteristics (Liu et al. 2017), that were not 

accounted for in this preliminary analysis. Concrete crossties are generally used in track with 

higher tonnage and FRA track class. Both of these factors are correlated with a lower accident 

rate (Liu et al. 2017). In contrast, timber crossties are widely used in track with a variety of FRA 

track classes and annual tonnage. These relationships make it difficult to determine how much of 

the accident rate variability comes from the crosstie type. Additional railroad data will enable 

development of accident rates for track with each type of crosstie and track class combination 

that are better aligned with specific operating conditions than the preliminary values presented 

above. In the absence of these detailed rates, the preliminary values are used here simply to 

illustrate the analysis process.  

The cost of an accident is also likely to differ between the two crosstie types. Based on the 

FRA database for 2011-2013 and the location of concrete crossties, the average cost of a track-

caused accident was $363,811 for accidents on concrete- and $218,850 for timber-crosstie track 

(Federal Railroad Administration 2014a). Accident costs on concrete crosstie track may be 

higher because they typically need to be replaced after each derailment, whereas timber crossties 

are more resilient. Indirect costs such as delay or network effects are not accounted for in the 

FRA data, so these must be taken into consideration in specific scenarios.  

62



4.2.1.3 Slow Order Costs 

Like accidents, slow order costs are modeled based on their frequency and cost. For each 

track class, the FRA Track Safety Standards specify the required number of good crossties for 

tangent and curved track (Federal Railroad Administration 2014b). Tracks that do not meet these 

criteria are subject to slow orders where train-operating speed is reduced until maintenance is 

performed. The expected number of slow orders caused by crosstie degradation can be calculated 

in a method similar to the Poisson process using a Weibull approximation of the FSPC and 

average replacement rate (Equations 4.1 and 4.2). The Weibull distribution was selected because 

it has previously been used in other crosstie life studies (Lake et al. 2000) and fits the data better 

than other models. Further discussion on this model can be found in Appendix B. 
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Where:  
P39 – probability of a slow order in an average 39-foot track segment 
f  – maximum allowable number of failed crossties 
k – number of age groups 
nj – number of crossties in age group j 
ij – number of failed crossties in age group j 
pj – failure probability of a crosstie in age group j 
y – years since the last crosstie renewal 
c – years between crosstie renewals 
A – average crosstie life 
α,β – Weibull shape parameters corresponding to the FSPC 

The calculated probability represents the average number of slow orders per 39 feet of track 

during a given year and can be multiplied by the number of track miles to find the expected 

number of slow orders per year. This rate is calculated on an annual basis since the probability 

will change as the crossties age and will reset after each renewal. I assumed that once a slow 
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order is repaired, the presence of newer crossties will reduce the expected number of slow orders 

in subsequent years. Individual railroads have their own operating protocols that may impose 

slow orders under other crosstie failure conditions (e.g. clusters) (BNSF Railway Company 

2000; National Railroad Passenger Corporation 2013) and will affect this probability calculation. 

This methodology can be adapted to specific operating protocols, but as the FRA standards are 

applicable to all railroads, they were used for this analysis. 

The direct costs for each slow order consist of the labor and material cost of replacing 

sufficient crossties to meet the FRA standards. For this analysis, it is assumed that two crossties 

are replaced for each slow order. The cost of replacing the two crossties is multiplied by the 

expected number of slow orders per year to calculate the annual direct slow order cost.  

4.2.1.4 Other Track Maintenance Costs 

Other track maintenance related to crosstie condition was assumed to consist of rail 

maintenance and tamping. Previous research has shown that timber crosstie quality has an 

insignificant impact on rail maintenance (Elkaim et al. 1983), but concrete crosstie 

manufacturers claim that concrete crossties improve rail life (Koppers 2014; Rocla Concrete Tie 

Inc 2014). Since no independent data were available that support this claim, it was not 

considered in this analysis. Improved crosstie quality has been shown to result in reduced 

surfacing costs (Elkaim et al. 1983), though this finding was based on timber crossties. I assumed 

that concrete crossties would equate to good crosstie conditions and therefore have lower 

surfacing costs. Discussion with railroad personnel and concrete crosstie manufacturers suggests 

that concrete crossties hold line and surface better (Koppers 2014; Rocla Concrete Tie Inc 2014), 

so I also assumed that concrete-crosstie track would need to be surfaced less frequently. Specific 

maintenance costs and frequencies are given in subsequent sections.  
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4.2.2 Delay and Network Effects 

Since the impact of train delay is not necessarily limited to the line that a service disruption 

takes place on, this chapter considers the costs of both primary and secondary delays. Primary 

delay is the delay directly associated with trains on the disrupted track, while secondary delay 

accounts for network effects that lead to delay costs associated with other trains on the network.  

Primary delay is calculated as the increased travel time associated with a service disruption. 

The extra travel time may be due to trains being rerouted onto a longer line or delayed because 

the system has less flexibility due to a portion of the track being out of service. The increased 

travel time is applied to all trains that would be affected by the disruption. For track 

maintenance, this is likely a few hours a day over several weeks, but for unplanned disruptions, it 

could take 24 hours or more until the track is repaired. This is because unplanned disruptions do 

not allow for prior scheduling of rerouting.  

To determine the increased travel time, several options are available including rail traffic 

simulation or parametric delay-volume curves. Simulation gives the ability to test specific track 

and traffic configurations, but new track layouts need to be developed for every track 

configuration. A railroad that is already using simulation software could reasonably use this 

method by drawing from their library of network simulation models. For general use in a wide 

range of situations without specialized software, a more analytical approach would be beneficial. 

Parametric models, such as the delay-volume curves are well-suited to this analysis (Sogin et al. 

2013; Shih et al. 2014), and one developed by Sogin et al. (2013) was used here (Equation 4.3). 
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𝐷𝐷 = (𝑆𝑆1 − 𝑆𝑆2𝑥𝑥)𝑒𝑒𝑘𝑘𝑘𝑘 4.3 

Where: 
D – average train delay (min) 
S1 – single-track delay (19.5206) 
S2 – delay mitigation constant (19.149) 
x – double-track percentage 
k – congestion factor (0.0471) 
V – traffic volume (trains per day) 

For maintenance performed on double-track lines, the percentage of double track will 

effectively decrease during the maintenance work window. For maintenance on single-track 

lines, traffic must be stopped during the work window. For all lines, traffic will stop during post-

accident repair, assuming all tracks are removed from service after an accident. Closing all lines 

is a worst-case scenario, but repairs would likely be delayed because of safety concerns if 

adjacent lines were kept active. When the track is reopened following maintenance, a double-

track section will eventually return to normal, but for single-track sections or after accidents, 

there will be some residual delay. For single-track sections, the traffic is assumed to clear before 

the next maintenance window. After accident clean up, it will take approximately two days for 

the traffic to return to normal after the disruption is cleared, assuming traffic normally operates at 

65% of theoretical capacity. This value is slightly more conservative than the industry 

recommendations (American Railway Engineering and Maintenance-of-Way Association 2012). 

During this time, the track will be operating at its theoretical capacity to move as many trains as 

possible in an effort to minimize the length of the recovery time (See Chapter 5 for further 

discussion of this concept).  

Network effects are more complex and can manifest in a variety of forms experienced by 

trains beyond those that typically run on the disrupted line. The most easily measured network 

effect is the delay experienced by traffic on other lines if trains have been rerouted around a 
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disruption. Trains will only be rerouted if the alternate route results in less delay than continuing 

on the original route. If a system is large enough, rerouting may result in delay being propagated 

through many lines as alternate routes reach capacity and traffic is further rerouted. This network 

effect can be measured in the same manner as direct delay. Using a simulation tool will allow for 

the simultaneous calculation of both the direct and network delay.  

Additional delay can also be experienced by railcars that miss their scheduled connection at 

intermediate yards. The cost of expected connection delay is a function of the distribution of 

train departure times from the yard and the value of the lading being shipped. Yards that are 

optimized to reduce the amount of time cars wait in the yard or to handle a large amount of high-

value freight will have higher delay consequences because even small amounts of delay may 

result in a missed connection. Another form of network cost is having a train crew reach their 

Federal hours-of-service limit. In these instances, a replacement crew must be transported to 

where the train has stopped, and the old crew transported back. If the crew change was supposed 

to occur before the train moved to a new territory, the original replacement crew will also be 

delayed. For both conditions, specific circumstances are needed to evaluate these costs. 

The cost of train delay per hour varies based on a variety of factors broken into five main 

categories: crew, cars, lading, locomotives, and fuel (Schafer 2008; Dingler et al. 2011) (See also 

Chapter 3). Most of these costs vary with train and commodity composition. Based on the 

analysis in Chapter 3, the isolated crew, car, lading, and locomotive costs are approximately 

$950 per train-hour, assuming an average manifest train composition and no yard effects. Fuel 

costs are the most variable as they depend on the type of delay imposed on a train and the 

number and type of locomotives in the consist. If delay results in a train being stopped, such as in 

a complete track outage, then the train is assumed to idle for the additional time. In the case of 
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running delay, e.g. a train is rerouted to a longer route or is able to move on the line with 

additional delay because a siding or section of double track is being maintained, the locomotive 

is assumed to be operating according to the average locomotive duty cycle (U. S. Environmental 

Protection Agency 1998). Fuel cost is based on fuel consumption of a 4,300-horsepower 

mainline locomotive at an average fuel price (Association of American Railroads 2012; Frey & 

Graver 2012). This results in an idle and running delay cost of $1,009 and $1,505 respectively. 

These numbers can, and should, be adjusted to consider the actual train composition and costs on 

a given line. If a train energy model is available in the train simulator being used, the fuel cost 

can be calculated when delay is determined. These delay values agree with those in Chapter 3, so 

even though yard effects are not being explicitly considered in this analysis, the results  

appear reasonable.  

Slow orders are a unique situation because trains continue moving over the track but must 

slow down for a specific segment. The model conservatively calculates the amount of additional 

time a train will take to slow to the reduced speed (assumed to be that of the next lower track 

class), traverse the slow-ordered track, and then accelerate back to normal track speed. The 

calculated time is applied to the expected number of slow orders over the line and priced at the 

running delay cost. 

4.3 Sensitivity analysis  

Some of the inputs required for this analysis may be difficult and expensive to gather for a 

large number of lines, so understanding which inputs have the largest impact on the LCC is 

important. Knowing the influence of each factor allows analysts to concentrate on gathering 

input data that are most significant. Inputs with lower impact can be approximated if they are not 
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readily available (Lovett et al. 2013). Since situations with and without alternate routes involve 

substantially different considerations, the sensitivity analysis was performed for each case 

independently. A total of 39 different input factors were considered, covering virtually all track, 

operations, and disruption characteristics (Table 4.1). 

For the scenario with an alternate route, the alternate route characteristics were varied with 

the same base and bounds as the primary route. When an alternate route is present, a reroute 

ratio, or the ratio of the length of the alternate route to the length of the main route, is also 

specified. Base route characteristics are based on Sogin et al. (2013) to match the operating 

conditions for Equation 4.3. Track possession, equipment set up times, crosstie renewal rates, 

tamping speeds and costs, and train weights are based on published values and industry averages 

and analyses (Elkaim et al. 1983; Burns 1987, 1989; Illinois Department of Transportation 2011; 

Association of American Railroads 2012). The upper bound was selected to be approximately 

double the base value, with the lower bound about 10 percent of the base value. Some categories, 

such as track class and crosstie spacing, already have specific limits that were used to define the 

lower and upper bounds. Accident costs can be an order of magnitude higher for lines with 

hazardous material traffic, so the upper bound was increased accordingly. The minimum amount 

of double track is limited by the siding length and spacing, while track possession time has to be 

long enough to allow work to be done. The timber crosstie renewal threshold was limited by the 

crosstie LCC model. Using a reasonable range of values allows for a more complete picture of 

how sensitive the outputs are to each of the inputs (Eschenbach 1992). 
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Table 4.1: Sensitivity analysis categories and values 

Factor Lower 
bound 

Base  
value 

Upper  
bound 

Track characteristics    
Degrees of curvature  1 2 4 
Track class 1 3 5 
Timber crosstie spacing (inches1) 18 20 24 
Concrete crosstie spacing (inches1)  18 24 30 
Route length (miles2)  25 240 500 
Siding/crossover spacing (miles2)  1 10 20 
Percent double-track 0.19 0.5 1 
Reroute ratio 1 2 5 

Operating characteristics    
Trains per day 3 30 60 
Average train weight (tons3) 600 6,723 12,000 
Delay costs less fuel ($/train-hour) 100 950 1,900 
Running fuel cost ($/train-hour) 50 555 1,110 
Idle fuel cost ($/train-hour) 5 59 100 
Discount rate (%) 1 6 12 

Disruption inputs    
Track possession time (hours) 2 6.5 12 
Equipment set up and tear down time (hours) 0.25 0.5 1 
Timber crosstie costs ($/crosstie) 10 95 200 
Timber renewal threshold (crossties per mile2) 600 800 1,000 
Timber renewal speed (mph2) 0.05 0.22 0.40 
Timber average crosstie life (years) 3 30 60 
Concrete crosstie costs ($/crosstie) 20 200 400 
Concrete renewal cycle length (years) 30 45 55 
Concrete renewal speed (mph2) 0.05 0.16 0.3 
Timber accident rate (accident /per BTM4) 0.01 0.208 0.4 
Timber accident costs ($/accident) 30,000 218,850 1,000,000 
Concrete accident rate (accident /per BTM4) 0.01 0.152 0.4 
Concrete accident cost ($/accident) 30,000 363,811 1,000,000 
Slow order application length (miles2) 0.01 0.1 2 
Slow order application time (hours) 0.5 5 10 
Crossties replace to repair a slow order 1 2 5 
Timber tamping speed (mph2) 0.05 0.28 0.5 
Timber tamping cost ($/mile2) 600 18,031 35,000 
Timber tamping frequency (years) 0.5 2 8 
Concrete tamping speed (mph2) 0.05 0.28 0.5 
Concrete tamping cost ($/mile2) 600 6,341 35,000 
Concrete tamping frequency (years) 0.5 4 8 

1. 1 inch = 25.4 mm 
2. 1 mile = 1.61 km 
3. 1 short ton = 0.907 Mg 
4. 1 billion-ton-miles (BTM) = 1.46 billion-Mg-km 
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The arc elasticity method (Allen & Lerner 1934) was used to compare the relative influence 

of each factor on the ratio of the timber to concrete crosstie LCC (Figures 4.2 and 4.3). Elasticity 

measures how the output changes with respect to the inputs. If an input value is adjusted and the 

output changes in the same direction, then there is positive elasticity. Output changes that are 

opposite the input changes indicate negative elasticity. Arc elasticity uses percent change to 

normalize results and remove the impact of using different units (Allen & Lerner 1934; Lovett et 

al. 2013). Exact values for the sensitivity analysis are provided in Appendix C.  

 

Figure 4.2: Sensitivity analysis results for the route without an alternate route 
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The two scenarios share 15 of the top 20 factors. The remaining factors for the alternate 

scenario pertain to the alternate route. This implies that when an alternate route is available, its 

favorability can have a substantial impact on the selected crosstie type. Among the factors that 

are shared between the two scenarios is the delay cost, excluding fuel. This indicates that fuel 

costs, which are more difficult to determine than some of the other delay cost components, do 

not need to be as precise. Many of the shared factors that affect direct costs (e.g. crosstie spacing 

or tamping frequency) also affect delay costs. 

 

Figure 4.3: Sensitivity analysis results for the route with an alternate route 
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It was mentioned above that some in the industry think the concrete crosstie replacement 

cost value used by the RTA is too high. This analysis shows that even a relatively small change 

in the concrete crosstie cost will have a large impact on their favorability. This is likely because 

all concrete crosstie renewal costs are incurred in the first year and are not discounted, so care 

needs to be taken to ensure that these costs are accurately estimated. The high sensitivity of the 

discount rate will increase its impact for organizations with a high discount rate, further biasing 

the analysis toward timber crossties. Thus, organizations with different methods of computing 

the discount rate may come to different conclusions about preferred crosstie type even if all other 

factors are equal. 

4.4 Case study  

To show how the model handled various situations, a case study was conducted with a 

network of four lines (Figure 4.4). All lines are FRA Class 4 track with moderate curves and 

climate, matching the conditions used to develop the timber crosstie renewal cycle and 30-year 

 

Figure 4.4: Case study network with segment traffic levels in trains per day (TPD) and 
million gross tons per year (MGT) 
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crosstie life assumption (Railway Tie Association 2006b). The timber-crosstie track is tamped 

every year. Single-track lines have 10-mile siding spacing and double-track lines have full 

double track. Except where other route-specific values are given, the remaining characteristics 

are the same as the base case in Table 4.1. I assumed that there are no additional hours-of-service 

crew or yard delay costs. Output values are provided in Appendix D. 

By comparing the cost components for each route and crosstie alternative, the differences 

between each can be observed (Figure 4.5). On most of the routes, concrete crossties are more 

cost effective. For line B, timber-crosstie track may be more cost effective because there is an 

alternate route that can be used during maintenance and accident recovery. When part of line B is 

out of service, line C may be an attractive rerouting alternative because it has double track, while 

still allowing access to the customer at the midpoint of line B. On line C, the delay does not have 

as big an impact due to the second main track. One cost that appears to have virtually no impact 

 

Figure 4.5: Case study results divided by cost category 
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is the cost of slow orders, as they were found to be orders of magnitude lower than the other cost 

categories. This is one of the most computationally intensive costs to calculate, so it may not be 

justified to calculate specific data for this category.  

Accident costs are another category with unexpected results. While the increased accident 

cost for concrete crossties more than offsets their lower accident rate, the timber crossties still 

have higher derailment costs. This is due to delay, which is the same for both types but is 

incurred more frequently in the timber-crosstie scenario because of the higher accident rate. 

Another perspective can be gained by separating the costs by type (Figure 4.6). While delay 

costs do not typically comprise the majority of the total cost, in all cases, neglecting delay and 

network costs results in concrete crossties being more expensive than timber. When delay is 

considered, concrete crossties become substantially more competitive and even the low-cost 

alternative. On line B, considering delay costs makes concrete crossties slightly more 

 

Figure 4.6: Case study results divided by cost type 
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competitive and if re-crew or yard delay costs were considered, the balance might be changed. 

Line B is the only one to experience network delays because rerouting is not cost effective for 

Line C. This can be a critical consideration when explaining to operating personnel why 

maintenance or upgrades need to be performed.  

4.5 Conclusions 

This analysis shows that considering delay and network costs can strongly influence 

maintenance decisions. Maintenance and infrastructure planners can use the results of the 

sensitivity analysis to identify where data-collection efforts should be concentrated to ensure the 

accuracy of the life-cycle cost analysis. The model’s sensitivity to concrete crosstie cost indicates 

that if the RTA values are too high, then any analysis using them may suggest timber crossties 

are more favorable than they actually are. The sensitivity of the discount rate shows how 

organizations with different business objectives may draw different conclusions about what 

crosstie type is least expensive for a particular application.  

The case study shows how delay and network effects can influence the comparison between 

timber and concrete ties, and that even if direct accident risk is higher for a particular alternative, 

the option with the higher accident rate may have higher overall costs due to the increased 

frequency of network disruptions.  

4.6 Future work 

The next steps for refining this model are to improve its applicability and validity. The 

model framework can be adjusted to compare any set of maintenance options. This allows for a 

wider range of comparisons on all aspects of the track. Additional work also needs to be done on 
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gathering validation data and refining the component-specific accident rates. While much of the 

data used in this model is based on general industry data, a true validation will require data from 

actual railroad lines. This will allow the model to better represent the actual conditions of the 

railroad and be applicable to a wider range of scenarios.  
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CHAPTER 5.  

OPERATIONAL IMPACTS OF SLOW ORDERS ON RAIL LINES IN  
NORTH AMERICA 1 

5.1 Introduction 

Temporary speed restrictions are a substantial concern for major North American railroads. 

Commonly referred to as “slow orders,” these restrictions are applied to a segment of track when 

it is deemed unsuitable for trains to operate at the normal posted maximum speed. The main 

operating problem associated with slow orders is a reduction in average train speed, which is a 

metric of network fluidity reported by all major railroads in the United States (Association of 

American Railroads 2016). As discussed in Chapter 3, decreasing average train speed increases 

railway-operating costs at the network level by increasing the required number of railcars, 

locomotives, and crews required to move a given amount of traffic. It is difficult to allocate these 

network cost increases to individual temporary speed restrictions and use these as the basis for 

track maintenance allocation decisions. The analysis in Chapter 4 indicated that slow orders do 

not have enough impact on railroad operations to materially influence such decisions. Since slow 

orders are a substantial concern for North American railroads, further study was needed before 

definitive conclusions regarding the operational impact of slow orders could be reached. Factors 

that may affect slow order risk include the rate of occurrence, slow order length and duration, the 

cost of train delay, and potential compounding effects on subsequent trains and adjacent lines. In 

considering these factors, this chapter attempts to improve upon previous research on the cost 

and operational impact of slow orders. 

1 This chapter is modified from Lovett, A.H., C.T. Dick and C.P.L. Barkan. 2017. Predicting the Cost and 
Operational Impacts of Slow Orders on Rail Lines in North America. In: Proceedings of the International 
Association of Railway Operations Research (IAROR) 7th International Conference on Railway Operations 
Modelling and Analysis, Lille, France, April 2017. 
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Slow orders are imposed when track defects are detected by vehicles equipped with various 

inspection technologies or visually by train crews and track inspectors (Federal Railroad 

Administration 2014). The definition of a defect is dictated by the Federal Railroad 

Administration (FRA) Track Safety Standards or individual railroad track standards and 

recommended practices. Slow orders are also imposed after the track structure has been disturbed 

by certain track maintenance activities. Slow orders caused by track disturbance during 

maintenance typically require speeds to be reduced to 10-20 mph (16-32 km/h) for 

approximately 0.2 million gross tons (MGT) of traffic while the track structure stabilizes (Selig 

& Waters 1994). This process is routine and can be included in the cost of maintenance, so it will 

not be explored in detail in this chapter, although the model presented can be used for 

determining the associated train delay. Alternatively, slow orders prompted by track defects 

cannot be explicitly planned for and must be modeled to estimate how frequently they will occur. 

Due to the uncertainty of when defects will occur, it would be time and cost prohibitive to run 

simulations for every possible case. This is further complicated when considering slow orders in 

a maintenance planning optimization model that may not be able to access an external 

simulation. A complex slow order delay formulation may also substantially increase the 

optimization model solution time or make it difficult to solve for a true optimum.  

To aid infrastructure owners in determining the operational impacts of slow orders and 

optimize associated maintenance plans, I developed a new model to estimate the expected slow 

order cost on a given rail line segment. These estimates can be used to aid in planning the timing 

and location of maintenance, including application in an optimization model.  
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5.2 Operational impacts of traffic disruptions 

Stopping rail traffic or decreasing average train speeds reduces the capacity of a particular 

line. If rail traffic is low enough, it is possible that headways between trains will be long enough 

that delayed trains will not affect subsequent traffic. This is not always a safe assumption for 

North American railroads where flexible operations do not have fixed headways, and multiple 

trains can bunch together. In addition, the majority of the North American railway network is 

single track and capacity is less dependent on train headway than it is on the train running time 

on the single-track sections between passing sidings. Under these conditions, a proper 

representation of slow order operational impacts needs to consider the effect of cascading train 

delays. When the location of a planned slow order is known, a rail traffic simulator can be used 

to determine the operational impacts. For defect-caused slow orders, the exact number and 

location of slow orders are unknown. Therefore, a general model is necessary to evaluate a wide 

range of possible scenarios and estimate the resulting operational impact. 

5.2.1 Highway delay methods 

For delays to vehicular traffic on roadways, the Webster uniform delay model can be used to 

simulate the impact of stopped traffic (Roess et al. 2004). The basic theory behind this type of 

delay model is that the delay experienced by each train is the difference between when that train 

would be processed under normal operations and the time it is processed under the disrupted 

operations. This methodology is similar to the one Schafer & Barkan (2008) developed for 

determining accumulated train delay after track outages, except their approach uses discrete 

trains rather than a continuous approximation. These methodologies must be modified to include 

a period of diminished operations during the time slow orders are in effect. Graphically, the 

delay model can be depicted by plotting the cumulative number of trains processed over time for 
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both normal and disrupted operations and calculating the area between the curves (Figure 5.1). 

While this model is simple, it enables infrastructure owners to make quick calculations either 

directly or within a larger maintenance optimization framework. 

 

Figure 5.1: Slow order operations 

Although slow orders resulting from track defects may not result in stopped trains, they may 

be implemented after rail traffic is completely stopped for maintenance or repair. Accordingly, 

the model accounts for an initial period where the line is closed to rail traffic. The number of 

trains processed during and after a traffic disruption and the total time from the start of the 

disruption to the point where normal operations resume can be represented mathematically 

(Equations 5.1 – 5.2). 
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Where:  
qT – number of trains processed after a disruption begins 
t – time since a traffic disruption began 
TM – time after the disruption begins that the track is returned to service 
γSO – slow order train throughput adjustment factor 
NN – number of trains processed per hour under normal operations 
TE – slow order duration  
γZ – recovery operations train throughput adjustment factor  
TZ – time between disruption and resumption of normal operations  

During the slow order, reduced train speed decreases capacity and the track segment has a 

reduced train processing rate. For specific applications, operational experience should guide the 

adjustment factor calibration to obtain a realistic train-processing rate for specific maintenance 

circumstances. In the absence of specific operating details, this analysis assumes that the 

reduction factor will be the ratio of the normal and slow order travel times (Equations 5.3 – 5.5).  

γSO = TN/TSO 5.3 

TN = LR/VN 5.4 

TSO = min(TN + NSO((LSO + LT)(1/VSO - 1/VN) + TAD) , LR/VSO) 5.5 

Where: 
TN – time to traverse the route under normal operating conditions 
TSO – time to traverse the route with an average number of slow orders in place 
LR – length of the route 
VN – normal average train speed 
NSO – number of slow orders in place at a time on the route 
LSO – slow order length 
LT – average train length 
VSO – slow order speed 
TAD – additional time to accelerate and decelerate from and to the slow order speed 
Other variables as previously defined 

This method considers the condition where, as the number of slow orders increase, trains 

leaving one slow ordered section are unable to accelerate to the normal operating speed before 

having to slow down for the next slow order. Under this condition, the entire line is effectively 

subject to a slow order, although additional defects may develop without further operational 
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impact. Since trains must operate at the lowest maximum allowable speed for any part of the 

train, the slow order area of influence includes the length of both the slow order and an average 

train. In North America, where trains are regularly over one mile (1.6 km) in length, this means 

the amount of track affected by a slow order is much longer than just the slow ordered section. 

As with the period during the slow order, the recovery period needs a capacity adjustment 

factor that should also be based on experience and local operating practices. For the recovery 

operations period after the slow order is removed, I assumed that rail traffic will operate at 

maximum capacity until normal operations can resume. Since this maximum capacity will 

typically be somewhat higher than the normal operating traffic volume, the recovery adjustment 

factor will be calculated as the inverse of the normal capacity utilization (Equation 5.6). 

γZ = 1/RN 5.6 

Where: 
RN – proportion of the operating capacity in use under normal operations 
Other variables as previously defined 

 
Similar to the Webster uniform delay model, train delay can be computed from the area 

between the curves using geometry. In this case, to account for the period of diminished train 

processing rate during the slow order, the train delay is the difference in the area of triangles O-

Z-TB and TM-S-TB on the plot of cumulative trains processed over time (Figure 5.2). The 

resulting area O-Z-S-TM is a measure of cumulative train delay during the disruption and can be 

calculated as the area difference between two triangles (Equation 5.7 – 5.10). The derivation is 

shown in Appendix E. 
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TD = (TBQZ - (TB - TM)QS)/2 5.7 

TB = TM + TE(1 - γSO/γZ) 5.8 

QZ = NNTZ 5.9 

QS = γSONNTE 5.10 
Where: 

TD – cumulative train delay  
TB – intercept of the recovery operations line with the x-axis 
QZ – number of trains processed between the disruption and resumption of normal 

operations 
QS – number of trains processed during the slow order 
Other variables as previously defined 

This approach for estimating train delay due to a disruption of rail traffic on a line segment 

will enable planners to approximate train delay without developing detailed scenarios for a rail 

traffic simulator. Although this model is designed for predominantly single-track sections, it can 

also be used to consider other types of traffic disruptions, such as removal of a parallel main line 

for maintenance or accident recovery. To be applied in this manner, Equations 5.3 – 5.6 need to 

 

Figure 5.2: Slow order delay area  
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be altered since the adjustment factors for the reduced service and recovery operations will be 

more dependent on the type of infrastructure in place. Initial simulations may be necessary to 

determine the appropriate adjustment factors for use in multiple-track territory. If the route has 

large sections with multiple tracks, the model may become less applicable since there may be 

sufficient infrastructure to handle the traffic even if sections of track are removed from service. 

5.3 Train delay sensitivity  

In the discussion of the model formulation, it was noted that several parameters related to 

capacity utilization and train-processing rate during the slow order might need to be set based on 

experience. The sensitivity of the model to these parameters will determine how important it is to 

obtain precise estimates of their values so as not to introduce excess uncertainty into the 

calculated train delay. Since the model consists of several levels of equations, it is not 

immediately obvious what the effect of changing a single value will be. To determine which 

parameters have the greatest influence on the model output and how train delay varies based on 

the selected inputs; both single- and two-factor sensitivity analyses were performed. 

5.3.1 Single-factor sensitivity 

The sensitivity of the model to each factor was examined over a range of typical input 

values (Table 5.1). The arc elasticity, which controls for the relative magnitude of each input 

(Allen & Lerner 1934), was calculated for each factor, using the upper and lower bounds in 

Table 5.1 (Figure 5.3, exact values are provided in Appendix F). For each factor, the average of 

the bounds was taken as the base condition.  
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Table 5.1: Arc elasticity bounds 

Parameter Lower bound Upper bound 
Track outage time, TM (hours)  0  24 
Slow order duration, TE (hours)  0  240 
Route length, LR (mile)  21  2001 
Individual slow order length, LSO (mile)  0.011  11 
Average train length, LT (mile)  0.51  1.51  
Normal train velocity, VN (mph)  301  801 
Slow order train velocity, VSO (mph)  101  301 
Number of slow orders, NSO  0  6 
Additional acceleration and deceleration time TAD (hours)  0.1  0.5 
Trains per hour, NN   0.1  2 
Normal capacity utilization, RN   0.4  0.9 
1. 1 mile = 1.61 km   

 

 

Figure 5.3: Arc elasticity of the delay model 

All the parameters tested had the expected elasticity directionality, meaning an increase had 

the expected effect on the level of train delay. For example, increasing the normal capacity 
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utilization, RN, which the model is most sensitive to, results in an increased level of train delay, 

however, the amount of elasticity is not the same for both bounds. This is intuitively correct 

because if a route is being operated near capacity, there will be less flexibility to recover from a 

disruption. High levels of excess capacity, indicating low utilization, may not result in substantial 

levels of cascading delay allowing for a rapid recovery to normal operations. The average slow 

order duration, TE, has a similar effect because the longer the slow order is in place, the more 

trains will be affected and the more time is required for recovery. The slow-order speed, VSO, 

and route length, LR, are the two parameters where an increase results in less train delay. For 

slow-order speed, this is because higher slow-order speeds have less impact on the train-

processing rate so fewer trains will be affected. Additionally, for a constant number of slow 

orders, longer routes will result in a lower proportion of track affected by slow orders. The 

normal train-processing rate, NN, is another anomaly since increasing or decreasing the 

processing rate yields an arc elasticity of one. This is because the train delay is linearly related to 

the processing rate as shown in Equations 5.9 and 5.10.  

5.3.2 Two-factor interactions 

Since many of the parameters interact, it is beneficial to see how changing two affects the 

amount of train delay. In the following illustrative cases, the factors that are not varied remain at 

the base values from the single-factor sensitivity analysis. 

Since the model was most sensitive to track capacity utilization, RN, and slow order 

duration, TE, they were varied first (Figure 5.4). For a given capacity utilization, the train delay 

increases disproportionately to slow order duration. As the slow order duration increases, the 

additional train delay between RN curves also increases, showing the necessity of keeping slow 

order durations low on highly utilized routes (where RN will be highest). While this result is 
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expected based on intuition and Equations 5.6 – 5.9, quantifying the effects allow for an 

objective comparison of the costs to operate track at different utilization levels.  

Since the normal operating speed, VN, was the next most sensitive parameter of interest and 

has direct interactions with the slow-order speed, VSO, they were also varied (Figure 5.5). All of 

the curves exhibit a discontinuity where the model shifts from having the entire line effectively 

slow ordered to considering each slow order independently. This occurs because the difference 

between the normal and slow-ordered travel times is so low that the effect of just a few slow 

orders will exceed the travel time difference. The slope of the curves after the discontinuity are 

shallower because additional factors are affecting the travel time when computing the slow order 

adjustment factor. This relationship may change if the acceleration and deceleration time is 

changed to be a function of the normal and slow order speeds.  

 

Figure 5.4: Effect of operating capacity and slow order duration on train delay 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 50 100 150 200

Tr
ai

n 
de

la
y 

(tr
ai

n-
ho

ur
s)

Slow order duration (hours)

RN = 0.9
RN = 0.7
RN = 0.5
RN = 0.3
RN = 0.1

RN = 0.9 
RN = 0.7 
RN = 0.5 
RN = 0.3 
RN = 0.1 

91



Since routes with high utilization typically have higher operating speeds, the normal speed 

and capacity utilization, VN and RN, were also varied together (Figure 5.6). As the normal 

capacity utilization approaches one, the train delay begins to asymptote. Using this delay model, 

if the route is already being operated at full capacity before a disruption, the route will not be 

able to recover to normal operations after a disruption without annulling, combining, or rerouting 

trains. At lower normal capacity utilization levels, the curves are almost linear until a RN value of 

about 0.6 is reached. Above that level of capacity utilization, routes with higher normal operating 

speeds will begin to asymptote more quickly due to the difference in normal and slow-order 

speeds. This, and the results in Figure 5.4, validates the industry practice of keeping track 

utilization below 75-percent to ensure adequate recovery capacity (American Railway 

Engineering and Maintenance-of-Way Association 2012a). 

 

Figure 5.5: Effect of normal operating and slow order speeds on train delay 
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5.4 Application to slow orders 

Risk is comprised of both likelihood and consequence (Ang & Tang 2007). While Section 

5.3 detailed a model of the train delay consequence of slow orders, this section discusses how the 

likelihood of slow order occurrence affects train delay. Probabilistic models can be used to 

determine the average annual defect rate per mile. If there are few enough defects that there is a 

very low probability of more than one slow order occurring at one time on the route, then the 

delay associated with one slow order can be computed (NSO = 1) and multiplied by the expected 

number of slow orders on the route during the year. As the defect rate increases, it is more likely 

that two or more defects, and accompanying slow orders, will be in place concurrently. While the 

probability of a specific number of defects occurring simultaneously can be calculated using a 

Poisson distribution, the amount of time traffic is disrupted, TZ, will vary based on the number of 

defects. The difference in disruption time makes it difficult to make comparisons for the total 

amount of slow-order-induced delay over a given year. Since slow orders are only imposed after 

 

Figure 5.6: Effect of normal operating speed and capacity utilization 
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a defect is identified during an inspection, this can be simplified by dividing the year into 

inspection intervals. For this model to be valid, the inspection interval must be at least as long as 

the longest recovery time, T’Z, to ensure traffic has recovered before new slow orders are 

applied. The longest recovery time will be associated with the condition where the entire line is 

effectively slow ordered and can be found by calculating Equation 5.2 with the number of slow 

orders in place (Equation 5.11). 
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Where:  
N’SO – minimum number of slow orders resulting in the entire line being effectively slow 

ordered 
Other variables as previously defined 

The expected amount of train delay can then be calculated (Equations 5.12 – 5.13).  
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𝑁𝑁�𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑆𝑆𝑆𝑆𝐿𝐿𝑅𝑅𝑇𝑇𝐼𝐼 5.13 

Where:  
T’D – average annual slow order delay 
T’Z – longest slow order disruption time  
RSO – average annual number of slow orders per mile  
N�SO – average annual number of slow orders on the route after an inspection based on the 

Poisson distribution 
TI – rail flaw inspection interval 
Other variables as previously defined 

A computationally simpler approach is to calculate the train delay using the equations in 

Section 5.2 and the expected number of slow orders that will have developed on the line between 
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inspections, N�SO. The single-inspection delay would be multiplied by the number of inspections 

during the year to get the annual slow order delay. These two methods, termed the weighted 

average delay and average slow order methods respectively, will be compared using an 

adaptation of the Orringer (1990) rail defect model to see the relative differences in expected 

levels of delay.  

The Orringer (1990) rail defect model was modified to predict the expected number of 

detected defects per mile based on the accumulated tonnage on the rail, inspection interval, and 

historical ratio of service to detected defects (Equation 5.14). Service defects are those that cause 

the rail to break, while detected defects are found through rail flaw inspections, such as 

ultrasonic testing. Only detected defects will be addressed here because service defects require 

more extensive remedial actions (Federal Railroad Administration 2014). While the model is 

dated, it is still used by the FRA to recommend rail flaw detection intervals (Volpe Center 2014), 

and the parameter values are the most recent that could be found in the literature. It is also 

similar to the approach of Liu et al. (2014) and Liu & Dick (2016) for estimating the cost of rail 

defects. New models are in development that could be adapted for application here  

(Davis et al. 2016).  
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Where:  
RSO,R – annual detected rail defect rate per mile 
NRail – number of rail sections per mile  
y – years since capital maintenance was performed 
NA – annual tonnage (MGT) 
ΔN – average tonnage between rail inspections (MGT) 
θ – minimum inspection interval (10 MGT (Orringer 1990)) 
λ – proportionality factor (0.014 (Orringer 1990)) 
αR – Weibull shape factor (3.1 (Davis et al. 1987; Liu et al. 2014)) 
βR – Weibull scale factor (2150 (Davis et al. 1987; Liu et al. 2014)) 
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Orringer’s original formulation was modified to use the cumulative distribution function, 

rather than a probability density function, making the model more accurate and computationally 

simpler. It was also assumed that the defects would develop uniformly through the year rather 

than weight the defects more heavily at the end of the year. This simplification was made 

because Liu et al. (2014) showed that weighting the number of defects more heavily at year’s 

end does not make a material difference in defect costs.  

The train delay model described in Equations 5.1 – 5.14 were applied to a hypothetical route 

with length, LR, of 100 miles (160 km), normal operating speed, VN, of 40 mph (64 km/h), 

handling 30 MGT of freight traffic annually, NA. This traffic level equates to approximately one 

freight train every two hours, NN (Association of American Railroads 2015), with train length, 

LT, of one mile (1.6 km). The normal capacity utilization, RN, is taken as 0.65, which provides 

sufficient excess capacity to recover from maintenance and other disruptions  

(Cambridge Systematics 2007). 

When a defect is detected, a slow order is implemented with speed, VS, of 30 mph (48 

km/h), length, LSO, of 0.1 miles (0.16 km), and duration, TE, of 24 hours. The speed reduction is 

a common FRA remedial action for moderate sized internal rail defects. The defects also have to 

be re-tested every 24 hours while the defect remains in place (Federal Railroad Administration 

2014), so it was assumed that on average, the slow orders would remain in place that long. 

Although it is common practice in North America to replace approximately 20-foot (6 m) 

sections of rail surrounding the defect (American Railway Engineering and Maintenance-of-Way 

Association 2012b), temporary track condition information in North America is communicated 

in tenth-of-a-mile increments, so that is the smallest practical length of track a slow order can be 

applied over (Federal Railroad Administration 2005). The direct cost to repair a rail defect was 
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assumed to be $859 (Liu et al. 2014), and the rail inspection interval, ΔN, was taken as 15 MGT, 

or two inspections per year. The cost of train delay was based on the results in Chapter 3 for 

manifest traffic where delay would not result in lost shipments and was taken as $950 per train 

hour. For the parameters of this case study, it was assumed that all trains operate at the maximum 

speed, but average operating speeds could also be used.  

The three methods of calculating the total annual slow order delay mentioned above will be 

illustrated. Five years after new rail is installed, the defect rate, RSO, is expected to be 

approximately 0.05 defects/mile-year (0.03 defects/km-year). This would equate to five slow 

orders occurring throughout the year on the 100-mile (160-km) route, or an average of 2.5 slow 

orders after each inspection. Using the assumption that the inspections for different parts of the 

route would be performed on different days, we could assume that all five slow orders occurred 

independently. Using the equations in Section 5.2, the delay for a single slow order is 12.5 train-

hours per slow order or 62.3 train-hours per year. Using Equations 5.2 – 5.5, 5.11, and 5.13, we 

can compute the expected number of slow orders on the line, N�SO, as 2.5. Using Equation 5.12, 

the weighted average delay is 29.8 train hours per inspection interval for a total train delay of 

60.5 train-hours per year. This is less than ten percent different from the 65 train-hours of delay 

per year for the average slow order method. Although the first method is more conservative than 

the weighted average method, it does not allow an analyst to consider the interactions between 

individual slow orders, so it will not be examined further.  

Using Equations 5.1 – 5.11 and 5.14, the slow order rate and the expected direct and delay 

slow order costs can be calculated for the period over which rail could be expected to be in 

service (Figure 5.7). Initially, the direct costs are much lower than the delay costs for either delay 

computation approach. This is largely due to the difference in delay cost versus the cost to repair 
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a single defect. Due to the overlapping influence of the slow orders, eventually the delay costs 

plateau, but the direct costs continue to rise because each defect must be repaired, and the direct 

costs eventually exceed the delay costs. Assuming traffic levels and train delay costs are 

constant, reducing the maintenance response or recovery time for a given defect rate will reduce 

the total time traffic is disrupted, and thus the amount of train delay caused by the slow order.  

The two methods for calculating train delay result in similar results. The exception to this is 

around the transition from considering each slow order independently and slow ordering the 

entire route. The weighted average cost curve has a more gradual growth because even at the 

higher defect rates, there is a relatively high probability of having a single slow order at a time. 

Eventually, both methods converge to the plateau delay cost because there is a low probability of 

having few enough slow orders in place to consider them independently.  

 

Figure 5.7: Comparison between direct and delay slow order costs using both expected 
number of slow orders and weighted average of slow orders 
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By combining the slow order direct cost with one of the delay cost curves, maintenance 

planners can see the total slow order costs over time and how adjusting maintenance timing 

changes the total slow order cost. Performing capital maintenance earlier will reduce the slow 

order costs but has drawbacks in terms of asset utilization and increases in maintenance 

frequency. Infrastructure owners can balance the costs of disruptions over time with the cost to 

perform maintenance that will prevent slow orders and reactive defect repair, sometimes referred 

to as spot maintenance. If spot maintenance is made more efficient, effective, and timely, it can 

reduce the disruption-caused train delay costs in addition to direct maintenance cost because they 

will not need to be performed as frequently. 

5.5 Conclusions and future work 

In this chapter, I presented a new closed-form model for determining the train delay effects 

of traffic disruptions. This model is intended to be used by infrastructure managers for 

maintenance planning. The simplicity of the model will make it more accessible to planners and 

easier to apply within a larger maintenance planning optimization framework. The model also 

helps quantify the effects of how the route is operated before, during, and after a disruption. If 

the line is usually operated near capacity, it will take much longer to recover from a disruption, 

and the train delay will be much higher than if there is ample excess capacity. Additionally, if the 

line is normally operated at capacity, operations may not be able to recover without reducing the 

number of trains through annulments or rerouting. This is especially true if the slow order 

duration is long or the normal operating speeds are high. Also, when the difference between 

normal and slow order speed is low, it does not take many defects to overcome the travel time 

difference, resulting in the entire line being slow ordered.  

99



Quantifying the impact of slow-order caused train delay and the nature of the operational 

effects of slow orders provides insight on how to reduce the overall cost of the rail system by 

factoring these effects into a capital maintenance plan. The two methods to calculate average 

delay provide similar results, but the simpler approach using the expected number of slow orders 

is more conservative during the transition between treating slow orders independently and 

effectively having a slow order over the entire line. This could be a problem when planning 

maintenance in this time frame, so the disparity should be investigated to see if it makes a 

substantial difference in the cost for a particular application. If the slow order delay model is 

applied to an optimization model, the average slow order method is beneficial due to its lower 

computational complexity. Both methods also demonstrate the phenomenon where slow order 

costs plateau due to overlapping slow order areas of influence. Maintenance improvements will 

be most cost effective if they enable the route to avoid the plateau region, through either 

improved response time or reducing the number of defects. Cost analyses will help determine 

which routes would benefit from maintenance improvements and determine cutoffs for where 

preventative maintenance should be performed based on risk tolerances. Another way to reduce 

the delay effects of service disruptions is to add capacity to the line. While many infrastructure 

owners treat capacity expansion as a last resort, quantification of train delay accumulation can 

help determine where that may be more cost-effective than investments in additional 

maintenance crews or equipment because traffic will still be able to flow freely.  

Future research will explore how train delay and defect probability can be incorporated into 

an optimization model for scheduling track maintenance over a network. This will require 

probabilistic models for approximating the failure rate associated with other track components 

such as crossties and ballast. Specifically with delay modeling, additional work can expand our 
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understanding of the slow order and recovery adjustment factor calibration to make them more 

general and allow for direct use on double track routes or in situations where the normal traffic 

can be rerouted or combined to mitigate the impact of a disruption. 
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CHAPTER 6.  

PREDICTING THE OCCURRENCE AND COST OF TEMPORARY SPEED 
RESTRICTIONS ON NORTH AMERICAN FREIGHT LINES 1 

6.1 Introduction 

Average train speed of the major North American railroads are a key metric of network 

fluidity and are reported to Association of American Railroads (2016) on a weekly basis. Lower 

average train speeds increase the number of crews, locomotives, and railcars required to move a 

given volume of freight and increase other associated operating costs. Given the impact of 

slowing trains, it is not surprising that temporary speed restrictions, or “slow orders,” are a 

strategic concern. It is difficult to isolate the costs specific to slow orders. The analysis in 

Chapter 4 is among the first attempts to quantify the expected impact of slow orders or other 

disruptions. That analysis found that slow orders related to timber crossties do not have sufficient 

impact on railroad operations to materially influence track maintenance and operating decisions. 

This lack of quantitative support for industry practice indicated that further research was required 

to determine how slow orders affect network operations. One way to estimate future impacts is 

through risk analysis, which considers both the probability, or frequency, and the impact of an 

event (Ang & Tang 2007). This chapter will build on the operational impact work in Chapter 5 

by estimating the rate of slow order occurrence related to rail, crosstie, and ballast defects. 

Slow orders are applied to a track segment when it is found to be unsuitable for operation at 

the posted maximum allowable speed (MAS). These conditions arise after the track structure has 

1 This chapter is modified from Lovett, A.H., C.T. Dick and C.P.L. Barkan. 2017 (in press). Predicting the 
occurrence and cost of temporary speed restrictions on North American freight lines. In: Proceedings of the 
International Heavy Haul Conference, Cape Town, South Africa, September 2017. 
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been disturbed for maintenance or when track defects are detected. Slow orders caused by track 

disturbance typically require speeds to be reduced to 10-20 mph (16-32 km/h) for approximately 

0.2 million gross tons (MGT) of traffic while the track stabilizes (Selig & Waters 1994). This 

process is a routine part of maintenance activities such as tamping and crosstie renewal and can 

be incorporated into the cost of these activities during the maintenance planning process. 

Therefore, slow orders for track disturbed by routine maintenance activities are not considered in 

detail in this chapter.  

Defect-caused slow orders are unexpected events that are difficult to predict and explicitly 

consider in maintenance planning. Various analytical and probabilistic models can estimate the 

frequency of track defects that require the railroad to impose a slow order. In this chapter, the 

rate of defects resulting in slow orders is termed the “slow order rate.” The estimated average 

slow order rate on a specific track segment can be used to determine the expected cost of slow 

orders and unplanned maintenance due to track defects in a given year. Understanding how the 

slow order rates change over time, and the factors that influence them, will also give insight into 

how capital maintenance timing affects the total cost of track ownership and operation. In this 

chapter, I examine how to predict the slow order rate for three major track components: rail, 

crossties, and ballast, and apply it to capital track maintenance planning. Ballast defects include 

alignment and surface defects, and maintenance activities to repair these defects are classified as 

ballast maintenance. 

Although railroads have their own maintenance standards that establish criteria for when to 

impose slow orders, they are also subject to government-defined standards intended to ensure a 

minimum level of safe train operations. Since the United States Federal Railroad Administration 

(FRA) Track Safety Standards (TSS) are typically the same as the Canadian regulations and 
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apply to more miles of track, they will be taken as representative of typical North American 

operations (Transport Canada 2011; Federal Railroad Administration 2014). Generally, the track 

geometry tolerances in the TSS vary by track class with each having a prescribed MAS. Internal 

rail defects are the exception because the type and size of the defect, rather than the operating 

speed, determine the remedial action. As the track class, and associated MAS, increases the 

allowable tolerances decrease. When the measured in-service track geometry exceeds tolerances, 

prescribed remedial actions are required on that track segment until maintenance to correct the 

defect is completed (Federal Railroad Administration 2014). 

6.2 Slow order costs 

Although this chapter will focus on the slow order occurrence rate, it is helpful to 

understand the costs associated with slow orders since both rate and consequence are required to 

estimate risk. As with most disruptions to rail traffic, slow orders result in both direct and 

indirect costs that vary with the nature of the defect as well as maintenance and  

operational factors.  

6.2.1 Direct maintenance costs 

Direct costs are those associated with performing localized maintenance to repair the defect 

and remove the slow order, including labor, materials, and equipment. This localized, or “spot,” 

maintenance is typically not intended to return the track to a perfect state. Spot maintenance is 

also relatively inefficient due to its small scale, short work windows, and reactive nature 

(Shimatake 1997; Esveld 2001; Zoeteman 2004; Burns & Franke 2005; Grimes & Barkan 2006; 

Lovett et al. 2015).  
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Direct slow order costs follow a traditional risk formulation since the expected costs are the 

defect rate times the cost per defect. These costs are largely dependent on the track component 

associated with the defect since different types of remedial action are required for each 

component. For internal rail defects, a new section of rail, approximately 20 feet (6 m) long, is 

welded in to replace the section containing the defect (American Railway Engineering and 

Maintenance-of-Way Association 2012). Ballast-related defects are typically corrected by 

localized tamping. Other components, such as crossties, require local replacement of a sufficient 

number of the defective units to meet the required specifications (Riley & Strong 2003; Federal 

Railroad Administration 2014). Railroads usually track the cost of these activities and can apply 

them in maintenance planning. 

6.2.2 Indirect costs  

Train delay is the primary indirect cost for slow orders. Chapter 5 presented a closed-form 

model for estimating train delay associated with a given number of slow orders and operating 

conditions. Since this formulation includes the slow order rate, risk is effectively the output. It 

also considers the interaction between slow orders, the effects of which will be discussed further 

in Section 6.4. After the amount of train delay is computed, it must be multiplied by a train delay 

cost that considers the operational characteristics of traffic operating on the line like those 

developed in Chapter 3.  

6.3 Prediction models 

To predict the approximate number of slow orders on a track segment in a given year, 

probabilistic models were used to determine the average annual defect rate per mile. While 

interactions between track components may increase the local occurrence of defects once one 
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component fails, no models were found that consider these interactions. Therefore, I treat each of 

the major track components independently.  

6.3.1 Rail slow order prediction 

There are a variety of rail defect types identified by the FRA, each with one or more 

possible remedial actions based on defect severity (Federal Railroad Administration 2014). This 

analysis will focus on transverse fissures as most rail defects are given this categorization until 

they are removed from service for further examination (Sperry Rail Service 1999). The detected 

rail defect model developed in Chapter 5, based on Orringer (1990), can be applied here. The 

Orringer model focuses on detail fractures, a subset of transverse fissures, because they were the 

most frequent cause of rail breaks when the analysis was performed (Liu et al. 2014), however, 

the concept can be applied to any type of rail defect. Only detected defects will be addressed here 

because service defects, or “service failures”, may require more extensive remedial actions 

including halting service on the line (Federal Railroad Administration 2014). For convenience, 

Equation 5.14 is repeated here (Equation 6.1).  

𝑅𝑅𝑆𝑆𝑆𝑆,𝑅𝑅(𝑦𝑦𝑅𝑅) = 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑒𝑒
−�𝑦𝑦𝑅𝑅𝑁𝑁𝐴𝐴𝛽𝛽𝑅𝑅

�
𝛼𝛼𝑅𝑅

− 𝑒𝑒−�
(𝑦𝑦𝑅𝑅+1)𝑁𝑁𝐴𝐴 

𝛽𝛽𝑅𝑅
�
𝛼𝛼𝑅𝑅

� 1 + 𝜆𝜆(𝛥𝛥𝑁𝑁 − 𝜃𝜃)�  6.1 

Where: 
RSO,R – annual detected rail defect rate per mile 
NRail – number of rail sections per mile (273 (Orringer 1990)) 
yR – years since rail replacement was performed 
NA – annual tonnage (MGT) 
ΔN – average tonnage between rail inspections (MGT) 
θ – minimum inspection interval (10 MGT (Orringer 1990)) 
λ – proportionality factor (0.014 (Orringer 1990)) 
αR – Weibull shape factor (3.1 (Davis et al. 1987; Liu et al. 2014)) 
βR – Weibull scale factor (2150 (Davis et al. 1987; Liu et al. 2014)).  
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As mentioned in Chapter 5, this model is dated, but it is still used by the FRA to determine 

rail flaw inspection intervals (Volpe Center 2014). New research is ongoing to develop new rail 

defect prediction models that can be used for this purpose (Davis et al. 2016).  

6.3.2 Crosstie slow order prediction 

The FRA TSS require a minimum number of crossties in good condition within each 39-foot 

section of track based on the MAS and track curvature (Federal Railroad Administration 2014). 

The Forest Service Products Curve (FSPC) can be used to determine the failure probability of 

timber crossties as a function of the ratio of crosstie age to average life (MacLean 1957), but this 

only gives the probability of failure for crossties of a single age. The nature of crosstie renewals 

is that only one-quarter to one-third are replaced during each cycle, leading to multiple cohorts of 

varying ages. The model presented in Chapter 4 provides a process for determining the 

probability of an FRA TSS defect occurring over a 39-foot section of track given a certain 

amount of time has elapsed since a crosstie renewal and is repeated here for convenience 

(Equation 6.2 – 6.4).  

𝑅𝑅𝑆𝑆𝑆𝑆,𝑇𝑇(𝑦𝑦𝑇𝑇) = �𝑃𝑃39(𝑦𝑦𝑇𝑇 + 1) − 𝑃𝑃39(𝑦𝑦𝑇𝑇)� ×
5280
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 6.2 

𝑃𝑃39(𝑦𝑦) = 1 −���
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𝑖𝑖𝑗𝑗
� 𝑝𝑝𝑗𝑗
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𝑦𝑦 + (𝑗𝑗 − 1)𝑐𝑐
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Where:  
RSO,T – annual number of crosstie related slow orders per mile 
𝑦𝑦𝑇𝑇 – number of years since crosstie renewal 
F – set of failed crosstie combinations not resulting in an FRA TSS defect in a given 39-

foot (12-m) section of track 
k – number of crosstie age groups 
nj – number of crossties in age group j 
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ij – number of failed crossties in age group j 
c – time between capital crosstie replacements 
A – average crosstie life 
αT – crosstie Weibull shape factor (4.56) 
βT – crosstie Weibull scale factor (1.02) 
Other variables as previously defined  

Equation 6.4 represents the Weibull distribution approximation of the FSPC used as the 

occurrence probability for the Binomial distribution in Equation 6.3.  

Since the original FSPC found failure rates based on the age of a crosstie relative to the 

average life, the shape and scale factors in Equation 6.4 do not need to consider the operating 

conditions directly because they can be factored into the average crosstie life. This model 

assumes regular replacement cycles where a set number are replaced per mile in each renewal. If 

the replacement cycle or number of crossties replaced is not constant, Equation 6.4 will need to 

be modified to consider the initial age of each cohort at the beginning of the analysis period. 

6.3.3 Ballast slow order prediction 

Similar to rail defects, there are a variety of defect types associated with the track geometry 

surface and alignment, but all track geometry defects attributable to ballast defects require the 

same general types of remedial actions and corrective maintenance (Federal Railroad 

Administration 2014). Previous research in this area has focused on the standard deviation of 

various alignment measurements (Shimatake 1997; Oh et al. 2006; Chang et al. 2010), however, 

North American track geometry tolerances are based on absolute deviations (Federal Railroad 

Administration 2014), so a new model was developed based on the methodology of Alemazkoor 

et al. (2015) (Equations 6.5 – 6.7). The data set used was originally released for determining 

defect progression and did not explicitly include maintenance data (INFORMS Railway 

Applications Section 2015). Maintenance timing was assumed to have occurred if an initial 
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inspection found a FRA TSS defect, but no defects were detected on the next inspection. The 

data were then fit to a Weibull distribution.  

𝑅𝑅𝑆𝑆𝑆𝑆,𝐵𝐵(𝑦𝑦𝐵𝐵) = �𝑃𝑃200(𝑦𝑦𝐵𝐵 + 1)� ×
5280
200

 6.5 

𝑃𝑃200(𝑦𝑦) = 1 − exp �− �
𝑦𝑦 ∗ 365
𝛽𝛽𝐵𝐵

�
𝛼𝛼𝐵𝐵
� 6.6 

𝛽𝛽𝐵𝐵 = exp(𝜱𝜱𝜱𝜱) 6.7 

Where: 
RSO,B – annual number of ballast-related slow orders per mile 
P200(y) – probability of a given 200-foot section of track developing one or more surface 

or alignment related defects at time y 
𝑦𝑦𝐵𝐵 – years since undercutting was performed 
αB – ballast shape factor (1.088) 
βB – ballast scale factor (8,862) 
Φ – row vector of coefficients 
X – column vector of explanatory variables. 

Since there is no defined average life of a ballast defect, as is the case in the FSPC, the scale 

factor will need to vary based on the operating conditions. This can be done by having the scale 

factor be a function of the specific explanatory variables that are most significant for a particular 

route or section of track (Mishalani & Madanat 2002; Kleinbaum & Klein 2012; Alemazkoor et 

al. 2015). Since the dataset was not designed specifically for this analysis, only the time since 

capital maintenance was last performed was used to determine the slow order rate. Including 

some other explanatory variables, such as track class and tonnage, resulted in slightly more 

accurate predictions, but I determined a simpler model outweighed the marginal increase in 

accuracy (See Appendix G for further details). If a more detailed dataset is available, other 

explanatory variables can be included. Unlike rail and crossties, typical ballast maintenance to 

eliminate track geometry defects does not involve replacing the ballast section outright with new 

material. Since the ballast is not truly “new,” it is assumed that ballast defects will return each 
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subsequent year that capital maintenance (undercutting) is not performed. This means that all 

expected ballast defects since capital maintenance was performed need to be considered in a 

cumulative manner, rather than just those occurring for the first time in a given year as in the rail 

and crosstie models.  

6.4  Case study 

The models discussed in Section 6.3 were applied to a hypothetical 100-mile (160 km) 

section of 40 mph (64 km/h) track (FRA Class 3) handling 30 MGT annually. Based on industry 

averages, this tonnage level equates to approximately 12 trains per day (Association of American 

Railroads 2015). Average train length is assumed to be one mile. Rail defect slow orders result in 

a speed reduction to 30 mph (48 km/h), while crosstie and ballast-related slow orders result in 25 

mph (40 km/h) maximum speeds (Federal Railroad Administration 2014). This case study 

assumes all trains operate at the MAS but average operating speeds could also be used. Rail 

defect inspections occur every 15 MGT and on average rail defects cost $895 to repair (Liu et al. 

2014). As in Chapter 4, crossties have a 20-inch (51-cm) spacing on-center, 30-year average life, 

and a nine-year renewal cycle. Crosstie defects are corrected by replacing three crossties for a 

total cost of $285 (Zeta-Tech Associates Inc. 2006). Ballast slow orders cost $1,200 to repair 

based on an industry source for the cost of spot tamping. Inspections for crossties and ballast 

occur once per week (Federal Railroad Administration 2014). All slow orders are applied on the 

0.1-mile (0.16-km) section of track surrounding the defect. The duration of rail, crosstie, and 

ballast slow orders are assumed to be one, four, and three days, respectively. As in previous 

chapters, I assume that normal operations use 65% of a line’s capacity (Cambridge Systematics 

2007), accelerating and decelerating into and out of slow orders adds an additional 15 minutes to 

the run time, and train delay costs $950 per train-hour.  
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6.4.1 Direct, delay, and total cost comparisons 

The defect rates for each component under the above case study parameters were calculated 

over a range of conditions expected during the duration of a typical maintenance cycle for that 

component (Figure 6.1). The “defect repair” curves correspond to the equations in Section 6.3. 

These curves can be compared to the “no repair” curves that show what the theoretical defect 

rate would be if the defects were not repaired. The ballast curve is the exception since I assumed 

the defect rate will include both the new defects that develop during the year and all the 

previously maintained ballast defects that will reoccur that year. If the ballast defects were not 

maintained, the number of defects would increase at approximately the same rate but the severity 

would increase. Realistically, components degrade until an acute failure, such as a rail break, 

occurs so the “no repair” situations will not be examined further.  

Comparing the component specific defect repair curves reveals that they each perform 

differently. Rail defects exhibit a gradual growth that stays relatively low compared to the other 

components. Crossties perform quite differently; there are almost no defects during the first 12 

 

Figure 6.1: Slow order defect rate for the major track components with and  
without spot maintenance 
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years after their renewal followed by a steep increase thereafter. This is because Class 3 track 

requires eight crossties per 39 feet (12 m) to be free of defects (Federal Railroad Administration 

2014). For a track defect to develop, almost all the crossties installed before the most recent 

renewal would need to fail. Once the crossties from the two most recent renewals have a larger 

probability of failure, the compounded failure probability increases rapidly. This also explains 

why the analysis in Chapter 4 found that crosstie slow order risk would not materially influence 

maintenance decisions because I only calculated slow order costs until the ninth year after a 

crosstie renewal.  

Further insight is gained by comparing the total, direct, and delay slow order costs for each 

component (Figures 6.2 – 6.4). Each plot shows the region where the defect rate increases until 

there are enough defects that the entire route is effectively subject to speed restrictions, as 

evidenced by the plateau in the delay cost curve. As discussed in Chapter 5, the shape of the 

delay cost curve, including the plateau location, changes based on the traffic, train performance, 

and slow order characteristics. 

 

Figure 6.2: Annual cost of rail-related slow orders vs. years since capital maintenance 
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For rail (Figure 6.2), the train delay costs are on the same order of magnitude compared to 

the direct costs since the slow order duration is short and the inspections occur only twice per 

year. The other extreme is observed for crossties (Figure 6.3) and ballast (Figure 6.4) where the 

accumulated delay renders the direct costs of repair almost negligible. An increase in delay costs 

would be expected since the crosstie slow orders are left in place longer. This disproportionate 

increase is in line with the analysis in Chapter 5, but a key difference is the number of 

 

Figure 6.3: Annual cost of crosstie-related slow orders vs. years since capital 
maintenance 

 

 
Figure 6.4: Annual cost of ballast-related slow orders vs. years since capital maintenance 
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inspections taking place during the year. The rail slow orders are concentrated after only two 

inspections and are only in place for 24 hours, so there is a long period of time when no slow 

orders are in effect. For crossties and ballast, a new set of slow orders are being placed every 

week, so even though the delay associated with a single slow order differs by only one order of 

magnitude, the delays are incurred much more often.  

6.4.2 Comparison of alternate maintenance timings 

Although it is interesting to look at how the slow order costs change over time, a primary 

benefit of these curves is to aid in capital maintenance planning. In Figures 6.2 – 6.4, the area 

under the total cost curve represents the slow order cost for each component in a given planning 

period. Performing capital maintenance during the planning period will reduce the slow order 

cost associated with the new component during subsequent years but the savings need to be 

balanced against the expense of performing capital maintenance. This can be done by comparing 

the slow order costs for different capital maintenance schedules within the planning period 

(Figures 6.5 – 6.7). 

 

Figure 6.5: Rail slow order cost under different rail replacement schedules 
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Figure 6.6: Crosstie slow order cost under different crosstie renewal schedules 
 

 

Figure 6.7: Ballast related slow order cost under different capital surfacing schedules 
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slow order cost combined with costs to perform capital maintenance earlier may counteract the 

initial slow order savings, showing that a longer-term perspective is required for  

maintenance planning.  

Comparison of ballast maintenance schedules (Figure 6.7) provides a different perspective 

because capital maintenance is performed multiple times within the 10-year planning period 

illustrated. Since the three-year undercutting interval would require more maintenance events 

than the four-year interval, the capital costs will be higher, further offsetting the slow order cost 

reduction. This shows that the selection of the planning window is also an important factor when 

comparing proposed maintenance schedules since it will influence the number of times 

maintenance will need to be performed. 

6.5 Conclusions and future work 

In this chapter, I present an approach to predicting the cost of slow orders and how to use 

them for maintenance planning. One of the key findings of this research is the impact of train 

delay on the cost of slow orders. In almost all cases, train delay costs are larger than the direct 

cost to repair the track defect causing the slow order. The exception being in the rail case where 

the defect rate continues to grow after the delay costs have plateaued, and the two costs are 

within an order of magnitude of each other. For the crosstie and ballast slow orders, the delay 

costs are high enough that the direct costs are orders of magnitude lower than the delay costs 

even after the delay costs have plateaued. A driving factor behind these different behaviors is the 

number of inspections during the year. Fewer inspections coupled with short slow order duration 

results in the rail delay costs being very low, but as either the number of inspections or the slow 

order duration increases, the delay costs can rise rapidly. The substantial contribution of train 
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delay to total costs shows how important it is to consider the operational impacts of slow orders 

and track defects when planning maintenance intervals.  

The effects of train delay and the nature of the operational impact of slow orders provide 

key inputs to a maintenance plan. While performing capital maintenance earlier will reduce the 

immediate slow order costs, additional costs are incurred in later years after the track 

components have degraded. Quantification of the slow order impacts allows the capital 

maintenance plan to be optimized by balancing the slow order and capital maintenance costs. 

Additionally, if spot maintenance is made more efficient, effective, and timely it can reduce the 

overall costs and recurrence of slow orders while increasing the time between capital 

maintenance activities.  

One area where this work can be made more robust is by gathering new data from the 

railroads and either validating these findings or developing new models that reflect the current 

quality of materials and maintenance practices. A new analysis could take advantage of “big 

data” techniques such as machine learning that were not available for development of the rail and 

crosstie models referenced in this chapter. Analyzing new data would also allow for 

comprehensive slow order models that consider the condition and maintenance history of the 

entire track structure rather than a single component. Applying the findings and methodology 

from this research to new probabilistic models will allow railroads to more effectively optimize 

their maintenance strategy by using a more holistic planning approach. 
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CHAPTER 7.  

QUANTIFYING THE TRADE-OFF BETWEEN TRACK MAINTENANCE COSTS AND 
DISRUPTION RISK USING PROBABILISTIC RISK ASSESSMENT 

7.1 Introduction and background  

Each year the major North American railroads spend billions of dollars maintaining their 

infrastructure to ensure it operates safely and efficiently (Association of American Railroads 

2017). Typically, normal, or spot, repairs are performed on a regular basis by local crews to 

extend the time between large-scale capital maintenance events (Grimes & Barkan 2006). 

Despite these investments, failures of the railway infrastructure still occur, causing accidents and 

other service disruptions (Association of American Railroads 2016a).  

When railroads plan capital track maintenance, there needs to be a balance between fully 

utilizing the service life of track components and reducing the risk of failures. To analyze this 

trade-off, railway practitioners require additional knowledge and approaches to better quantify 

the change in failure, or disruption, risk associated with advancing or deferring capital projects. 

Probabilistic risk assessment (PRA) has been used in many industries to quantify the risk of 

failures and some efforts have been made to incorporate it into cost analysis (Abolhelm et al. 

2014). The methodology developed in this chapter uses PRA tools to quantify the risk of 

disruptions due to track component failures so that it can be included in track maintenance 

planning. Two primary types of disruptions due to track component failures are considered in 

this chapter: slow orders and acute disruptions. 

As discussed in Chapters 5 and 6, slow orders, or temporary speed restrictions, are a 

substantial concern for railroads. A slow order is placed on a section of track when it is deemed 
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unsuitable for train operation at the normal posted maximum speeds. This usually occurs because 

either the track has degraded beyond set tolerances or track support has been disturbed during 

maintenance activities. The allowable tolerances, as well as maximum allowable speeds, are 

based on the track classes defined by the Federal Railroad Administration (2014a). When the 

tolerances are exceeded, the track class and corresponding maximum operating speed are 

reduced until the tolerances are met. Slow orders increase the cost of train operations and 

decrease the capacity of the line. By reducing capacity, the operational impacts of slow orders 

can affect trains that arrive after the slow order has been removed.  

For the purposes of this research, acute disruptions are defined as service interruptions due 

to track component failures that require rail traffic to stop. Acute disruptions include derailments 

or component failures, such as a rail break, where the track is impassable until the situation is 

remedied. While derailments are relatively rare, they tend to have high financial and public 

relations consequences (Liu et al. 2012; Lovett et al. 2013; Federal Railroad Administration 

2014b). Derailments can have a wide variety of causes ranging from track irregularities to human 

error, but in this chapter, I will focus on track-caused derailments since those are directly 

affected by maintenance timing. Rail breaks and other component failures are less costly but still 

disrupt the system during repairs and may lead to derailments if not detected before the passage 

of a train. There have been few attempts to link acute disruption rates and their consequences to 

the scheduling of track maintenance activities. This chapter quantifies the disruption risk in a 

way that can support a risk-based maintenance planning methodology. 
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7.2 Literature review 

Many industries use risk to consider the impact of failures in both system design and 

operations (Modarres et al. 2017). Including risk allows for better understanding of the potential 

cost implications of disruptions and their balance against the cost of preventive measures 

(Garrick 2008). Some argue that private, for-profit industries have an incentive to avoid 

preventive safety measures, such as maintenance, while others believe that safe operations are 

good for business (Osborn & Jackson 1988; Madsen 2013). Studies examining relationships 

between profitability and safety have reached inconsistent conclusions (Madsen 2013; Abolhelm 

et al. 2014). Madsen (2013) notes that typical organizational risk analysis compares known 

investments for unknown benefits, but reductions in safety investments are the opposite situation. 

When reducing safety investments, the potential savings of the decision are easily quantified but 

the negative consequences are unknown and potentially very large. North American railroads 

consistently identify safety as their number one priority (Association of American Railroads 

2016b), and increased infrastructure investment has a statistically significant relationship with 

decreased accident rates (Dennis 2002). These factors indicate that railroads are unlikely to 

decrease maintenance expenditures with the expectation of improved corporate  

financial outcomes.  

Understanding how specific decisions affect risk is critical for its inclusion in cost analysis. 

A number of authors have discussed the costs associated with preventive safety measures 

(Nicolet-Monnier & Gheorghe 1996; Slovic & Weber 2002; Liu et al. 2015; Liu & Dick 2016; 

Qian & Lin 2016). In the specific application of railroad track maintenance, the known added 

cost of performing additional maintenance will decrease the disruption risk, but it is difficult to 
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quantify the exact risk-reduction benefit. In this chapter, I demonstrate how risk analysis can 

help quantify the potential benefits of those measures. 

Risk analysis in the transportation industry is most commonly applied to hazardous 

materials shipments. Early PRA applications in transportation compared shipment modes for 

energy products and radioactive materials (McSweeney et al. 1975; Williams & Hall 1976; Elder 

et al. 1978; Geffen et al. 1978, 1980, 1981; Rhoads et al. 1980). Nayak et al. (1983) analyzed 

railway hazardous materials shipments with a focus on the number of railcars releasing their 

contents and the amount released rather than the monetary cost of an incident. More recently, 

several model frameworks have included disruption costs (Fabiano et al. 2002, 2005; Gheorghe 

et al. 2005), while others have focused specifically on finding minimal risk routes (Cassini 1998; 

Verma 2009, 2011; Verma & Verter 2010; Siddiqui & Verma 2015; Azad et al. 2016). A few of 

these models explicitly consider how costs, and potentially routing, would change if risk 

mitigation efforts were used (Verma 2009; Verma & Verter 2010; Siddiqui & Verma 2015;  

Azad et al. 2016).  

Other railway industry decisions have been aided by various forms of risk analysis. Recent 

emphasis on expanded passenger rail service in the United States has spurred research to assess 

the risk of passenger and freight trains sharing track or operating in relatively close proximity 

(Cockle 2014; Lin & Saat 2014; Lin et al. 2016). The desire to cost-effectively improve grade 

crossing safety has led to analysis of the financial aspects of incident risk when determining 

where to make improvements (Saccomanno et al. 2004; Chadwick et al. 2013, 2014; Pyrgidis et 

al. 2016). The concept of using the expected number of incidents and finding the best way to use 

limited funds is similar to track maintenance planning where the cost to execute projects must be 
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balanced against the associated disruption risk reduction. Liu et al. (2014) and Liu & Dick 

(2016) optimized rail flaw inspection intervals by minimizing the combined inspection and risk 

costs. This approach can be modified to optimize rail replacement timing by minimizing 

disruption costs.  

Despite these applications of risk assessment in the rail industry, more information is 

required to relate the effects of track maintenance to disruption risk. The model in Chapter 4 was 

an initial attempt to apply disruption costs but was limited by the availability of data and suitable 

slow order delay models. The following section will expand on some of these concepts to 

develop a more robust cost analysis using PRA concepts.  

7.3 Methodology  

In the classical PRA format, an event tree is used to examine the possible operating 

conditions for each train that traverses a small section of track (Figure 7.1). In this case, we 

assume that a disruption requires a defect in the track. Each top event has an occurrence 

probability or a fault tree associated with it (Modarres et al. 2017). One example fault tree from 

the overall event tree in Figure 7.1 is the probability that a defect present in the track section has 

IE: Train arrives Defect present Defect previously 
detected 

Derailment 
occurs  

End State  

        Normal operations 

        Normal operations 
      Failure       Derailment 
 

      Slow order 

      Success 
     

Slow order and 
derailment 

Figure 7.1: Sample event tree for a single train 
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been detected and a slow order put in place before the train arrives (Figure 7.2). A slow order is 

only implemented if an inspection occurs between the time of defect formation and train arrival, 

the inspection equipment functions properly, and the inspection data are interpreted correctly. 

The probability of correct data interpretation can be further modeled using human reliability 

analysis (HRA) or represented using historical data. Although event trees are roughly 

chronological, the physical event that creates a disruptive condition may have occurred before 

the initiating event (Modarres et al. 2017), and defect detection is an example of this. An 

inspection would have to occur before the train arrives, but the presence of a previously detected 

defect would not affect train operations until a train traverses that section of track.  

These simplified event and fault trees do not reflect the full complexity of the railroad track 

system. As discussed in Chapter 6, there are multiple track components that can cause slow 

orders or derailments, each with different disruption characteristics. Furthermore, multiple 

disruptions may occur at the same time. Each of these probabilities could be identified from 

either experience or manufacturer testing, but more in-depth analysis, such as HRA, could also 

 

Figure 7.2: Defect detection fault tree 

Defect previously detected

∙

Inspection 
occurs

Inspection 
equipment 
functions

Correct Data 
interpretation
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be applied if sufficient data are available. From this analysis, importance measures could be 

calculated for each basic event allowing for adjustment of maintenance plans to reduce the risk. 

Reliability of each major track component (rails, crossties, and ballast) could also be calculated 

based on defect rates and combined to determine the reliability of the track section.  

Unfortunately, performing this level of detailed analysis requires a large amount of data that 

the railroads consider confidential or may not be routinely collecting. Additionally, in most 

railroad operations, delay due to disruptions can cascade to delay subsequent trains, further 

making traditional reliability analysis difficult.  

To simplify the analysis, I propose consideration of disruption costs accumulated over one 

year on a route. The general formulation is comprised of maintenance, train delay, slow order, 

and acute disruption costs in each year of the planning period (Equation 7.1). Each individual 

cost category is described in more detail in the subsequent sections.  

𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ��
1

(1 + 𝑟𝑟)𝑗𝑗 �𝐶𝐶𝑀𝑀𝑗𝑗 + 𝐶𝐶𝐷𝐷𝑀𝑀𝑗𝑗 + 𝐶𝐶𝑆𝑆𝑆𝑆𝑗𝑗 + 𝐶𝐶𝑋𝑋𝑗𝑗��
𝑗𝑗

 7.1 

Where:  
CTotal – total cost associated with the track performance during the planning period 
j – index of the years in the planning period 
r – discount rate 
CMj – cost to perform maintenance in year j 
CDMj – cost of delay due to maintenance activities in year j  
CSOj – slow order cost in year j 
CXj – average acute disruption cost in year j  

7.3.1 Maintenance costs 

Although maintenance costs are deterministic, their timing directly affects disruption risk, so 

these costs are a critical part of a risk-based cost analysis. Direct costs and disruption risk must 

be balanced to ensure that maintenance is not performed more often than necessary while 
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keeping disruption costs at an acceptable level. These costs should consider both the direct cost 

of performing maintenance and potential savings from scheduling some maintenance activities in 

the same year (Equation 7.2). Surfacing costs are incurred during both capital crosstie and ballast 

maintenance, so if both were scheduled during the same year, the cost of one surfacing can  

be saved.  

𝐶𝐶𝑀𝑀𝑗𝑗 = 𝐿𝐿𝑅𝑅 ���𝑥𝑥𝑖𝑖𝑗𝑗𝐶𝐶𝐽𝐽𝑖𝑖�
𝑖𝑖

− 𝑥𝑥𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑖𝑖𝐶𝐶,𝑗𝑗𝑥𝑥𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇,𝑗𝑗𝐶𝐶𝑆𝑆� 7.2 

Where:  
LR – route length 
i – index for track components, {Rail, Crossties, Ballast} 
xij – binary indicator for maintenance being performed on component i in year j 
CJi – direct cost per mile (1.6 km) to perform maintenance on component i 
CS – direct cost per mile (1.6 km) to surface the track 
Other variables as previously defined 

Performing maintenance also disrupts rail traffic on the line. Trains must wait until they can 

proceed along the route, and the delay accumulates until traffic returns to normal. As with direct 

maintenance costs, delay must also consider potential economies that may reduce the amount of 

time the track is out of service (Equation 7.3).  

𝐶𝐶𝐷𝐷𝑀𝑀𝑗𝑗 = 𝐶𝐶𝐷𝐷𝐿𝐿𝑅𝑅 ��𝑥𝑥𝑖𝑖𝑗𝑗𝑇𝑇𝐷𝐷𝑀𝑀𝑖𝑖𝑗𝑗𝑄𝑄𝐽𝐽𝑖𝑖
𝑖𝑖

− 𝑥𝑥𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑖𝑖𝐶𝐶,𝑗𝑗𝑥𝑥𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇,𝑗𝑗𝑄𝑄𝑆𝑆𝑇𝑇𝐷𝐷𝑆𝑆,𝑗𝑗� 7.3 

Where: 
CD – train delay cost  
TDMji – train delay per window for component i in year j based on Chapter 5 (train-hours) 
QJi – number of work windows per mile (1.6 km) required to maintain component i 
QS – number of work windows per mile (1.6 km) required to surface the track  
TDS,j – train delay per window for surfacing in year j based on Chapter 5 (train-hours) 
Other variables as previously defined 

7.3.2 Slow order costs 

The methodology presented in Chapters 5 and 6 are used to estimate the slow order costs for 

each track component. A shortcoming of this method is that each of the major railroad track 
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components is treated separately due to the lack of data to relate their interactions. Preliminary 

research has shown a relationship between the performance of each component and its 

propensity to develop defects (Zarembski et al. 2016), but it is not conclusive or detailed enough 

to compute dependency. As further data become available, these relationships can be quantified 

for use in later analyses.  

A second shortcoming is that the method assumes slow orders of different types will not 

occur in the same location at the same time. The assumption that all slow orders are separate 

events with no overlap will cause the model to overestimate the number and effect of the 

disruptions. However, the probabilities of overlap are low until the defect density is high enough 

that slow orders of the same kind have overlapping areas of influence. This overlapping effect is 

considered in the delay accumulation model, so it need not be explicitly considered in  

this analysis.  

For maintenance planning, both the direct cost to repair a defect and the train delay costs 

must be included (Equation 7.4). Local maintenance crews only know to impose a slow order or 

repair a track defect after an inspection. While every defect that develops during the year must be 

maintained and are relatively independent, as discussed in Chapter 5, there can be interactions 

between slow orders that are in effect at the same time on a route. Since slow orders are only 

implemented after an inspection, the associated delay cost will consider the average number of 

defects discovered in an inspection (Equation 7.5).  
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𝐶𝐶𝑆𝑆𝑆𝑆𝑗𝑗 = ��𝐿𝐿𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝐶𝐶𝑆𝑆𝑆𝑆𝐷𝐷𝑖𝑖 +
𝐶𝐶𝐷𝐷𝑇𝑇𝐷𝐷𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗
𝑇𝑇𝐼𝐼𝑖𝑖𝑗𝑗

�
𝑖𝑖

 7.4 

𝑁𝑁𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝐿𝐿𝑅𝑅𝑇𝑇𝐼𝐼𝑖𝑖𝑗𝑗 7.5 

Where:  
RSOij – slow order rate per mile-year (1.6 km-year) according to the models in Chapter 6 

for component i in year j 
CSODi – direct cost to correct a slow order causing defect in component i 
TDSOij – train delay based on Chapter 5 with parameters associated with this line and NSOij 

slow orders of type i in year j 
NSOij – average number of slow order causing defects detected in an inspection for 

component i in year j 
TIij – inspection interval for component i in year j 
Other variables as previously defined  

7.3.3 Acute disruptions 

Acute disruption costs include the cost of track-caused accidents and track component 

failures, such as rail breaks, that cause rail traffic to stop. This analysis uses derailment rate as a 

proxy for the accident rate because over 99% of track-caused accidents are derailments (Federal 

Railroad Administration 2014b).  

For rail breaks and rail-caused derailments, an event tree can be developed to represent the 

progression of a rail break from defect to derailment or slow order (Figure 7.3). The event tree 

assumes that a detected defect is repaired and will not result in a broken rail and that a rail break 

Defect 
Present 

Defect detected 
(RSOij) 

Rail break 
occurs (RBj) 

Rail derailment 
occurs (PXRail)  

        Normal operations 

 Failure       Rail break 
  

     Rail-caused derailment 

   Success        Rail-caused slow order 

Figure 7.3: Single rail defect event tree 
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is required for a rail-caused derailment (Liu et al. 2014). The rail-caused disruption risk can be 

found by following the respective branches on the event tree following the methodology of Liu 

et al. (2014) (Equation 7.6). Liu & Dick (2016) approximated the frequency of rail breaks and 

derailments using the Orringer (1990) model. That model was simplified to align with the 

formulation for calculating the rail-caused slow order rate used in Chapters 5 and 6 that is also 

based on Orringer (1990) (Equation 7.7). 

𝐶𝐶𝑋𝑋𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇𝑗𝑗′ = 𝑅𝑅𝐵𝐵𝑗𝑗 ��𝐶𝐶𝐵𝐵,𝑀𝑀 + 𝐶𝐶𝐷𝐷𝑇𝑇𝐷𝐷𝐵𝐵𝑗𝑗� + 𝑃𝑃𝑋𝑋𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇�𝐶𝐶𝑋𝑋𝐷𝐷,𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇 + 𝐶𝐶𝐷𝐷𝑇𝑇𝐷𝐷𝑋𝑋𝑗𝑗�� 7.6 

𝑅𝑅𝐵𝐵𝑗𝑗 = 𝑁𝑁𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇𝜆𝜆�𝛥𝛥𝑁𝑁𝑗𝑗 − 𝜃𝜃��𝑒𝑒−�
𝑁𝑁𝐴𝐴𝐴𝐴𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐴𝐴
𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�
𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

− 𝑒𝑒
−�

𝑁𝑁𝐴𝐴,𝐴𝐴�𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐴𝐴+1�
𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�
𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� 1 + 𝜆𝜆�𝛥𝛥𝑁𝑁𝑗𝑗 − 𝜃𝜃��  7.7 

Where: 
𝐶𝐶𝑋𝑋𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇𝑗𝑗′  – rail-break related costs per mile (1.6 km) 
RBj – annual rail break rate per mile (1.6 km) 
CB,M – direct cost to repair a rail break ($2140 (Liu et al. 2014)) 
TDBj – train delay due to rail breaks in year j based on Chapter 5 
PXRail – probability of a derailment given a rail break (0.0084 (Zarembski & Palese 2005)) 
CXD,Rai – average broken-rail-caused derailment cost ($1,016,834 (Liu et al. 2014)) 
TDXj – train delay costs due to a derailment in year j based on Chapter 5 
NRail – number of rail sections per mile (1.6 km) (273 (Orringer 1990)) 
λ – proportionality factor (0.014 (Orringer 1990)) 
ΔNj – average tonnage between rail inspections in year j (Million gross tons (MGT)) 
θ – minimum inspection interval (10 MGT (Orringer 1990)) 
NAj – annual tonnage in year j (MGT) 
yRail,j – years since rail replacement in year j 
αRail – Weibull shape factor (3.1 (Davis et al. 1987; Liu et al. 2014)) 
βRail – Weibull scale factor (2150 (Davis et al. 1987; Liu et al. 2014)) 
Other variables as previously defined 

The relationship between track quality and derailment rate is not as well understood for 

crossties and ballast, so a proxy value is needed. Preliminary analysis estimated the derailment 

rate using the proportion of derailments caused by the failure of specific components, the 

accident rate, and an assumed track degradation rate (Lovett et al. 2015). This analysis was 
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updated using more current derailment rates and the percentage of track slow ordered, rather than 

an assumed degradation rate. The expected derailment risk can be calculated as the weighted 

average of the derailment risk at the normal and slow ordered track classes based on the 

percentage of track that is expected to be slow ordered (Equations 7.8 and 7.9). Since the slow 

orders may overlap, it is necessary to explicitly limit the slow order proportion to one.  

𝐶𝐶𝑋𝑋𝑖𝑖𝑗𝑗′ = 𝑃𝑃𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝐶𝐶𝑋𝑋(𝑇𝑇−1)𝑖𝑖𝑅𝑅𝑋𝑋(𝑇𝑇−1)𝑃𝑃𝑋𝑋(𝑇𝑇−1)𝑖𝑖 + �1 − 𝑃𝑃𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗�𝐶𝐶𝑋𝑋𝑇𝑇𝑖𝑖𝑅𝑅𝑋𝑋𝑇𝑇𝑃𝑃𝑋𝑋𝑇𝑇𝑖𝑖 7.8 

𝑃𝑃𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗 = min�𝐿𝐿𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆,𝑖𝑖𝑗𝑗𝑇𝑇𝐸𝐸,𝑖𝑖 , 1� 7.9 

Where:  
C’Xij – accident risk for component i in year j  
CXli – average derailment cost due to component i in track class l 
RXl – derailment rate on track class l  
PXli – proportion of derailments on track class l caused by component i 
PSOij – proportion of the track slow ordered during the year 
LSO – length of an individual slow order  
TEi – average length of time a slow order due to component i is left in place 
Other variables as previously defined 

The complete acute disruption cost can then be calculated (Equation 7.10). 

𝐶𝐶𝑋𝑋𝑗𝑗 = 𝐿𝐿𝑅𝑅 �𝐶𝐶𝑋𝑋𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇𝑗𝑗′ +
𝑁𝑁𝐴𝐴

1000
� 𝐶𝐶𝑋𝑋𝑖𝑖𝑗𝑗′

𝑖𝑖≠𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇

� 
7.10 

7.4 Case study 

To investigate how maintenance timing affects the costs associated with a maintenance plan, 

the methodology described in the previous section was applied to a case study. The line being 

analyzed is 100 miles (160 km) of Class 3 (40 mph (64 km/h) maximum allowable freight train 

speed) track with 30 MGT of annual traffic. This tonnage corresponds to approximately 12 trains 

per day (Association of American Railroads 2015). System and component parameters are based 

on industry averages (Table 7.1 and Table 7.2 respectively).  
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Table 7.1: System parameters 

Parameter Value 
Discount rate1 9.61% 
Train delay cost2 $950 per train-hour 
Slow order length3 0.1 miles7 

Class 3 derailment rate (RXl)4 0.11 per billion-gross-ton-miles7 
Class 2 derailment rate (RX(l-1))4 0.22 per billion-gross-ton-miles7 
Work window length 7.5 hours 
Surfacing direct costs (CS)5 $15,000 per mile7 
Surfacing windows (QS)6 0.33 per mile7 

1. (Surface Transportation Board 2016) 
2. Average value for manifest traffic based on the analysis in Chapter 3 
3. (Federal Railroad Administration 2005) 
4. (Liu et al. 2017) 
5. Using average cost from ACW Railway Company (2015) and amounts from  

Chrismer (1988) 
6. For a 7.5 hour window (Burns & Franke 2005a, 2005b) 
7. 1 mile = 1.6 km 

 
Table 7.2: Selected case study parameters 

 Rail Crosstie Ballast 
Direct slow order repair cost (CSODi) 1 $859  $285  $1,200  
Average inspection interval in days (TIi)1 182.5 7 7 
Years since last capital maintenance (yij) 15 3 2 
Normal maintenance cycle (years) 20 9 3 
Slow order duration in days (TE)1 1 4 3 
Class 3 Derailment cost (CXli)2 $994,019 $1,063,301 $994,019 
Class 2 Derailment cost (CX(l-1)i)2 $615,967 $728,313 $615,967 
Class 3 derailment proportion (PXli)3 - 4.11% 13.76% 
Class 2 derailment proportion (PX(l-1)i)3 - 8.08% 15.55% 
Direct cost (CJi)4 $184,0004 $52,0004 $138,0004 
Windows per mile (QJi)5,6 1.59 1.39 1.21 

1. From Chapter 6 
2. Based on analysis of the FRA accident database (Federal Railroad Administration 

2014b) and modified using an accident cost multiplier (Kalay et al. 2011) and train 
delay costs based on a 24-hour outage using Chapter 5 

3. (Federal Railroad Administration 2014b)  
4. Based on Burns & Franke (2005b), with inclusion of surfacing after crosstie and ballast 

work and materials costs. Rail and ballast materials costs are from ACW Railway 
Company (2015), ballast quantities are drawn from Chrismer (1988), and crosstie costs 
are drawn from Burns (1989) and inflated to 2015 dollars by a factor of 1.136 (Bureau 
of Labor Statistics 2017). 

5. (Burns & Franke 2005b) 
6. 1 mile = 1.6 km 
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The base maintenance plan uses the normal maintenance cycles in Table 7.2 (Table 7.3). 

With minor modifications to the schedule, maintenance planners can take advantage of the 

economies of performing crosstie and ballast work in the same year. Three alternative schedules 

were developed by shifting either the ballast maintenance in year seven or the crosstie 

maintenance in year six so that they occur in the same year (Alternatives 1a, 1b, and 2 in Table 

7.3). Performing the ballast maintenance early results in either the need to perform additional 

maintenance or an extended time between activities, so both options were evaluated 

(Alternatives 1a and 1b respectively). Using the methods outlined in this chapter, the total 

maintenance and disruption risk costs for the baseline maintenance plan and all alternatives were 

calculated (Figure 7.4, exact costs in Appendix H). 

Comparing the results of all three options yields some common trends. One is that slow 

order and maintenance delay contribute most of the total cost. Using the more robust slow order 

delay models in Chapters 5 and 6 shows a slow order cost more in line with industry perceptions. 

Table 7.3: xij for the base and alternative maintenance plans with adjusted years 
shaded in gray 

 Base maintenance plan Alternative 1a Alternative 1b Alternative 2 
Year 
(j) 

Rail (R) Crosstie 
(C) 

Ballast 
(B) 

R C B R C B R C B 

0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 1 0 0 1 0 0 1 
2 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 1 0 0 1 0 0 1 0 0 1 
5 1 0 0 1 0 0 1 0 0 1 0 0 
6 0 1 0 0 1 1 0 1 1 0 0 0 
7 0 0 1 0 0 0 0 0 0 0 1 1 
8 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 1 0 0 0 0 0 0 
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Acute disruption costs are much lower than previously found in Chapter 4 and other preliminary 

analysis (Lovett et al. 2015), but this is partly due to the decreased derailment rate in recent years 

(Association of American Railroads 2016b). 

Comparing between the alternative maintenance schedules shows that Alternative 2 has the 

lowest total cost, while Alternative 1a has the highest. There is an approximately $20-million-

dollar difference between Alternatives 1a and 2, largely due to the specific component that is 

being rescheduled. For Alternative 2, moving the crosstie renewal later in the planning period 

has almost no impact on the slow order or acute disruption costs, so the savings come from the 

economies of performing the crosstie and ballast maintenance in the same year. Moving the 

ballast maintenance one year earlier in Alternative 1a results in a $10 million slow order cost 

savings compared to the Base schedule but is offset by the additional ballast maintenance added 

in the last year of the planning period. If the additional ballast maintenance is not performed 

(Alternative 1b), the total plan cost is lower than the base plan but higher than Alternative 2 due 

to increased slow order costs at the end of the planning period.  

 
Figure 7.4: Comparison of maintenance plan alternative total costs 
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This analysis shows the limitations of having a discrete maintenance planning horizon. If the 

maintenance planning period was extended far enough, the costs of subsequent maintenance 

activities would be explicitly included; however, it is unreasonable to extend the planning 

horizon indefinitely into the future. One way to compensate for a limited planning period is 

reevaluating the maintenance plan each year. The early parts of the planning period could be 

established, while the schedule in later years could be updated as they get closer to the present. 

This “rolling horizon approach” would also be beneficial in an optimization model since it 

reduces the number of years that need to be optimized, allowing for a faster solution time. 

7.5 Conclusions and future work 

This analysis shows an application of PRA in railroad track maintenance planning by 

considering the expected disruption costs with the maintenance costs. This approach can be used 

to determine if changes to regular component-specific maintenance schedules can be justified to 

reduce disruption costs or take advantage of combining activities. The case study presented here 

shows the importance of considering all costs that might be affected by maintenance timing. For 

example, performing maintenance early will reduce the disruption costs but might increase the 

number of maintenance activities being performed in the planning period. If all of the costs were 

not included in the analysis, the extra ballast maintenance or additional disruption risk may not 

have been properly accounted for. A rolling horizon planning approach could compensate  

for this.  

To improve the risk analysis approach presented here, advances need to be made in two 

areas. First, there are other benefits of combining maintenance activities as will be further 
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discussed in Chapter 8. Including these additional benefits would more accurately compare 

disruption risk with maintenance economies when developing maintenance plans.  

Second, to fully implement PRA in a maintenance-planning framework, a large amount of 

data are required. This includes the occurrence of slow orders and derailments, capital 

maintenance timing, the number of trains affected by disruptions, train delay amounts and 

causes, inspection equipment reliability, and so forth. Much of these data are recorded by the 

major railroads, but it must be integrated and analyzed to determine the probability and cost of a 

train being delayed by a slow order, acute disruption, or cascading delay. Once these probability 

distributions have been established, the range of expected costs can be established and used for 

maintenance planning. As new data become available, it can be used to update the probability 

distributions for further analysis. Even if the analysis is limited to the simplified annual risk 

method described in this chapter, additional data could be applied to developing better 

component degradation models and improve the accuracy of the risk analysis. Whether the 

simplified or more detailed approach is used, including the risk of disruptions in maintenance 

planning can be a powerful tool in understanding the complete cost of operating and maintaining 

a railroad.  
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CHAPTER 8.  

AGGREGATING RAILROAD TRACK MAINTENANCE ON EXTENDED  
WORK WINDOWS 

8.1 Introduction 

A relatively recent development in North American railroad track maintenance is to 

aggregate maintenance activities on extended work windows, although a form of this practice has 

been used in Europe for much longer (Burns 1980). Sometimes referred to as a “blitz” or 

“jamboree,” this method consists of removing a line from service for several days and 

performing maintenance on multiple parts of the track. CSX and BNSF have been performing 

maintenance jamborees or blitzes since 1999 (Dischinger 1999; Railway Track & Structures 

2015) while Union Pacific has been using elongated work windows since 1996 (Ingles 1996). 

This practice differs from traditional track maintenance where components are maintained on 

separate schedules in multiple short work windows. While the traditional method relieves 

congestion by allowing trains to resume operations between maintenance windows, it reduces 

maintenance efficiency because crews spend considerable time waiting for trains to pass, then 

setting up equipment only to have to remove it again before the work window ends. Conversely, 

extended track outages are more disruptive to train operations because of additional costs 

associated with substantially delaying, rerouting, or canceling trains  

(Burns & Franke 2005a, 2005b). 

The aggregated method requires removing the track from service for an extended period, 

either in 24-hour blocks or continuously for several days, and allowing multiple crews to work 

on several parts of the track and related infrastructure. Aggregating maintenance in this fashion 

can improve productivity and efficiency by avoiding duplicate maintenance activities and 
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reducing the number of times equipment must be set up, the total amount of track time required, 

and the frequency of outages. 

When planning track maintenance, selecting the proper level of maintenance aggregation is 

a complex economic and engineering decision. Consideration and quantification of the direct and 

indirect costs of track ownership will allow for a better understanding of how maintenance 

scheduling will influence total costs. Deferred maintenance, which may occur when aggregating, 

relates to the DCF Trap discussed in Chapter 1. Modifying the risk analysis model in Chapter 7 

to consider the benefits of aggregation allows for the costs of maintenance deferral to be 

quantified and compared against the benefits from aggregation.  

8.2 Literature review 

Previous work has considered various aspects of maintenance aggregation, but little has 

been done in the rail industry specifically. Burns & Franke (2005a) quantified the efficiency of 

longer work windows; however, they assumed that work would be performed on all aspects of 

the track rather than analyze specific combinations of individual activities and the possible 

resultant efficiencies. For this paper, these will be termed the economies of aggregation and 

include the cost reductions that come from aggregating maintenance or using elongated work 

windows. Other research has considered aggregating maintenance on lines that are out of service 

because shipper traffic has been temporarily suspended, so operational issues can be disregarded 

(Martland 2008; Peng 2011). Santos et al. (2015) evaluated schedule adjustments, and Zhao et al. 

(2009) examined maintenance aggregation, but neither considered the effects on disruption risk. 

There are also railroad specific models that plan maintenance for traditional execution (Higgins 

1998; Higgins et al. 1999; Peng et al. 2011).  
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More research has been performed in the factory domain and other systems that have high 

downtime costs that are similar to the railroad in many respects. Cho & Parlar (1991) reviewed 

several models for maintaining “multi-unit systems.” One model they evaluated specifically 

looked at systems where the failure of a single component would cause the entire system to fail. 

This is similar to railroad track since a component failure will cause trains to either stop running 

or proceed at reduced speed. For railroads, component failure would generally require the failure 

of several component units, such as a group of crossties since there are redundancies built into 

the track support structure. Another model Cho & Parlar (1991) reviewed evaluates the impact of 

maintaining components out of cycle because the system has already been shut down to work on 

another component. The resultant efficiencies can be directly applied in combining maintenance 

on track that must be taken out of service for maintenance.  

Maillart & Fang (2006) developed a model that includes both system availability and 

maintenance cost. Their model evaluates units in series rather than in parallel, which would be 

the case when analyzing a series of railroad track sections rather than components in a given 

track segment. Peng et al. (2011) considered this approach, but it is a different concept than 

combining different types of maintenance at the same location. The model developed by Yao et 

al. (2004) corresponds particularly well with the maintenance aggregation situation. It considers 

the higher cost of unplanned downtime, modification of a general maintenance schedule to 

correspond with other maintenance, and lost production. All of which need to be considered in 

railroad maintenance as well. 

Wildeman et al. (1997) evaluated grouping maintenance activities that have the same setup 

cost. Setup costs are defined to include both actual setup costs and the costs of taking the system 

out of service. For track maintenance, this could be a reasonable assumption when considering 
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train delay costs, which will be the same on a train-hour basis no matter what activity is 

performed. In contrast, the actual costs to set up the equipment will not be the same and will still 

need to be considered if multiple maintenance activities are performed at the same time. Another 

aspect of this model that could be beneficial for application in railroad track maintenance is the 

penalty functions that are applied to activities shifted from the optimal schedule. These penalty 

costs are associated with degradation of the system, so it is possible that the penalty cost will be 

negative if the maintenance is performed early. This penalty cost could be analogous to 

disruption risk, which could be determined for a given operating condition.  

Wildeman et al. (1997) also discuss the benefits of combining activities associated with 

reducing duplicated efforts, but there will be other effects if the schedule is adjusted. In the case 

of railroad track maintenance, tamping, fastener removal, and flaggers are needed for multiple 

activities and would only be needed once when maintenance is aggregated. Maintenance such as 

tamping and rail grinding can shorten the component’s useful life if done prematurely, so that 

should also be considered if sufficient data are available. Aggregating track maintenance 

activities will also reduce the amount of track time required because work can be overlapped and 

longer work windows will decrease the number of equipment setups required.  

Although many of these approaches have aspects that can be applied to include the 

economies of aggregation in maintenance planning, there are opportunities for improvement. 

Factory maintenance models consider the impact of shutting the system down, but railroads have 

added complexity during service disruptions in the form of slow orders and possible rerouting. 

Rerouting is more common with elongated work windows to mitigate traffic disruptions. The rail 

models that consider schedule adjustments do not to adequately account for disruption costs or 

reroutes. The costing model in Chapter 7 includes disruption risk, so applying the aggregation 
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principles from factory maintenance and other rail research will improve on the existing models 

and provide a well-rounded framework for maintenance planning.  

8.3 Methodology 

To allow the risk-based maintenance planning model to consider the economies of 

aggregation, there needs to be some modification to the formulation of the maintenance related 

costs from Chapter 7 but will follow the basic form (Equation 8.1). Disruption costs associated 

with slow orders and acute disruptions will remain the same.  

𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ��
1

(1 + 𝑅𝑅𝐼𝐼)𝑗𝑗
�𝐶𝐶𝑀𝑀𝑗𝑗 + 𝐶𝐶𝐷𝐷𝑀𝑀𝑗𝑗 + 𝐶𝐶𝑆𝑆𝑆𝑆𝑗𝑗 + 𝐶𝐶𝑋𝑋𝑗𝑗��

𝑗𝑗

 8.1 

Where: 
CTotal – total cost associated with the track performance during the planning period 
j – set of years in the analysis period 
RI – discount rate  
CMj – cost to perform maintenance in year j 
CDMj – cost of delay due to maintenance activities in year j  
CSOj – slow order cost in year j 
CXj – average acute disruption cost in year j 

8.3.1 Maintenance costs 

Direct maintenance costs consist of the labor, equipment, and materials necessary to perform 

a maintenance activity. They may also be affected by economies of aggregation and therefore 

vary based on the window length and level of aggregation. Burns & Franke (2005a) used typical 

labor and equipment costs for a variety of work window lengths. When maintenance is not 

aggregated, their rail, crosstie, and undercutting values from the 7.5-hour work windows were 

used. When maintenance was aggregated, 7-day or discrete 24-hour windows were used if a 

detour was available or not, respectively.  
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As material costs would not be affected by the window length, Burns & Franke (2005a) 

did not consider them; however, since advancing or deferring maintenance may change the 

number of times maintenance is performed, material costs are needed. Material costs were 

gathered from several sources (Chrismer 1988; Burns 1989; ACW Railway Company 2015). The 

Burns & Franke (2005a) values for crosstie replacement and undercutting time and costs were 

modified to reflect that tamping is required after completion (Hay 1982). These adjustments are 

described in more detail in Chapter 7 and are detailed in Appendix I. 

The direct cost savings (Figure 8.1) can be attributed to increased time efficiency because 

less time is spent mobilizing and demobilizing crews and equipment. This is despite the fact that 

longer windows require more breaks and have lower labor efficiency (Burns & Franke 2005b). 

Aggregation can provide additional benefits, from the reduction of procedures that are required 

for multiple activities, including surfacing after crosstie renewal and undercutting, flaggers, and 

taking track out of service. The flagger cost is included in the maintenance costs and is relatively 

small, so it will not be addressed explicitly here. These additional savings would seem to imply 

 
1. Materials costs not included 
2. 1 mile = 1.6 km 

Figure 8.1: Direct costs for various work windows lengths (Burns & Franke 2005b) 
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that longer work windows are always better, but the direct costs of a single maintenance event do 

not consider the impact of train delay or long-term impacts of consolidating activities, which will 

both be addressed later in this chapter. Accounting for the varied costs and potential savings 

associated with maintenance aggregation requires some modification from the formulation in 

Chapter 7 (Equation 8.2). 

𝐶𝐶𝑀𝑀𝑗𝑗 = 𝐿𝐿𝑅𝑅 ��𝑎𝑎𝑗𝑗𝑗𝑗 ��𝑥𝑥𝑖𝑖𝑗𝑗𝐶𝐶𝐽𝐽𝑖𝑖𝑗𝑗
𝑖𝑖

− 𝑥𝑥𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑖𝑖𝐶𝐶,𝑗𝑗𝑥𝑥𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇,𝑗𝑗𝐶𝐶𝑆𝑆𝑗𝑗�
𝑗𝑗

� 8.2 

Where: 
LR – route length 
w – set of aggregation options, {1 = 7.5 hours, 2 = 24 hours, 3 = 7 days} 
ajw – binary indicator for if aggregation on window type w in year j 
i – index for track components, {Rail, Crossties, Ballast} 
xij – binary indicator for maintenance being performed on component i in year j 
CJiw – direct cost per mile (1.6 km) to perform maintenance on component i on window  

type w 
CSw – direct cost per mile (1.6 km) to surface the track on window type w 
Other variables as previously defined 

8.3.2 Train delay 

Train delay costs occur because a section of track must be taken out of service for 

maintenance to be performed. In Chapter 7, the delay costs associated with a maintenance 

activity were limited to stopping trains, but as mentioned above, there is also the possibility of 

detours (Burns & Franke 2005b). If a detour is available, then additional cost categories must be 

considered. In addition to the delay associated with rerouting, which is likely to be longer than 

the original route, there will also be planning and access costs. The planning costs are taken as a 

fixed value to negotiate and schedule the detour. Access costs include the cost of an additional 

crew member who is certified on the territory and a per ton-mile fee (Burns & Franke 2005b). 

Based on industry input, the ton-mile fee, or millage, value used may be low, but it is the only 

published value I have been able to find. Train delay costs are only applied to the additional time 
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it takes the trains to traverse the detour as compared to the normal route. If a route has two 

parallel tracks, the second track can act as a detour with zero additional length. As shown by the 

parametric models used in Chapter 4, there will be additional delay when part of the double track 

is removed. 

As in Chapter 7, the methodology from Chapter 5 will be used to account for the effects of 

both traffic stopping and associated slow orders. The new formulation will include 

considerations for the different window lengths and the possibility of detours (Equation 8.3 – 

8.6). This formulation assumes that maintenance will not be aggregated or detoured when 

normal, 7.5-hour, work windows are used. Since all activities that are aggregated on long work 

windows will be performed at the same time, there is no need to remove the delay associated 

with surfacing, except when normal work windows are used. As discussed in Chapter 5, 

maintenance activities that disrupt the track structure, such as crosstie and ballast work, require a 

“seasoning” period to stabilize the track support (Selig & Waters 1994). When a detour is used, 

the delay incurred during the seasoning period must be explicitly included since it will not be 

included in the detour costs.  

𝐶𝐶𝐷𝐷𝑀𝑀𝑗𝑗 = 𝐿𝐿𝑅𝑅 �𝑎𝑎𝑗𝑗1𝐶𝐶𝐷𝐷�1 − 𝑏𝑏𝑗𝑗���𝑥𝑥𝑖𝑖𝑗𝑗𝑇𝑇𝐷𝐷𝑀𝑀𝐽𝐽𝑖𝑖𝑗𝑗𝑄𝑄𝐽𝐽,𝑖𝑖,1
𝑖𝑖

− 𝑥𝑥𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑖𝑖𝐶𝐶,𝑗𝑗𝑥𝑥𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇,𝑗𝑗𝑄𝑄𝑆𝑆,1𝑇𝑇𝐷𝐷𝑆𝑆𝑗𝑗�

+ 𝑄𝑄𝑊𝑊𝑗𝑗�1 − 𝑎𝑎𝑗𝑗,1� �𝐶𝐶𝐷𝐷�1 − 𝑏𝑏𝑗𝑗��𝑇𝑇𝑀𝑀𝑗𝑗� + 𝑏𝑏𝑗𝑗�𝐶𝐶𝐿𝐿𝑗𝑗 + 𝐶𝐶𝐷𝐷𝑇𝑇𝐵𝐵𝑀𝑀𝑗𝑗��� 
8.3 

150



𝑄𝑄𝑊𝑊𝑗𝑗 =
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⎪
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⎧ �𝑎𝑎𝑗𝑗𝑗𝑗𝑄𝑄𝐽𝐽,𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇,𝑗𝑗

𝑗𝑗

, 𝑎𝑎𝑗𝑗,1 = 0, 𝑥𝑥𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇,𝑗𝑗 = 1
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𝑗𝑗
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𝑖𝑖
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Where: 
CD – train delay cost ($ per train-hour) 
TDMji – train delay per window for component i in year j from Chapter 5 
QJiw – number of work windows per mile (1.6 km) required to maintain component i 
QSw – number of work windows required to surface the track on window type w 
TDSj – surfacing train delay per window in year j from Chapter 5 on a normal work window 
QWj – total number of work windows per mile (1.6 km) required to complete all activities 

in year j 
bj – binary indicator for if a detour was selected for use in year j 
TMj – train delay per window for in year j based on the selected maintenance activities and 

aggregation 
CLj – detour cost per window in year j 
TBMj – post maintenance seasoning train delay per window in year j based on the selected 

maintenance activities and aggregation when a detour is used  
CP – detour planning cost 
LL – detour length 
CT – millage  
NAj – annual tonnage in year j (MGT) 
TMj – work window length selected in year j 
CK – hourly cost of an additional crewmember 
VL – detour operating speed  
VN – normal route operating speed 
TMw – work window length for window w  
Other variables as previously defined 

8.4 Schedule modification 

As mentioned above, aggregating track maintenance requires adjusting the schedules of 

individual maintenance activities so they will occur at the same time. This was discussed briefly 
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in Chapter 7 and will be expanded here. Adjusting maintenance schedules will have both positive 

and negative impacts on the costs of track ownership. If maintenance is performed early, the 

entire useful life of the component may not be realized and maintenance might be performed 

more times in the planning period. In contrast to this, the disruption risk on the track segment 

may decrease because of the improved track condition. If maintenance is deferred, the disruption 

risk and need for spot maintenance will increase, but overall maintenance frequency and expense 

will decrease. The loss in useful life is difficult to quantify based on how railroads depreciate 

their track components (Surface Transportation Board 2014). Since components that are removed 

from service while they are still useful can be cascaded to lower priority tracks, the value is not 

completely lost (Hay 1982). As mentioned above, the potential negative effects of tamping and 

rail grinding should be included to the extent possible. Because of these various pros and cons to 

schedule modification, it was necessary to consider multiple modification strategies for 

comparison to the traditional maintenance schedule.  

Five maintenance-scheduling procedures were identified to see the general effects of 

aggregation and elongated work windows. The first is based on traditional maintenance practices 

and has normal window length and no aggregation. The first aggregation method does not 

consider schedule modification, and only activities that are already scheduled to occur in the 

same year are combined, which shows the effect of aggregation without schedule modification. 

The remaining three procedures shifted activities within a three-year period (Figure 8.2). When 

multiple activities are scheduled to occur within the period, they are aggregated in the year of the 

first activity, the last activity, or in the middle year. This will help show the impacts of advancing 

versus deferring maintenance when compared to the benefits of aggregation. For both the first- 

and last-year methods, a cascading effect can be observed where each schedule adjustment is 
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compounded for subsequent activities. This occurs in an attempt to maintain the original 

schedule when possible since non-adjusted activities would ideally keep their original 

maintenance cycle.  

8.5 Case study 

The costing model was applied to a case study with a 50-year planning period for each of the 

five scheduling methods using the assumed parameters (Table 8.1). Although maintenance 

planning would not typically take place over a 50-year horizon, the long period allows for a 

better perspective on the effects of aggregation on long work windows.  

 Traditional First Year Middle year Last Year 
Year Rail Crosstie Ballast Rail Crosstie Ballast Rail Crosstie Ballast Rail Crosstie Ballast 
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Figure 8.2: Effect of schedule modification process 
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The results of the case study indicated that aggregation with extended work windows can 

provide long-term cost savings whether a detour is available or not (Figure 8.3, detailed values 

 Table 8.1: Select case study parameters 

 Factor Value  
 Planning period 50 years  
 Discount rate  9.61%1   
 Route length 100 miles2  
 Route and detour speed limit 40 mph2  
 Annual Tonnage 30 MGT  
 Trains per day 12  
 Train delay cost  $950 per train-hour3  
 Millage  $0.002 per ton-mile2,4   
 Detour additional cost  $2,000 per detour4  
 Additional distance due to detour  100 miles2  

 1. (Surface Transportation Board 2016) 
2. 1 mile = 1.6 km 
3. From Chapter 3 
4. (Burns & Franke 2005b) 

 

 

Figure 8.3: Present value of 50-year life cycle cost 
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are given in Appendix J). While there are minor direct maintenance cost savings from 

aggregation, the main benefits come from maintenance related delay costs. These benefits are 

particularly noticeable when a detour is available and occur because maintenance is being 

performed more efficiently and requires less overall track time. The availability of detours 

reduces the delay costs during the maintenance outage and removes the cascading delay except 

when associated with the post-maintenance-seasoning period.  

Allowing for schedule modification further reduces costs because there are more 

opportunities for aggregation. When comparing between the schedule modification alternatives, 

aggregating maintenance in the first-year results in the lowest costs. These savings are due to the 

reduction in slow order costs because maintenance is being performed earlier. When 

maintenance is deferred for aggregation, the disruption costs increase slightly, but there is a 

reduction in maintenance related costs because the expenditures occur later. Aggregating to a 

middle year results in a slightly higher cost than the last year aggregation. While it is not obvious 

why this occurs, it is likely due to how the schedule adjustments take place. The middle-year 

aggregation results in more incidents of maintenance being performed without the substantial 

disruption cost savings associated with the first-year aggregation method.  

In contrast to the analysis in Chapter 4, slow orders are a dominant cost component, while 

acute disruptions are extremely small. This is partly due to the improved slow order impact 

model from Chapter 5. The reduction in acute disruption costs is likely due to the decreased 

derailment rate that has been observed over recent years and the more detailed derailment rates 

used (Association of American Railroads 2016a, 2016b; Liu et al. 2017).  
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8.6 Conclusions and Future work 

This chapter enhanced the risk-based maintenance-costing model presented in Chapter 7 by 

including maintenance aggregation and detours. Several maintenance schedules with varying 

aggregation methodologies were evaluated using the cost model and found that the deciding 

factor in the least-cost-scheduling regimen is train delay, although maintenance aggregation 

alone can reduce the overall cost of a maintenance plan. Specific circumstances will dictate the 

optimal maintenance regimen, but this analysis indicates that when aggregation is used, 

maintenance activities should be rescheduled to the earliest year.  

One key area of future research will focus on optimizing the maintenance schedule using the 

risk-based cost model and will be discussed in Chapter 9. Other work can be done to expand the 

applicability of the model that is beyond the scope of this dissertation. It would include gathering 

improved data on the costs to perform maintenance for different components, levels of 

aggregation, and work window lengths. This will provide a better understanding of the costs and 

benefits of performing maintenance under different circumstances and when schedule 

modification is most applicable. As mentioned in other chapters, improving the disruption risk 

models will provide better estimates and give a better understanding of the effects of  

schedule adjustments.  
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CHAPTER 9.  

MULTI-ROUTE TRACK MAINTENANCE PLANNING OPTIMIZATION MODEL 
USING SIMULATED ANNEALING  

9.1 Introduction 

In this chapter, I develop an optimization model for multi-route track maintenance planning 

using the risk-based model developed in previous chapters. As discussed throughout this 

dissertation, the evaluation of a track maintenance plan requires consideration of both direct and 

indirect costs, and this extends to its optimization. Understanding how and when track-related 

service disruptions are expected to occur can help ensure proper timing of capital maintenance. 

This is related to the DCF-trap concept in which increased disruption risks due to further track 

degradation need to be balanced against the potential benefits of delaying maintenance expense 

(See Chapters 1 and 8). The model optimizes the timing, level of maintenance aggregation, and 

detours for multiple track segments over a multi-year planning period. In optimizing the 

maintenance plan for a network, the scope should also include maintenance equipment routing 

costs to ensure that resources are effectively utilized (See Chapter 2). The model presented here 

uses a simplified equipment routing cost approach to demonstrate how resource utilization could 

be considered. Since the model is complex and highly non-linear, a metaheuristic was applied to 

find a near optimal solution.  

9.2 Optimization model formulation 

The multi-route track maintenance planning optimization model follows the general forms 

introduced in Chapters 7 and 8. Total cost during the planning period as calculated by the 

objective function (Equation 9.1 – 9.2) is minimized subject to a budget constraint (Equation 

9.4), equipment utilization constraint (Equation 9.5), and binary selection constraint (Equation 
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9.6). The model formulation considers multiple routes and includes equipment routing costs 

(Equation 9.3). Model indices (Table 9.1), decision variables (Table 9.2), inputs (Table 9.3), and 

intermediate calculated parameters (Table 9.4) are largely the same as in Chapters 7 and 8 with 

modifications for double track and multiple routes. When the model is solved, the minimum-cost 

maintenance plan is described by the binary decision variables xijk, ajkw, and bjk indicating the 

track component maintenance activities to conduct, type of aggregation, and whether a detour is 

used on each route during each year of the planning period. 

min𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 
s.t.  9.1 
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Table 9.1: Model indices 

Index Definition 
i Index for track components, {Rail, Crossties, Ballast} 
j Set of years in the analysis period 
k Set of routes being planned 
w Set of window length options, {1 = 7.5 hours, 2 = 24 hours, 3 = 7 days} 

 

Table 9.2: Model decision variables 

Variable Definition 
xijk Binary indicator for maintenance being performed on component i in year j 

on route k 
ajkw Binary indicator for if aggregation on window type w in year j on route k 
bjk Binary indicator for if a detour was selected for use in year j on route k 
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Table 9.3: Model input parameters 

Parameter Definition 
C’Gj Average cost to transport equipment between maintenance activities in year j 
CBM Direct cost to repair a rail break 

CBudgetj Direct maintenance budget in year j 
CDjk Train delay cost in year j on route k 
CJiw Direct cost per mile to perform maintenance on component i on window type w 
CKjk Hourly cost of an additional crew member in year j on route k 
CP Detour planning cost 

CSODi Direct cost to correct a slow order causing a defect in component i 
CSw Direct cost per mile to surface the track on window type w 
CTjk Millage in year j for route k ($ per ton-mile1) 

CXD,Rail Average broken-rail-caused derailment cost 
CXli Average derailment cost due to component i in track class l 
djk Binary indicator for if route k has two mainline tracks 
LLjk Detour length in year j on route k 
LRjk Route length in year j on route k 
LSO Length of an individual slow order 
NAjk Annual tonnage in year j on route k (million gross tons (MGT)) 
NEij Number of jobs equipment for maintenance type i can accomplish in year j 
NRail Number of rail sections per mile1 

PX,Rail Probability of a derailment given a rail break 
PXli Proportion of derailments on track class l caused by component i 

QMiw Number of work windows per mile1 required to maintain component i on window 
type w 

QSw Number of work windows required to surface the track on window type w 
r Discount rate 

RXl Derailment rate on track class l (billion gross ton-miles1) 
S1 Single-track delay (19.52062) 
S2 Delay mitigation constant (19.1492) 

TDMJ2jk Double-track delay on route k in year j 
TEik Average length of time a slow order due to component i is left in place on route k 
TIijk Inspection interval for component i in year j on route k 
U Congestion factor (0.0471 (Sogin et al. 2016))  

VLjk Detour operating speed in year j on route k 
VNjk Normal route operating speed in year j on route k 

yRail,jk Years since rail replacement in year j on route k 
αRail Weibull shape factor 
βRail Weibull scale factor 
ΔNjk Average tonnage between rail inspections in year j on route k (MGT) 
θ Minimum inspection interval 
λ Orringer model proportionality factor 

1. 1 mile = 1.6 km 
2. (Sogin et al. 2016) 
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Table 9.4: Model calculated parameters 

Parameter Definition 
CDMjk Cost of delay due to maintenance activities in year j on route k 
CGj Equipment routing costs in year j 
CLjk Detour cost per window in year j on route k 
CMjk Cost to perform maintenance in year j on route k 
CSOjk Slow order cost in year j on route k 
CTotal Total cost associated with the track performance during the planning period 
CXjk Average acute disruption cost in year j on route k 

PSOijk Proportion of the track slow ordered during year j on route k 

QEjk Total number of work windows per mile1 required to complete all activities in 
year j on route k 

RBjk Annual rail break rate per mile1 in year j on route k 

RSOijk Slow order rate per mile1-year according to the models in Chapter 6 for 
component i in year j on route k 

TBMjk Post-maintenance seasoning train delay per window in year j on route k based on 
the selected maintenance activities and aggregation when a detour is used 

TDBjk Train delay due to a rail break in year j on route k based on Chapter 5 
TDMJ2jk Double-track delay on route k in year j 
TDMjik Train delay per window for component i in year j on route k from Chapter 5 

TDSjk Surfacing train delay per window in year j from Chapter 5 on a normal  
work window 

TDSOij Train delay based on Chapter 5 with parameters associated with this line 
TDXjk Train delay costs due to a derailment in year j on route k based on Chapter 5 
TMjk Work window length selected in year j on route k 
TMw Work window length for window w 
1. 1 mile = 1.6 km 

The formulation enhances the model described in Chapter 8 by considering multiple 

segments in a network. Since maintenance is typically planned and performed over a network 

rather than a single line, this model calculates the cost of the maintenance plan for multiple lines 

subject to an overall network budget. Another enhancement is the inclusion of maintenance 

equipment routing costs to reach each project site. Rather than develop a complex routing model 

that requires a detailed network with exact travel distances, an average equipment routing cost 

per deployment (project) is used. As discussed in Chapter 2, incorporating both degradation and 

routing is necessary to fully quantify the costs of a maintenance plan. The use of a simplified 
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model helps demonstrate how equipment routing costs can be incorporated once a satisfactory 

one has been developed or identified.  

The direct maintenance cost calculation (Equation 9.7) has the same general form as 

presented in Chapter 8, except a new factor is included to multiply the cost by two if there are 

two mainline tracks on a route. This factor does not apply to passing sidings, as they typically 

have lower maximum allowable speeds and correspondingly less capital maintenance 

requirements than the main track.  

𝐶𝐶𝑀𝑀𝑗𝑗𝑀𝑀 = 𝐿𝐿𝑅𝑅𝑗𝑗𝑀𝑀�1 + 𝑑𝑑𝑗𝑗𝑀𝑀��𝑎𝑎𝑗𝑗𝑀𝑀𝑗𝑗 ��𝑥𝑥𝑖𝑖𝑗𝑗𝑀𝑀𝐶𝐶𝐽𝐽𝑖𝑖𝑗𝑗
𝑖𝑖

− 𝑥𝑥𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑖𝑖𝐵𝐵,𝑗𝑗𝑀𝑀𝑥𝑥𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇,𝑗𝑗𝑀𝑀𝐶𝐶𝑆𝑆𝑗𝑗�
𝑗𝑗

,∀𝑗𝑗, 𝑘𝑘 9.7 

 
Disruption costs (Equations 9.8 – 9.11) have the same general form as in Chapters 7 and 8 

but the equations were modified to include a multiplier for a second main track. Equation 9.8 

calculates direct and delay costs associated with slow orders. The crosstie slow order probability 

from Chapter 6 was modified slightly to consider the exact maintenance timing determined by 

the algorithm rather than assume the standard renewal interval. Equation 9.9 calculates acute 

disruption costs. Equation 9.10 calculates the number of rail breaks for determining rail-caused 

acute disruptions. Equation 9.11 calculates the proportion of the track that is operated at a lower 

track class for determining crosstie- and ballast-caused acute disruptions. This formulation 

assumes that routes with two mainline tracks have evenly-distributed, directional traffic, and 

trains are not diverted to the other main track when a slow order is in place. During an acute 

disruption, it is assumed that both tracks are removed from service to ensure that repairs can be 
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made as quickly and safely as possible. Thus, a slow order only affects trains operating in one 

direction while an acute disruption impacts all trains on a route. 
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9.9 

𝑅𝑅𝐵𝐵𝑗𝑗𝑀𝑀 = 𝑁𝑁𝑅𝑅𝑇𝑇𝑖𝑖𝑇𝑇𝜆𝜆�𝛥𝛥𝑁𝑁𝑗𝑗𝑀𝑀 − 𝜃𝜃�

�𝑒𝑒−�
𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐴𝐴𝐴𝐴

𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
�
𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

− 𝑒𝑒
−�

𝑁𝑁𝐴𝐴,𝐴𝐴𝐴𝐴�𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐴𝐴𝐴𝐴+1�
𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�
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�
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9.10 

𝑃𝑃𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝑀𝑀 = min�𝐿𝐿𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆𝑖𝑖𝑗𝑗𝑀𝑀𝑇𝑇𝐸𝐸𝑖𝑖𝑀𝑀, 1� , ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘 9.11 

The maintenance delay cost calculation (Equations 9.12 – 9.17) is modified from previous 

chapters to account for differences in delay between single and double track. Equation 9.12 

calculates maintenance-caused train delay for independent activities, aggregation, and detours, 

for both single and double track. Equation 9.13 calculates the number of work windows required 

to complete the planned maintenance based on the level of aggregation and planned activities. 

Equation 9.14 calculates the detour related costs. Equation 9.15 calculates the work window 

length based on the values of aijw. When a detour is not used, the parametric-delay model from 

Chapter 4 is used to determine the double-track delay (Sogin et al. 2016), and the model from 

Chapter 5 estimates the post-maintenance slow order delay (Equation 9.16). If a detour is used 
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on a double-track line, the detour model from Chapter 8 is used, but the effects of the post-

maintenance slow order will be doubled because both tracks will not be maintained at the  

same time.  

𝐶𝐶𝐷𝐷𝑀𝑀𝑗𝑗𝑀𝑀 = 𝐿𝐿𝑅𝑅𝑗𝑗𝑀𝑀 �𝑎𝑎𝑗𝑗𝑀𝑀1𝐶𝐶𝐷𝐷𝑗𝑗𝑀𝑀�1 − 𝑏𝑏𝑗𝑗𝑀𝑀�

× ��1 − 𝑑𝑑𝑗𝑗𝑀𝑀� ��𝑥𝑥𝑖𝑖𝑗𝑗𝑀𝑀𝑄𝑄𝑀𝑀,𝑖𝑖,1𝑇𝑇𝐷𝐷𝑀𝑀𝐽𝐽𝑖𝑖𝑗𝑗𝑀𝑀
𝑖𝑖

− 𝑥𝑥𝐶𝐶𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝑇𝑇𝑖𝑖𝐵𝐵,𝑗𝑗𝑀𝑀𝑥𝑥𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇,𝑗𝑗𝑀𝑀𝑄𝑄𝑆𝑆,1𝑇𝑇𝐷𝐷𝑆𝑆𝑗𝑗𝑀𝑀�

+ 𝑄𝑄𝐸𝐸𝑗𝑗𝑀𝑀𝑑𝑑𝑗𝑗𝑀𝑀𝑇𝑇𝐷𝐷𝑀𝑀𝐽𝐽2𝑗𝑗𝑀𝑀�

+ 𝑄𝑄𝐸𝐸𝑗𝑗𝑀𝑀�1 − 𝑎𝑎𝑗𝑗𝑀𝑀,1� �𝐶𝐶𝐷𝐷𝑗𝑗𝑀𝑀�1 − 𝑏𝑏𝑗𝑗𝑀𝑀� ��1 − 𝑑𝑑𝑗𝑗𝑀𝑀�𝑇𝑇𝐷𝐷𝑀𝑀𝑗𝑗𝑀𝑀 + 𝑑𝑑𝑗𝑗𝑀𝑀𝑇𝑇𝐷𝐷𝑀𝑀𝐽𝐽2𝑗𝑗𝑀𝑀�

+ 𝑏𝑏𝑗𝑗𝑀𝑀�𝐶𝐶𝐿𝐿𝑗𝑗𝑀𝑀 + 𝐶𝐶𝐷𝐷𝑗𝑗𝑀𝑀�1 + 𝑑𝑑𝑗𝑗𝑀𝑀�𝑇𝑇𝐵𝐵𝑀𝑀𝑗𝑗𝑀𝑀��� , ∀𝑗𝑗,𝑘𝑘 
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9.3 Solution techniques 

The multi-route maintenance planning optimization model detailed in the previous section 

includes the time value of money and a number of non-linear sub-modules. Additionally, the 

sub-modules for calculating train delay and slow order risk are complex with layers of equations. 

Due to these factors, the model cannot be solved using linear methods and a metaheuristic  

is developed. 

Metaheuristics “orchestrate an interaction between local improvement procedures and 

higher-level strategies to create a process capable of escaping from local optima and performing 

a robust search of a solution space” (Gendreau & Potvin 2010a). This is done by making minor 

changes to an initial solution and exploring some sub-optimal intermediate results with the 

understanding that they might lead to the true optimum. While metaheuristics do not guarantee a 

globally optimal solution, they provide a way to improve an initial feasible solution for complex 

problems that cannot be solved using exact methods (Hillier & Lieberman 2015).  

For the track maintenance planning problem, the initial feasible solution is a base 

maintenance plan. A metaheuristic makes modifications to maintenance timing, level of 

aggregation, and detour use to see if different combinations reduce the total cost of the 

maintenance plan. As shown in Chapter 8, it is not always obvious if it is better to advance or 

defer maintenance to take advantage of aggregation. Using a metaheuristic can allow exploration 

of both options. There are several common metaheuristics that are potential solution approaches 

for the track maintenance planning problem. The following sections introduce three of the most 

popular metaheuristics and describe their applicability.  
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The tabu search (TS) has been widely studied and shown to provide results that are close to 

optimal for many types of problems (Gendreau & Potvin 2010b). TS searches for new alternative 

solutions that provide the greatest improvement or least digression from the existing solution. To 

prevent the TS algorithm from working back toward a local optimum, a “tabu list” of previous 

changes is kept. The model is not allowed to undo a change on the tabu list unless doing so 

provides a better result than any other alternative. This approach allows the TS to focus the 

search by evaluating changes in new areas of the solution space. The search is terminated when 

certain user-defined criteria are met, such as the number of iterations, time elapsed, or 

consecutive iterations without improvement (Hillier & Lieberman 2015). While this method has 

been shown to provide near-optimal results (Gendreau & Potvin 2010b), several iterations are 

typically required to search for paths out of local optima rather than globally searching for the 

optimum (Hillier & Lieberman 2015).  

Simulated annealing (SA) is a metaheuristic that is frequently used in discrete optimization. 

The SA procedure is modeled after the annealing of crystalline structures where they begin at a 

high temperature and are cooled slowly to remove defects (Nikolaev & Jacobson 2010). SA 

modifies an initial solution, like the tabu search, but rather than performing small, local searches, 

changes are made to explore the entire solution space. Improved solutions are kept, but sub-

optimal ones have a certain probability of being used in the next iteration based on an initial 

“temperature.” The temperature is high initially and results in a high probability of the algorithm 

accepting an inferior solution as the base for the next iteration. With each iteration, the 

temperature decreases, and the algorithm is less likely to accept an inferior solution. The process 

ends when there are a consecutive number of iterations without improvement below a user-

defined minimum temperature (Hillier & Lieberman 2015).  
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Genetic algorithms (GAs) follow a fundamentally different method than the TS or SA 

approaches. They are based on the evolutionary concept that combining the “genes” from well-

performing solutions can combine to produce better ones (Reeves 2010). Rather than making 

adjustments to a single solution, GAs make comparisons within a population. Each solution in 

the population has a genetic code corresponding to values of the decision variables and is 

assigned a level of desirability based on how well it meets the objective function. In each 

iteration, a new population is randomly developed by repeatedly combining the genetic 

information from two solutions to form new ones. The most desirable parent solutions have a 

higher probability of reproducing with the expectation that they will provide better “children” in 

the next iteration. Mutations, or random changes to the genetic code (values of the decision 

variables), are also applied to the population to allow for a broader search of the solution space. 

The process terminates in a manner similar to a TS (Hillier & Lieberman 2015).  

Each of these metaheuristics has been used in the rail industry and in other maintenance 

planning applications. GAs have been used in a variety of maintenance planning situations (Lapa 

et al. 2006; Yang et al. 2008; Chen et al. 2014), and all of the methods have been used for train 

scheduling and routing (Burdett & Kozan 2006; Tormos et al. 2008; Corman et al. 2010; Sogin et 

al. 2012; Yang et al. 2012; Jamili et al. 2012; Niu & Zhou 2013; Dündar & Şahin 2013; Barrena 

et al. 2014; Sun et al. 2014; Xu et al. 2014; D’Ariano et al. 2014; Dewilde et al. 2014; Martínez-

Salazar et al. 2014; Assadipour et al. 2015; Zhao et al. 2015; Kang et al. 2015).  

When used in railway maintenance planning, metaheuristics have primarily been used for 

short-term planning and typically within a timetable (Higgins 1998; Lake et al. 2002; Soh et al. 

2012; Zhang et al. 2013; Baldi et al. 2016). GAs have been used for longer-term maintenance 

planning (Grimes 1995; Zhao et al. 2009; Camci 2015) and inspection timing (Podofillini et al. 
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2006; Konur et al. 2015). The maintenance planning models cited here only look at the activities 

to be performed in their objective functions but do not consider how the maintenance is being 

performed. As shown in Chapter 8, window length, aggregation, and the use of detours can also 

affect the desirability of a maintenance plan. Having multiple independent decision variables 

makes it difficult to generate the genetic code required to apply a GA.  

The TS is also unsuitable for application with the costing model described here because 

making local changes to the schedule only changes the timing on one line in the network and 

only over one small time period. Since the maintenance plans on each route are only linked 

through equipment and budget constraints, the changes to one route made by the TS are unlikely 

to cause the algorithm to explore new solutions on other routes in the network. These properties 

of the multi-route track maintenance planning problem will likely lead the TS to a local optimum 

for each route and make it difficult for the TS to effectively optimize the entire system.  

SA overcomes the problems with both TS and GA because it can make changes to any 

decision variable rather than trying to combine solutions or look in a localized part of the 

solution space. Also, the maintenance planning model formulated in this chapter is a discrete 

optimization and SA is frequently used for solving these types of models  

(Nikolaev & Jacobson 2010).  

9.4 Metaheuristic solution to maintenance planning model 

To solve the multi-route track maintenance planning problem using a metaheuristic 

approach, an SA algorithm (Figure 9.1) is applied to improve an initial feasible solution 

consisting of a baseline track maintenance plan. During each iteration, the baseline maintenance 

plan is altered by making a random change to the current schedule. If the new maintenance plan  

169



does not violate the constraints, it is evaluated according to the objective function. If the new 

plan has lower costs than the current one, the new plan replaces it. If the new plan has higher 

costs, it has an acceptance probability based on the current temperature (Equation 9.17). This is 

how the SA works away from local optima towards a globally optimal solution. With each 

iteration, the temperature is reduced (Equation 9.18) until there are a set number of iterations 
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No
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Improved 
solution?
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Figure 9.1: Simulated annealing flow chart 
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with no improvement below a user defined minimum temperature. As the temperature is 

reduced, the SA is less accepting of sub-optimal results. The values of the decision variables for 

the best performing solution are taken as the maintenance schedule for the multi-route track 

maintenance planning problem. 

𝑃𝑃𝑁𝑁 = exp �
𝑍𝑍𝐶𝐶 − 𝑍𝑍𝑁𝑁

𝑇𝑇 � 9.17 

𝑇𝑇′ = 𝑇𝑇𝛼𝛼 9.18 
Where:  

PN – acceptance probability for the new plan 
ZC – cost of the current solution 
ZN – cost of the new solution 
T – current temperature 
T’ – temperature for the next iteration 
α – temperature reduction factor  

The SA algorithm operates under the same assumptions as in Chapter 8. Long work 

windows and aggregation are only used when multiple maintenance activities are being 

performed in the same year. Detours can only be applied when long work windows and 

aggregation are used. If aggregation is used without a detour, the windows are limited to 24 

hours. During each iteration, the SA algorithm may shift a maintenance activity one year earlier 

or later or elect to use (or not use) an available detour. These assumptions limit the potential 

changes available to the SA algorithm. Limiting the available changes leads to faster 

convergence to a solution by reducing the number of decision variables since work window 

length becomes a function of the number of activities being performed and detour use. 

9.5 Case study 

To demonstrate the multi-route track maintenance planning model and SA solution process, 

the model was applied to a representative case study network of four rail lines. The four routes 

are identical except for double track and available detours. The four combinations of double 
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track and detour characteristics allow for a comparison of optimal maintenance plan solutions 

across these common operating conditions.  

Each 20-mile (32-km) case study route has 30 MGT of traffic annually on Federal Railroad 

Administration Class 3 track (40 mph (64 km/h) maximum speed) with approximately 12 trains 

per day and 65-percent capacity utilization. In the absence of a manually created base 

maintenance plan, the number of years since capital maintenance was last performed can be used 

with normal maintenance cycles. For this case study, time since previous capital maintenance 

was assumed to ensure all activities would be scheduled for maintenance and there would be 

reasonable opportunities for aggregation using assumed normal maintenance cycles (Table 9.5). 

The values from Table 9.5 were used to develop a base maintenance plan (Table 9.6). As 

discussed in Chapter 7, running an optimization model over an extended planning period would 

likely be computationally time restrictive, so the time frame was limited to 10 years. Other 

parameters are the same as in other chapters and are also presented in Appendix K. Based on 

Table 9.5: Capital maintenance parameters (years) 

 Rail Crossties Ballast 
Assumed time since last capital maintenance 15 3 2 
Normal capital maintenance cycle 20 9 4 

Table 9.6: Base maintenance plan for all routes 

 xijk bjk ajkw 
Year Rail Crosstie Ballast Detour 7.5 hours 24 hours 7 days 

0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
2 0 0 1 0 1 0 0 
3 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 
5 1 0 0 0 1 0 0 
6 0 1 1 0 0 1 0 
7 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 
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these assumptions, the initial schedule had a combined network cost of approximately $1.2 

billion over the 10-year planning period.  

To determine the most efficient SA parameters, a range of T and α were tested to find the 

best combination of minimized cost and solution time. Since the SA process is random, there is 

no guarantee that a single combination of T and α will always provide the best solution, so the 

combinations were tested multiple times to find average results. Exact results from individual 

model runs are in Appendix L.  

Test results show that neither higher initial T nor α values ensure lower cost maintenance 

plans (Table 9.7) but always increase model runtimes (Table 9.8). These tables use heat maps to 

visually indicate preferred results. Since longer runtimes did not necessarily result in lower costs, 

the average percent improvement per minute was calculated as well (Table 9.9). The heat map in 

Table 9.9 is reversed from Tables 9.7 and 9.8 because higher values are more desirable.  

Table 9.7: Average minimum maintenance plan costs (1x109 dollars) 

1E+06 1E+07 1E+08 1E+09 1E+10 1E+11 1E+12 1E+13 1E+14
0.85 1.19 1.19 1.19 1.18 1.16 1.16 1.19 1.16 1.18
0.90 1.19 1.19 1.17 1.15 1.17 1.18 1.16 1.18 1.18
0.95 1.17 1.17 1.14 1.15 1.17 1.17 1.18 1.19 1.20
0.99 1.14 1.12 1.12 1.18 1.18 1.21 1.21 1.20 1.21

Initial T 

α

 
Table 9.8: Average model runtimes (minutes) 

1E+06 1E+07 1E+08 1E+09 1E+10 1E+11 1E+12 1E+13 1E+14
0.85 3 4 4 5 5 6 6 7 7
0.90 5 6 6 7 8 9 9 10 11
0.95 10 11 13 14 16 18 20 21 22
0.99 50 57 66 74 82 89 97 105 112

α

 
 

173



One benefit of a short solution time is that the model can be run multiple times and the 

solutions evaluated rather than having the model run for an extended time on a sub-optimal path. 

Since no single run of the SA algorithm can guarantee a lower cost than any other, running the 

model multiple times may be a more cost-effective way to find a least-cost maintenance plan 

than a single long run. Normalizing the cost improvement by the model run time is one way to 

help the user balance longer runtimes with the likelihood of an improved result. Based on the 

average percent improvement per minute of model run time, the best combination of T and α 

appears to be an initial T of 1 x 1010 and an α of 0.85. If an organization is more interested in 

simply finding the lowest cost maintenance plan than how long it takes to get the result, the best 

combination is an initial T of 1 x 108 and an α of 0.99. Tests should be performed on specific 

applications to determine the best combination based on the user's objectives. 

One of the best solutions found during the testing process provided a total cost of just over 

$1.1 billion. The initial T was 1 x 1013 with an α of 0.9 and a solution time of 11 minutes. While 

this solution had a cost reduction of almost 10-percent from the base plan, a second run resulted 

in only a six-percent cost improvement. This shows the variability between individual model 

runs and a potential benefit of running the model multiple times to find improved solutions. 

While this solution is different from the optimal initial T’s and α’s above, it is presented to 

Table 9.9: Average percent cost reduction per minute  

1E+06 1E+07 1E+08 1E+09 1E+10 1E+11 1E+12 1E+13 1E+14
0.85 1.02 0.99 0.85 0.90 1.17 0.99 0.53 0.94 0.56
0.90 0.77 0.62 0.84 0.90 0.68 0.47 0.63 0.40 0.38
0.95 0.52 0.44 0.57 0.48 0.33 0.28 0.23 0.18 0.12
0.99 0.16 0.16 0.13 0.06 0.05 0.02 0.02 0.03 0.02

Initial T 

α
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demonstrate the solution output diversity by the model as shown by their differing optimized 

maintenance plans (Tables 9.10 – 9.13).  

Table 9.10: Maintenance plan for the single-track route with a short detour 

 xijk bjk ajkw 
Year Rail Crosstie Ballast Detour 7.5 hours 24 hours 7 days 

0 0 0 0 0 0 0 0 
1 0 0 1 0 1 0 0 
2 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 
4 0 1 1 1 0 0 1 
5 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
7 1 0 1 1 0 0 1 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 

 
Table 9.11: Maintenance plan for the single-track route with a long detour 

 xijk bjk ajkw 
Year Rail Crosstie Ballast Detour 7.5 hours 24 hours 7 days 

0 0 0 0 0 0 0 0 
1 0 0 1 0 1 0 0 
2 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 
5 1 0 1 1 0 0 1 
6 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 
8 0 0 1 0 1 0 0 
9 0 0 0 0 0 0 0 

 
Table 9.12: Maintenance plan for the double-track route with a short detour 

 xijk bjk ajkw 
Year Rail Crosstie Ballast Detour 7.5 hours 24 hours 7 days 

0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 
3 1 0 1 1 0 0 1 
4 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
7 0 1 1 1 0 0 1 
8 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 
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Table 9.13: Maintenance plan for the double-track route with a long detour 

 xijk bjk ajkw 
Year Rail Crosstie Ballast Detour 7.5 hours 24 hours 7 days 

0 0 0 0 0 0 0 0 
1 0 0 1 0 1 0 0 
2 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 
6 0 1 1 1 0 0 1 
7 0 0 0 0 0 0 0 
8 1 0 1 1 0 0 1 
9 0 0 0 0 0 0 0 

 
The optimized maintenance schedules resulted in decreased total costs for each route but did 

not necessarily reduce every cost category (Figure 9.2, see Appendix M for exact costs). All 

routes had higher direct maintenance costs, typically due to the addition of a ballast maintenance 

activity to the maintenance plan. The exception is the double-track route with a short detour 

where the cost increase was due to rail maintenance being performed earlier in the planning 

 

Figure 9.2: Comparison of base and optimized maintenance plan costs  
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period. In most cases, the increased maintenance costs are offset by substantial decreases in slow 

order costs. Since slow orders make up the majority of the maintenance plan costs, adding a 

planned maintenance activity to decrease the disruption risk decreases the total cost of the plan. 

Since additional maintenance was added on most of the routes, the base maintenance cycles may 

need to be reevaluated to see if adjustments can reduce risk in the base maintenance plan. As in 

previous chapters, the acute disruption costs were relatively small due to recent improvements in 

the track-caused derailment rate.  

Comparing the results for different routes leads to additional observations: 

• For both short detour routes, the maintenance-caused train delay costs decrease, with 

a reduction of over 85 percent on the double-track route. These reductions were 

achieved by aggregating nearly all maintenance events and using detours.  

• The double-track short-detour route did not experience a decrease in slow order 

costs. This shows that additional disruption risk can be tolerated if there is enough 

benefit from decreased costs in other categories to reduce the overall cost.  

• For the long-detour routes, there was a slight increase in delay costs due to the added 

maintenance events.  

• Both long-detour routes utilized the detour when aggregation was used. For the 

single-track route, even a substantial detour was more favorable than stopping traffic 

and having cascading delays. Based on the findings in Chapter 4, it was hypothesized 

that the double-track route would not have found the long detour to be cost effective. 

This suggests that the extended work window greatly diminished the operational 
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capacity of the double-track route and maintaining traffic flow on a much longer 

detour route was more favorable than the additional delay associated with the 

reduced amount of double track. This result may indicate the parametric model used 

to estimate train delay is poorly calibrated for the length of the case study route. 

For this case, the budget and resource constraints did not to restrict the solution. This is 

partly because all four routes started with the same plan, so the resource limit had to be high 

enough to allow each activity to be performed on all routes in the same year. Even though the 

constraints did not limit the number of maintenance activities in a year, the model shifted 

maintenance so they occur on different routes in different years. This shows the potential for an 

optimized multi-route maintenance plan to be different than the optimal maintenance plan for 

each individual route. Further study examining a wider range of routes and initial maintenance 

plans could give more insights into how consideration of an entire network affects an optimal 

maintenance plan.  

9.6 Conclusions and future work  

This chapter describes a multi-route railroad track maintenance planning optimization model 

that integrates the work from the preceding chapters of this dissertation. Simulated annealing was 

applied to generate a solution for the model and minimize the total cost of the maintenance plan 

over a planning period. While SA does not guarantee a globally optimal solution, having an 

automated approach removes the inefficiency of manually making minor adjustments to 

maintenance schedules to see if there is an opportunity for improvement. The SA approach is 

also capable of evaluating schedule adjustments that might not normally be considered by 

practitioners but can further reduce costs.  
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The case study demonstrates how the model adjusts the schedule on the four different lines 

in different ways to reduce the overall total maintenance plan costs. The differences between the 

four plans are partially due to the different route characteristics but also the random nature of SA 

and consideration of equipment-routing costs. Since the random selection process may not try 

every adjustment that might reduce costs, the final solution may still present opportunities to 

further reduce costs. For example, if a route has a favorable detour that is not selected, 

maintenance planners can use their practical knowledge of the system to improve the plan. As 

another example, if similar lines have different maintenance plans in the final solution, the plans 

can be compared to identify potential areas for improvement. While equipment constraints did 

not limit the possible solutions, the inclusion of equipment-routing costs may have resulted in 

maintenance being performed in different years for different routes to reduce the overall costs.  

After the model was completed, I realized that the formulation could be simplified to 

remove some of the non-linearity. This could be accomplished by replacing the decision 

variables, xijk, bjk, and ajkw, with a single variable vector that represents each combination of 

maintenance activities, detour use, and level of aggregation. Equations 9.7 and 9.12 could then 

be simplified to sum over the single decision variable. A similar approach could be taken with 

the disruption costs by having a variable based on the number of years since capital maintenance 

was last performed. This approach would require more pre-processing to enumerate every 

combination of maintenance and execution alternatives and calculating the associated costs. 

While this approach will be more intensive before running the model, removing the non-linearity 

associated with calculating the component costs will simplify the optimization and reduce the 

model run times.  
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Although the model presented in this chapter is functional, additional work will improve its 

applicability to a wider range of maintenance planning scenarios. To further integrate the 

practicalities of the detailed maintenance planning process, an improved equipment routing 

model should be developed or adapted. One way to implement a simple routing model would be 

to divide the planning period into months instead of years. The model could then consider when 

during the year maintenance is scheduled and develop a general route for the equipment. This 

month-based approach could also allow for constraints related to travel time between 

maintenance activities, the time of year maintenance can be performed on certain routes, and 

more exact scheduling of activities to be aggregated on the same route. 

Other improvements are related to the treatment of double-track delay and detour costing. 

Further study is needed to determine the best way to quantify delay when maintenance is 

performed on double track. The model from Chapter 5 could be adapted for this purpose, but 

simulations would be required to calibrate the capacity adjustment factors. An additional 

consideration is that detouring all traffic during a maintenance event may not be necessary or 

desirable. An improved detour model could optimize how many and what types of trains should 

be detoured based on the detour and traffic characteristics. Additionally, the current detour 

costing formulation only considers rerouting onto a competing railroad; an available parallel 

route owned by the original railroad would likely be a lower-cost option. Determining these 

reroute costs requires a method to estimate delay and additional track degradation on the detour 

route, along with the additional operating costs for the detoured trains. This method could follow 

the same detour costing formulation used in this model by converting the costs on the detour line 

to a millage rate. While these topics are beyond the scope of this dissertation, they can improve 

both this model and the general understanding of maintenance costing.  
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CHAPTER 10.  

CONCLUSIONS AND FUTURE WORK 

10.1 Conclusions 

Track maintenance decision support tools have the potential to help railroads perform 

maintenance more efficiently. This would permit more effective use of the same budget or 

reduce maintenance expenditures. For these benefits to be realized, it is necessary to quantify all 

the costs associated with a maintenance plan, including indirect costs related to train delay and 

disruptions. Any analysis that fails to include these secondary costs is neglecting large portions 

of expenditures affected by maintenance timing. This is especially true when maintenance 

schedules are adjusted or initially determined because deferring maintenance increases disruption 

risk. This relates to the direct cash flow (DCF) trap discussed in Chapter 1 and the integrated 

maintenance planning framework described in Chapter 2.  

Integrating the track evaluation step of maintenance planning is required to account for 

disruption risk. Without having a way to determine the track condition or failure probabilities, it 

would be difficult, if not impossible, to quantify how adjustments to the maintenance plan affect 

disruption risk. Several chapters show that disruption risk is a large portion of track ownership 

costs, so not including it may result in maintenance being deferred and a higher overall cost of 

ownership. The same could be true with equipment routing costs. Optimizing the plan based only 

on maintenance and disruption costs could result in work being performed in disparate regions of 

the network. While this could be the ideal for those individual routes, it might be infeasible to 

transport equipment and crews between the maintenance sites or result in inefficient equipment 

routing. Since most of this dissertation is focused on maintenance of individual lines, equipment 
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routing costs are not generally considered. If multiple lines or sections of track are considered, as 

discussed in Chapter 9, equipment routing also becomes important to ensure that the all the 

scheduled maintenance can be performed and are being assigned efficiently.  

A cost related to both maintenance and disruptions is train delay. As shown throughout this 

dissertation, particularly in Chapters 6 and 7, delay can contribute a substantial portion of both 

maintenance and disruption costs. While these costs can be calculated in a variety of ways, 

consistency across all situations is necessary for reliable comparisons. The delay costing 

methodology in Chapter 3 and delay estimation model in Chapter 5 provide novel ways to 

estimate delay costs and ensure that the complete cost of delay is included.  

Finally, incorporating these into a risk-based costing model in Chapter 7 allows for a 

comprehensive view of a maintenance plan. Applying optimization tools to this model provides a 

way to improve the performance of a network while considering practical constraints such as the 

budget and equipment availability. Although the optimization model presented in Chapter 9 does 

not guarantee a globally optimal solution, it can find lower cost alternatives. Due to the random 

nature of simulated annealing, maintenance personnel may be able to use their experience and 

judgment to make simple changes and find an even lower cost maintenance plan. In the end, that 

is the point of decision support tools. They are not meant to replace personal experience, but 

rather to augment and enhance it by providing novel insights and objective analysis.  

10.2 Future work 

Much of the potential future work for this dissertation is related to the individual research 

components and is discussed in their respective chapters, but there are a few overarching 

concepts. One key area for improvement that is mentioned repeatedly throughout this 
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dissertation is the need for data either for validation or developing new models. Many of the 

models and cost data used throughout this dissertation are dated and may no longer be 

representative of current operations. Specific areas for which new data would be beneficial are 

development of new disruption models and validation of the direct maintenance costs models. 

Improved understanding of how disruption risk changes over time and based on operating 

conditions would help ensure that the costs to change maintenance schedules are accurately 

quantified. While the analyses in this dissertation assume that direct maintenance costs do not 

change through time and are relatively small, their timing directly affects the disruption risk. If 

direct maintenance costs in the model are higher than in practice, the model will likely be more 

tolerant of disruptions to balance the costs. Additionally, the relative costs for different work 

window lengths could have a large effect on the desirability of adjusting maintenance schedules 

to take advantage of aggregation. In both cases, the relative values between direct and disruption 

costs will drive the maintenance plan composition.  

A related topic that could use the concepts developed in this dissertation is determining 

optimal maintenance cycles. The assumed maintenance cycles used here are largely based on 

analysis or industry practice, but may not be ideal. Using a risk-based approach, the most cost-

effective maintenance cycles could be determined for specific components to balance the 

independent direct maintenance costs with the component-specific disruption risk. These 

improved independent cycles would provide a better starting point for the metaheuristic and 

result in a better final plan. If integrated track degradation models were found or developed, 

simplified risk-based costing could be done to optimize each of the component maintenance 

cycles. This initial plan could then be analyzed using the metaheuristic to determine how 

aggregation on long work windows or detours could further reduce costs.  
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In addition to improving the component parts of this research, further exploration of the 

integrated maintenance-planning framework would allow for a more comprehensive view of the 

maintenance plan costs. This dissertation focused on the evaluation of a maintenance plan that 

ended up requiring degradation models to determine disruption risk, but the maintenance routing 

step is not as integrated. The optimization model in Chapter 9 included a simplified routing cost 

model. Development or adoption of a more robust method to assess equipment routing cost 

would provide better overall maintenance plan costs and allow for more effective solutions. Even 

though degradation models were adapted and developed for use in this research, they can be 

further improved. This work could consist of improved track-component-specific models, or 

more ideally, one that comprehensively evaluates track condition. Continuously updating the 

models for each step of the maintenance planning process and their integration will allow an 

ever-improving understanding of the costs associated with a maintenance plan and how to  

reduce them.  
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APPENDIX A.  

TRAIN DELAY COST INPUT PARAMETERS 

Crew costs were computed using the service hours and total compensation from the Surface 

Transportation Board (STB) wage statistics for Group 600: Transportation (Train & Engine) 

(Surface Transportation Board 2016).  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑇𝑇 𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑤𝑤𝑇𝑇𝑐𝑐𝑇𝑇𝑐𝑐

𝑐𝑐𝐶𝐶𝐶𝐶𝑠𝑠𝑐𝑐𝑐𝑐𝐶𝐶 ℎ𝑇𝑇𝑜𝑜𝐶𝐶𝑐𝑐
 

=
6,066,189,000
176,453,620

 

= 34.38 

Locomotive fuel costs were calculated using the notch occupancy values (U. S. 

Environmental Protection Agency 1998) and fuel consumption rates (Frey & Graver 2012) 

(Table A.1). The weighted average was taken as the average hourly fuel use.  

Table A.1: Fuel use based on throttle notch position  

Throttle Position Notch occupancy (%)1 Fuel use (g/sec)2 
Idle 38.0 5.9 

Dynamic Brake 12.5 8.7 
1 6.5 11.5 
2 6.5 21.6 
3 5.2 44.9 
4 4.4 68.3 
5 3.8 89.2 
6 3.9 126 
7 3.0 154 
8 16.2 176 

Weighted average  52.26 
1. (U. S. Environmental Protection Agency 1998) 
2. (Frey & Graver 2012) 
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Using the conversion of 3,200 grams of diesel per gallon (Frey & Graver 2012), the average 

fuel consumption rate is 

𝑓𝑓𝑜𝑜𝐶𝐶𝑇𝑇 𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝑐𝑐 𝑐𝑐𝐶𝐶𝐶𝐶 ℎ𝑇𝑇𝑜𝑜𝐶𝐶 =
52.29
3200

 ×  3600 

= 58.79 𝑤𝑤𝑤𝑤𝑇𝑇/ℎ𝐶𝐶  

Locomotive operating expense was calculated by dividing the total locomotive expense 

including depreciation (Line 150 in the AAR Analysis of Class I Railroads) by the average 

number of locomotives per train (Line 725) and the total number of train hours (Line 712) 

(Association of American Railroads 2015). For 2014, this would be  

𝑂𝑂𝑐𝑐. 𝐶𝐶𝑒𝑒𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝐶𝐶 𝑐𝑐𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇 − ℎ𝑇𝑇𝑜𝑜𝐶𝐶 =
𝐿𝐿𝑇𝑇𝑐𝑐𝑇𝑇 𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇

𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑐𝑐
𝑇𝑇𝐶𝐶𝑤𝑤𝑐𝑐𝑐𝑐 × (𝑇𝑇𝐶𝐶𝑤𝑤𝑐𝑐𝑐𝑐 − ℎ𝑇𝑇𝑜𝑜𝐶𝐶)

 

=
4,865,608,000

2.7 ×  29,359,822
 

= 61.38 

 
Manifest revenue was calculated by taking the weighted average from the table below for all 

categories except “All Other” (Association of American Railroads 2015) (Table A.2). 
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Table A.2: Carloads and revenue by category (Association of American Railroads 2015) 

 Carloads originated Gross revenue (1,000s) 
533.  Grain (Including Soybeans)    1,467,498  5,607,375  
534.  Other Farm Products                136,742  526,075  
535.  Metallic Ores                      843,565  772,027  
536.  Coal  6,110,053  14,343,557  
537.  Crushed Stone, Gravel and Sand     1,310,531  3,451,898  
538.  Non-Metallic Minerals              272,290  562,888  
539.  Grain Mill Products                610,721  2,183,232  
540.  Food and Kindred Products          1,003,704  3,654,405  
541.  Primary Forest Products            108,640  175,643  
542.  Lumber and Wood Products           243,881  1,766,827  
543.  Pulp, Paper and Allied Products    714,199  2,342,380  
544.  Chemicals and Allied Products      2,233,456  10,440,277  
545.  Petroleum Products                 407,510  2,105,450  
546.  Stone, Clay and Glass Products     479,087  1,943,354  
547.  Coke                               200,598  433,601  
548.  Metals and Products                690,289  2,927,260  
549.  Motor Vehicles and Equipment       1,183,002  5,530,037  
550.  Waste and Scrap Material           594,480  1,312,277  
551.  Forwarder and Shipper Association  176,100  267,967  
Sum                    18,786,346 60,346,530 
 

𝑀𝑀𝑤𝑤𝑐𝑐𝑐𝑐𝑓𝑓𝐶𝐶𝑐𝑐𝑇𝑇 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑐𝑐𝑜𝑜𝐶𝐶 𝑐𝑐𝐶𝐶𝐶𝐶 𝑐𝑐𝑤𝑤𝐶𝐶 =
60,346,530 × 1000

18,786,346
= 3,212 

The empty return ratios were calculated by dividing the empty car-miles by the loaded car 

miles for all but category “Flat TOFC/COFC,” that are primarily used for intermodal service 

(Association of American Railroads 2015) (Table A.3). 
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Table A.3: Loaded and empty car-miles by category (Association of 
American Railroads 2015) 

Car types Loaded car-miles Empty car-miles 
659.  Box - Plain 40'                    0  3  
660.  Box - Plain 50'                    126,335  87,324  
661.  Box - Equipped                     921,576  719,118  
662.  Gondola - Plain                    3,228,887  3,174,972  
663.  Gondola - Equipped                 456,785  406,773  
664.  Covered Hopper                     4,059,152  3,972,749  
665.  Open Hopper - General Service      533,346  539,306  
666.  Open Hopper - Special Service      1,812,789  1,791,540  
667.  Refrigerator - Mechanical          169,904  129,643  
668.  Refrigerator - Non-Mechanical      67,495  58,575  
670.  Flat Multi-level                   1,548,106  705,722  
671.  Flat General Service               1,862  2,507  
672.  Flat All Other                     584,752  537,476  
673.  Tanks                              2,976,959  3,052,511  
674.  All Other Types                    332,290  80,393  
Total 16,820,238  15,258,612  

𝐸𝐸𝑐𝑐𝑐𝑐𝑇𝑇𝑝𝑝 𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝐶𝐶𝑐𝑐 𝐶𝐶𝑤𝑤𝑇𝑇𝑐𝑐𝑇𝑇 =
16,820,238 + 15,258,612

16,820,238
= 1.91 

The lost revenue from railcar delay can then be calculated using Equation 3.5 as 

𝐶𝐶𝐺𝐺′ =
2 × 3212 × 0.75

(26.88 × 24) × 1.91
= 3.91 

To calculate Intermodal based on STCC 7 Stratification report the following data was used 

(Surface Transportation Board 2015) (Table A.4). 

Table A.4: Number, weight, and revenue by intermodal car type 

Car type Sum of cars Sum of tons (1000s) Sum of revenue (1000s) 
Intermodal 448 5.944 969.568 
Lightweight 
Intermodal 142240 1158.92 84430.043 

Stack Car 12792880 163280.76 12201383.29 
Grand Total 12935568 164445.624 12286782.9 
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𝐼𝐼𝑐𝑐𝑇𝑇𝐶𝐶𝐶𝐶𝑐𝑐𝑇𝑇𝐼𝐼𝑤𝑤𝑇𝑇 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑐𝑐𝑜𝑜𝐶𝐶 𝑐𝑐𝐶𝐶𝐶𝐶 𝑐𝑐𝑤𝑤𝐶𝐶 =
12,286,782,900

12,935,568
= 950 

𝐼𝐼𝑐𝑐𝑇𝑇𝐶𝐶𝐶𝐶𝑐𝑐𝑇𝑇𝐼𝐼𝑤𝑤𝑇𝑇 𝐸𝐸𝑐𝑐𝑐𝑐𝑇𝑇𝑝𝑝 𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝐶𝐶𝑐𝑐 𝐶𝐶𝑤𝑤𝑇𝑇𝑐𝑐𝑇𝑇 =
4,453,708 + 355,547

4,453,708
= 1.08 

The lost revenue from railcar delay can then be calculated using Equation 3.5 as 

𝐶𝐶𝐺𝐺′ =
2 × 950 × 0.75

(6.15 × 24) × 1.08
= 8.94 

To determine intermodal lading value the following data was used (Center for 

Transportation Analysis 2017) (Table A.5). 

Table A.5: Weight and value of assumed intermodal goods by category 

Product category 
Total KTons in 

2015 
Total ton-mile in 

2015 
Total M$ in 

2015 
Total current M$ 

in 2015 
Furniture 80794 35136 386601 400526 
Misc. manufactured 
products 105637 46862 790805 809615 

Mixed freight 386063 99019 1458339 1486426 
Sum 572494 181016 2635745 2696567 
 

𝐼𝐼𝑐𝑐𝑇𝑇𝐶𝐶𝐶𝐶𝑐𝑐𝑇𝑇𝐼𝐼𝑤𝑤𝑇𝑇 𝑇𝑇𝑤𝑤𝐼𝐼𝑐𝑐𝑐𝑐𝑤𝑤 𝑠𝑠𝑤𝑤𝑇𝑇𝑜𝑜𝐶𝐶 =
2696567 × 1000000

572494 × 1000
= 4710 
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APPENDIX B.  

USING THE WEIBULL DISTRIBUTION FOR TIMBER CROSSTIE  
MAINTENANCE PLANNING 

B.1 Introduction  

Over 16.5 million railroad crossties were laid in 2012, of these over 94% were timber 

(Association of American Railroads 2012). Due to the large number of crossties that need to be 

maintained, it is important to understand what the failure distribution is in order to plan when 

crossties will need to be replaced. While most railroad track components degrade at a rate 

relative to the number and magnitude of the load cycles they must resist, timber crossties are also 

impacted by the environment. For this reason, the life of crossties is typically reported in years 

rather than million gross tons (MGT), which is the standard age metric for railroad components 

(MacLean 1957; Zarembski & Gauntt 1997; Lake et al. 2002).  

To better understand how to plan for the replacement of timber crossties, one common 

model used to predict the failure of timber crossties will be analyzed and applied to two 

maintenance cases: large-scale renewals and slow orders.  

Some recent research has gone into determining the average life of crossties for given 

environmental conditions, annual tonnage, and curvature, each of which will result in different 

crosstie lifespans (Zeta-Tech Associates Inc. 2006). However, since it is generally accepted that 

not all crossties will fail at the same time simply knowing the average time when crossties will 

fail is not enough. The number of crossties that are expected to fail in a given year is also 

required so that when the critical number of crossties are expected to fail, a crosstie replacement 

can be planned. 
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B.2 Determining timber crosstie failure probabilities 

The generally accepted method for modeling crosstie failures is to apply the Forest Service 

Products Curve (FSPC), which was developed to predict the failure distribution of timber 

crossties. While the FSPC is dated, multiple updates have affirmed the accuracy of the model 

(MacLean 1957; Wells 1982). Personal discussion with railroad personnel indicates that this 

model is still in use. However, this model in its original form is a chart that can be read off rather 

than an equation than can be used to calculate the failure rates directly (Figure B.1) (MacLean 

1957; Wells 1982). This method uses the percentage of average life as the random variable, 

which allows for the distribution to be less dependent on operating conditions.  

 

Figure B.1: Forest service products curve (Wells 1982) 

A common distribution used as a fragility curve for similar components is the Weibull 

distribution. The two parameters of the Weibull distribution are α, the shape factor, and β, the 

scale factor. (Arthur D. Little Inc. 1992; Lake et al. 2002; Kroese et al. 2011; Lovett et al. 2013). 

The PDF and CDF for the Weibull distribution are given in Equations B.1 and B.2  

(Kroese et al. 2011).  
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𝐹𝐹𝑇𝑇(𝑡𝑡) = �1 − exp �− �
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𝛼𝛼
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0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 B.2 

Where:  
t – proportion of average life= 𝑦𝑦

𝐴𝐴
 

y – number of years since the crosstie was installed 
A – average crosstie life 
α,β – Weibull parameters 

If the mean and standard deviation data had been provided, they could have been used to 

calculate α and β, but since they were not, the curve in Figure B.1 was fitted to a Weibull 

distribution using the least squares regression method (Table B.1, Figure B.2). This method 

consists of minimizing the sum of the square of the difference between the reported values and 

the estimated values given by the equation (Bates & Watts 1988; Weisstein 2014a). The square 

of the difference is used because it allows for the difference, or residual, to always be positive, 

which avoids discontinuities (Weisstein 2014b). Figure B.2 shows that the Weibull 

approximation closely matches the provided curve. The minimization was done in Excel using 

the built-in solver. The values used for the regression are provided in the sub-appendix. 

 Table B.1: Weibull parameters 
from the least squares regression 

 

 Weibull Parameter Value  
 α 4.56  
 β 1.02  

196



 

 
Figure B.2: FSPC and Weibull approximation 

 

B.3 Approximating time to large-scale crosstie replacement 

A common way of determining when a crosstie replacement needs to be planned is to 

estimate when a certain number of crossties have failed and then replacing all of the failed 

crossties. The typical way of doing this is to apply the FSPC to the number of crossties in a mile 

of track (i.e. multiply the total number of crossties in a mile by the expected percentage of failed 

crossties at a given age), and a crosstie renewal is planned for the year when that product is 

expected to be over a certain value (Elkaim et al. 1983; Davis 1988). However, this method does 

not take into account that each crosstie is behaving independently, a more comprehensive way 

would be to treat the percentage of crossties failed from the FSPC as the probability that a 

crosstie has failed, which can be used in a binomial distribution to determine the probability that 

the desired number of crossties have failed in a given year (Equation B.3). This methodology 
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assumes that the crosstie failures are statistically independent, and while this is not entirely true, 

no data on this relationship was found in the literature. 

𝑃𝑃(𝑄𝑄 > 𝑞𝑞) = 1 − 𝑃𝑃(𝑄𝑄 ≤ 𝑞𝑞) 

= 1 −��
𝑛𝑛
𝑖𝑖
� 𝑝𝑝𝑖𝑖  ×  (1 − 𝑝𝑝)𝑛𝑛−𝑖𝑖

𝑞𝑞

𝑖𝑖=0

, 𝑛𝑛 ≥ 𝑞𝑞 B.3 

Where: 
Q – number of failed crossties per mile 
n – number of crossties per mile 
p – probability that a crosstie has failed by a given proportion of the average crosstie life 

according to Equation B.2 
Other variables as previously defined 

The value of Q is typically between 600-1000 crossties per mile (Davis 1987; Acharya 

1994). However, research has shown that the crosstie replacement cost decreases until 

approximately 800 crossties are replaced per mile at which point the cost per crosstie replaced 

levels out. Furthermore, the equipment begins to have problems when more than 1,000 crossties 

are replaced per mile because the various machinery is too close together (Elkaim et al. 1983). 

Therefore, it was determined that 800 crossties per mile would be a reasonable maintenance 

threshold. A typical crosstie spacing is 20”, which results in 3168 crossties per mile. Assuming 

50 MGT annual tonnage, a range of track curvature, and a moderate climate, the average crosstie 

life is 31.5 years (Zeta-Tech Associates Inc. 2006). Using this data and the Weibull distribution, 

it is possible to create a model that will provide the probability that a crosstie replacement will 

need to be planned (Equation B.4).  

𝑃𝑃(𝑄𝑄 > 800) = 1 −��
3168
𝑖𝑖 � 𝑝𝑝𝑖𝑖  ×  (1 − 𝑝𝑝)3168−𝑖𝑖

800

𝑖𝑖=0

  B.4 

However, this formulation will be difficult to compute and preliminary attempts with Excel 

and MATLAB failed to calculate the combinations necessary for the summation. In this case, it 
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may be more applicable to use the expected value for Q, which, for binomial distribution in 

Equation B.4, is the same as multiplying the number of crossties per mile by the failure 

probability (Equation B.5). 

𝐸𝐸[𝑄𝑄] = 𝑛𝑛𝑝𝑝 = 𝑛𝑛 �1 − exp �− �
𝑡𝑡

1.02�
4.56

�� B.5 

From Equation B.5, the time of the first replacement cycle can be calculated as  

shown below.  

𝐸𝐸[𝑄𝑄] =  𝑛𝑛 �1 − exp �− �
𝑡𝑡

1.02�
4.56

�� 

𝑡𝑡 = 1.02 ×  �− ln�1 −
𝐸𝐸[𝑄𝑄]
𝑛𝑛

��

1
4.56

 

= 1.02 ×  �− ln �1 −
800

3168��
1

4.56
 

= 0.7781 

𝑦𝑦 = 𝐴𝐴 ×  𝑡𝑡 

= 31.5 ×  0.7781 

= 24.5 

This indicates that the crosstie replacement would need to be performed in the 25th year after 

the crossties were initially installed. As crossties of various ages are left in the track after each 

renewal, Equation B.5 can be applied to each age group of crossties. However, there will be 

some variability in how the crossties actually fail, so the track inspectors can advise the 

maintenance planners if a crosstie renewal will need to take place sooner or later than expected. 
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B.4 Determining the probability of slow orders 

Another area of concern for the number of failed crossties is the Track Safety Standards 

(TSS) which are regulated by the Federal Railroad Administration. The TSS specify the required 

condition of the track for specific operating speeds, which are divided into track classes. Higher 

track classes allow for higher permissible speeds. One of the parameters governed by the TSS is 

the number of crossties required for every 39 feet of track. This number varies based on the track 

class and the amount of curvature (Table B.2) (Federal Railroad Administration 2014).  

Table B.2: Minimum number of crossties per 39 feet (Federal Railroad 
Administration 2014) 

FRA Track Class Tangent track and 
curves ≤ 2 degrees 

Turnouts and curved track 
over 2 degrees 

Class 1 5 6 
Class 2 8 9 
Class 3 8 10 

Class 4 and 5 12 14 

If the specifications in the TSS are violated for a given track class then the track speed must 

be reduced to the next class which the track is in compliance. This is known as a slow order. To 

understand the risks of a slow order being imposed, the probability of the number of allowable 

bad crossties being exceeded can be modeled with a binomial distribution similar to equation 

B.3. Due to the shorter distance being modeled, it can be computed directly (Equation B.6).  
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𝑃𝑃(𝑆𝑆39) = 𝑃𝑃(𝐺𝐺 < 𝑔𝑔) 
= 𝑃𝑃(𝐵𝐵 ≥ 𝑏𝑏) 
= 𝑃𝑃(𝐵𝐵 ≥ 𝑚𝑚 − 𝑔𝑔) 
= 1 − 𝑃𝑃(𝐵𝐵 ≤ 𝑚𝑚 − 𝑔𝑔) 
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𝑚𝑚
𝑖𝑖
� 𝑝𝑝𝑖𝑖  ×  (1 − 𝑝𝑝)𝑚𝑚−𝑖𝑖

𝑚𝑚−𝑔𝑔

𝑖𝑖=0

, 𝑚𝑚 ≥ 𝑔𝑔

0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

B.6 

Where: 
S39 – event where a 39-foot section of track must be slow ordered 
G – number of good crossties per 39 feet 
B – number of failed crossties per 39 feet 
m – number of crossties per 39 feet 

Assuming the track is Class 4 with curves no more than 2 degrees and 20-inch crosstie 

spacing, similar to the case referenced above, each 39-foot track segments requires at least 12 

good crossties. This would change Equation B.6 to equation B.7 below.  

𝑃𝑃(𝑆𝑆39) = 1 −��
23
𝑖𝑖 �

𝑝𝑝𝑖𝑖  ×  (1 − 𝑝𝑝)23−𝑖𝑖
11

𝑖𝑖=0

 B.7 

This curve can be used with the cost of a slow older to understand the risks of delaying 

crosstie replacement because the longer maintenance is delayed the higher the probability of not 

having enough good crossties.  

This probability can also be taken as the mean rate of occurrence for a slow order over 39 

feet and can be applied to a Poisson distribution for a longer distance. This is shown in Equation 

B.8 for 1 mile, although this could be applied over a longer distance as well. This would be 

important for maintenance planning purposes because large scale crosstie replacements are done 

on several miles of track at a time. The plot of how the slow orders change over time is shown in 

Figure B.3. The values used in producing the graph are provided in the sub-appendix. 
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𝑃𝑃(𝑆𝑆𝑚𝑚) = 𝑃𝑃(𝑅𝑅 > 1) 
= 1 − 𝑃𝑃(𝑅𝑅 = 0) 

= 1 −
(𝜆𝜆𝜆𝜆)0

0!
exp(−𝜆𝜆𝜆𝜆) 

= �1 − exp(−𝜆𝜆𝜆𝜆) , 𝜆𝜆,𝜆𝜆 > 0
0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

B.8 

Where: 
Sm – event where at least one 39-foot section in a mile has a slow order 
R – number of slow ordered sections 
λ – mean rate of slow order occurrence over 39 feet, P(S39) 
d – number of 39-foot segments in a mile, 135.4 

 

 

Figure B.3: Probability of a single 39-foot section and a mile of track requiring a  
slow order 

 

B.5 Adjustments for track with multiple ages of track 

While these formulations are beneficial for planning crosstie renewals for new track, there is 

not much new track being installed. Most track has been in for many years, so the crossties will 

have a variety of ages. This results in the binomial distribution no longer being applicable for 
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determining the probability of a slow order. In this case, the segment of track would still be 

modeled as a series of Bernoulli trials, but each group of crossties of a particular age would need 

to be treated independently. This also results in the failure probability calculation changing. This 

would change Equation B.7 into Equation B.9 and Equation B.2 into Equation B.10, while 

Equation B.8 would remain the same.  

𝑃𝑃(𝑆𝑆39) = �1 − � ��
𝑛𝑛𝑗𝑗
𝑖𝑖𝑗𝑗
� 𝑝𝑝𝑗𝑗

𝑖𝑖𝑗𝑗  ×  �1 − 𝑝𝑝𝑗𝑗�
𝑛𝑛𝑗𝑗−𝑖𝑖𝑗𝑗

𝑘𝑘

𝑗𝑗=1

11

∑ 𝑖𝑖𝑗𝑗=0

, 𝑛𝑛𝑖𝑖 ≥ 𝑗𝑗𝑖𝑖∀𝑖𝑖

0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 B.9 

𝑝𝑝𝑗𝑗 = 1 − exp �−�
𝑦𝑦 + (𝑗𝑗 − 1)𝑐𝑐

𝛽𝛽𝐴𝐴
�
𝛼𝛼

� , 𝑡𝑡 > 0 B.10 

Where:  
ij – number of failed crossties in crosstie age group j 
k – number of crosstie age groups 
nj – number of crossties in crosstie age group i 
pj – failure probability of a crosstie in crosstie age group j 
y – years since the last crosstie renewal 
c – years between crosstie renewals 

This formulation requires some assumptions as to what a typical crosstie renewal would be 

and calculating the number of crossties that are expected to still be in track in a given year. 

Assuming 850 crossties per mile, approximately 6 crossties per 39 feet, are replaced every nine 

years we can determine the number of crossties that are still in track at the time of a renewal. 

This is done by adapting a process from Elkaim et al. (1983) (Table B.3). Figure B.3 can also be 

updated, but only the first nine years need to be plotted since at that point all failed crossties are 

expected to have been replaced (Figure B.4). This new formulation can be used to weigh 

different crosstie renewal cycles by determining the slow order risks associated with longer or 

shorter periods between crosstie renewals. The values and code used for developing this plot are 

provided in the sub-appendix. 
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Table B.3: Expected number of crossties remaining per 39-foot 
segment from previous crosstie renewals 

Renewal 
number (j) 

Year of renewal Percent of crossties 
left in track in 2013 

Expected 
number of good 
crossties in 39 

feet 
1 2013 100% 6 
2 2004 100% 6 
3 1995 93% 6 
4 1986 64% 4 
5 1977 19% 1 
6 1968 1% 0 
7 1959 0% 0 

 
Figure B.4: Probability of a single 39-foot section and a mile of track requiring a slow 

order with multiple crosstie ages 

B.6 Updating the FSPC 

As mentioned above, the data used in developing the FSPC is quite old and may not be 

applicable to the current operating conditions in all areas. While the original data is not available 

to develop the curve directly, it is possible to use new failure data and Bayesian updating to 

adjust the Weibull approximation to reflect data that has been collected in a particular area. 
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Assume a track inspector sampled the condition and ages of crossties in a particular area (Table 

B.4).  

Table B.4: Observed ages and 
conditions of crossties 

Tie age (years) Tie condition 
1 Failed 
1 Not failed 
1 Not failed 
10 Failed 
10 Failed 
10 Not failed 
19  Not failed 
19 Failed 
28 Failed 
37 Not failed 

The standard form of the Bayesian update is shown in Equation B.11. 

𝑓𝑓′′(𝜽𝜽) = 𝑢𝑢𝑢𝑢(𝜽𝜽)𝑓𝑓′(𝜽𝜽′) B.11 
Where:  

u – scaling constant  
θ – variable parameters to be updated 
f ’(θ) – prior distribution 
L(θ) – likelihood function 
f "(θ) – posterior distribution 

The likelihood is proportional to the probability of an observation occurring, which would 

be the product of the probability of each individual observation. This would be Equation B.2 

evaluated at the given year since the provided data is censored. The prior distribution is equal to 

Equation B.1. This would change Equation B.11 into Equation B.12. The value for u was found 

numerically using Excel and VBA code that is contained in the sub-appendix. A diffuse prior is 

assumed for α and β, and the prior values are those given in Table B.1. 
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𝑓𝑓′′(𝑡𝑡,𝛼𝛼,𝛽𝛽) = 𝑢𝑢𝑢𝑢(𝛼𝛼,𝛽𝛽)𝑓𝑓′(𝑡𝑡,𝛼𝛼′,𝛽𝛽′) B.12 
Where: 

𝑢𝑢 = �� � � �1 − exp�−�
1
𝛽𝛽�

𝛼𝛼

��  ×  �1 − exp�−�
10
𝛽𝛽 �
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��
2

 ×  �1 − exp�−�
19
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𝛼𝛼
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∞

0

∞

0

∞

0
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28
𝛽𝛽 �

𝛼𝛼

��  

×  exp�−�2 ×  �
1
𝛽𝛽�

𝛼𝛼

+ �
10
𝛽𝛽 �

𝛼𝛼

+ �
19
𝛽𝛽 �

𝛼𝛼

+ �
37
𝛽𝛽 �

𝛼𝛼

+ �
𝑡𝑡
𝛽𝛽′�

𝛼𝛼′

��  
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−1

= 24.17 

𝑢𝑢(𝛼𝛼,𝛽𝛽) = �1 − exp�−�
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𝑓𝑓′(𝑡𝑡,𝛼𝛼,𝛽𝛽) =
𝛼𝛼′
𝛽𝛽′ �

𝑡𝑡
𝛽𝛽′�

𝛼𝛼′−1
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� 

Point estimates for α and β, 𝛼𝛼� and �̂�𝛽 respectively, can be found using Equations B.13 and 

B.14. These were also found through numerical integration and the code is provided in the sub-

appendix. Due to computation limitations, the increment for α and β was limited to 1, but the 

increment for t was set to 0.01. Additionally, increasing the maximum integration value for α and 

β from 1,000 to 10,000 and t from 100 to 1000 did not change the values of u, 𝛼𝛼�, or �̂�𝛽.  

𝛼𝛼�′′ = � 𝛼𝛼� � 24.17 ×  𝑢𝑢(𝛼𝛼,𝛽𝛽)  ×  𝑓𝑓′(𝑡𝑡,𝛼𝛼′,𝛽𝛽′)𝜆𝜆𝑡𝑡
∞

0

𝜆𝜆𝛽𝛽
∞

0

𝜆𝜆𝛼𝛼
∞

0

= 0.5046 B.13 

�̂�𝛽′′ = � 𝛽𝛽� � 24.17 ×  𝑢𝑢(𝛼𝛼,𝛽𝛽)  ×  𝑓𝑓′(𝑡𝑡,𝛼𝛼′,𝛽𝛽′)𝜆𝜆𝑡𝑡
∞

0

𝜆𝜆𝛼𝛼
∞

0

𝜆𝜆𝛽𝛽
∞

0

= 44.39 B.14 
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It should be noted that updating the FSPC in this manner would result in crosstie 

performance no longer being statistically independent because the updated distribution will be 

based on condition of other crossties that had previously failed.  

B.7 Developing a new FSPC 

Rather than trying to update the existing FSPC, it may be beneficial to create a new curve 

based on specific operating conditions. This would result in a simpler formulation than the 

Bayesian update as the equation would be the Weibull distribution without having the likelihood 

function. This could be done using maximum likelihood estimates (MLEs). The general theory 

of MLE is that the most likely value of an unknown parameter is the value which results in the 

observed events having the highest probability. The general form of the MLE is shown in 

Equation B.15 and the MLE form for the Weibull is giving in Equation B.16. The maximum 

value of the unknown values θ can be found by setting the derivative of the likelihood function 

to 0 with respect to each of the Weibull parameters, which are shown in Equations B.17 and 

B.18. The derivation of Equations B.17 and B.18 is shown in the sub-appendix.  

𝑢𝑢(𝜃𝜃) ∝�𝑓𝑓(𝑥𝑥|𝜽𝜽)
𝑛𝑛

𝑖𝑖=1

 B.15 

𝑢𝑢(𝛼𝛼,𝛽𝛽) ∝�
𝛼𝛼
𝛽𝛽 �

𝑡𝑡
𝛽𝛽�

𝛼𝛼−1
exp �− �

𝑡𝑡
𝛽𝛽�

𝛼𝛼
�

𝑛𝑛

𝑖𝑖=1

 B.16 

𝜕𝜕 ln 𝑢𝑢
𝜕𝜕𝛽𝛽

=
−𝑛𝑛 ×  𝛼𝛼

𝛽𝛽
+ 𝛼𝛼 ×  𝛽𝛽−(𝛼𝛼+1) �𝑡𝑡𝑖𝑖𝛼𝛼

𝑛𝑛

𝑖𝑖=1

 B.17 

𝜕𝜕 ln 𝑢𝑢
𝜕𝜕𝛼𝛼

=
𝑛𝑛
𝛼𝛼

+ � ln 𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 𝑛𝑛 ×  ln𝛽𝛽 − 𝛽𝛽−𝛼𝛼�𝑡𝑡𝑖𝑖𝛼𝛼  ×  ln 𝑥𝑥
𝑛𝑛

𝑖𝑖=1

+ 𝛽𝛽−𝛼𝛼 ln𝛽𝛽  �𝑡𝑡𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

 B.18 
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By setting Equation B.17 equal to zero, the point estimate for β, �̂�𝛽, can be found and is 

shown in Equation B.19.  

�̂�𝛽 = �
1
𝑛𝑛
�𝑡𝑡𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

�

1
𝛼𝛼

 B.19 

However, the point estimate for α, 𝛼𝛼�, is more complicated to compute. Therefore, a 

simplified equation taken from Balakrishnan & Kateri (2008) can be used to find 𝛼𝛼�. This is 

shown in Equation B.20 (Balakrishnan & Kateri 2008). 

1
𝛼𝛼

=
∑ 𝑡𝑡𝑖𝑖𝛼𝛼  ×  ln(𝑡𝑡𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∑ 𝑡𝑡𝑖𝑖𝛼𝛼𝑛𝑛
𝑖𝑖=1

−
1
𝑛𝑛
� ln(𝑡𝑡𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 B.20 

Balakrishnan & Kateri (2008) show that the right side of the equation is non-decreasing, and 

the left-hand side is a decreasing function. This means that there is a unique solution to the 

system of equations. Example data can be used to show how this could be applied (Table B.5).  

Table B.5: Observed crosstie failure data 

Tie Age at failure Percent of average life 

1 10 32% 
2 15 48% 
3 19 60% 
4 21 67% 
5 26 83% 
6 27 86% 
7 28 89% 
8 30 95% 
9 32 102% 
10 36 114% 
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The built-in solver in Excel was used to find 𝛼𝛼� for this data, and �̂�𝛽 was computed directly 

using the obtained value of 𝛼𝛼� (Table B.6). Figure B.5 shows a comparison between the existing 

FSPC, the new observed data, and the MLE Weibull approximation. This shows that the MLE 

Weibull distribution matches the observed data better than the FSPC, and indicates that a higher 

proportion of crossties will fail sooner than the FSPC would have predicted.  

Table B.6: Weibull parameters from 
the Maximum Likelihood 
Estimation 

Weibull Parameter Value 
α 3.76 
β 0.86 

 
Figure B.5: Comparison between the observed data, the MLE Weibull distribution, and the 

FSPC 

It should be noted that this method will require more precise observations of the crosstie 

condition to have a better measure of when the crossties fail, but this can be done fairly easily 

with the cooperation of track inspectors who walk the track several times a week. Also a much 

larger data set would be needed to adequately approximate the Weibull parameters.  
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B.8 Conclusions 

The FSPC has a wide range of applications for timber crosstie maintenance planning. It can 

be used to identify approximately when crosstie renewals need to be performed as well as 

measuring the probability of a slow order being imposed, which can have significant  

operational impacts.  

However, maintenance planning personnel need to be aware that the FSPC may not be 

accurate in all operating conditions. Therefore, the FSPC needs to be validated under specific 

circumstances. If necessary the FSPC can either be updated using Bayesian updating, or a new 

curve can be developed using new data and the MLE method.  
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B.10 Sub-appendix 

B.10.1 Values used for the least squares regression 

α = 4.56 
β = 1.02 
∑𝑟𝑟𝑒𝑒𝑒𝑒𝑖𝑖𝜆𝜆𝑢𝑢𝑟𝑟𝑒𝑒𝑒𝑒=0.0003937  

Table B.7: Least squares regression values 
 

% of life FSPC Weibull diff f(x) 
 0  0.00   
 0.1  0.00   
 0.2  0.00   
 0.3  0.00   
 0.4  0.01   
 0.55  0.05 0.06 0.00 0.46 
 0.64  0.1 0.11 0.00 0.74 
 0.74  0.2 0.20 0.00 1.11 
 0.82  0.3 0.30 0.00 1.40 
 0.88  0.4 0.40 0.00 1.58 
 0.94  0.5 0.50 0.00 1.68 
 1.00  0.6 0.60 0.00 1.67 
 1.06  0.7 0.69 0.00 1.56 
 1.14  0.8 0.80 0.00 1.29 
 1.24  0.9 0.91 0.00 0.81 
 1.32  0.95 0.96 0.00 0.44 
 1.40  0.99   
 1.50  1.00   
 1.60  1.00   
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B.10.2 Values used to determine the slow order probability for all crossties being the same age 

Table B.8: Slow order probabilities  
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B.10.3 Values and VBA code used to determine the slow order probability for multiple crosstie 
ages 

Table B.9: Slow order probabilities 
 

Year p(slow order) Slow order 
0 0.00 0.00 
1 0.00 0.01 
2 0.00 0.06 
3 0.00 0.31 
4 0.00 0.84 
5 0.00 1.00 
6 0.00 1.00 
7 0.00 1.00 
8 0.01 1.00 

 
Sub sloworder() 
Dim i(1 To 5) As Double, k(1 To 5, 1 To 1000000) As Double, imax(1 To 5) As Double, p(1 To 
5) As Double 
Dim j As Double, y As Double, l As Double, avglife As Double 
Dim row As Double, pHold As Double, pTotal As Double, C As Double, alpha As Double, beta 
As Double, ties39 As Double 
row = 3 
C = 9 
alpha = Range("alpha") 
beta = Range("beta") 
avglife = Range("avglife") 
ties39 = Range("ties39") 
 
For j = 1 To 5 
    imax(j) = Sheets("tie ages").Cells(j + 6, 7) 
Next 
 
For y = 1 To 9 
    pTotal = 0 
    i(1) = 0 
    Do 
        i(2) = 0 
        Do 
            i(3) = 0 
            Do 
                i(4) = 0 
                Do 
                    i(5) = 0 
                    Do 
                        If i(1) + i(2) + i(3) + i(4) + i(5) < 11 Then 
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                            pHold = 1 
                            For j = 1 To 5 
                                p(j) = 1 - Exp(-1 * ((y + (j - 1) * C) / beta / avglife) ^ alpha) 
                                pHold = pHold * WorksheetFunction.Combin(imax(j), i(j)) * p(j) ^ i(j) * _ 
                                (1 - p(j)) ^ (imax(j) - i(j)) 
                            Next 
                            pTotal = pTotal + pHold 
                        End If 
                        i(5) = i(5) + 1 
                    Loop Until i(5) > imax(5) 
                    i(4) = i(4) + 1 
                Loop Until i(4) > imax(4) 
                i(3) = i(3) + 1 
            Loop Until i(3) > imax(3) 
            i(2) = i(2) + 1 
        Loop Until i(2) > imax(2) 
        i(1) = i(1) + 1 
    Loop Until i(1) > imax(1) 
    Sheets("Slow order risk (complex)").Cells(y + 2, 2) = 1 - pTotal 
Next 
End Sub 
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B.10.4 Formulation for the Bayesian updating likelihood function 

𝑢𝑢(𝛼𝛼,𝛽𝛽) = 𝐹𝐹𝑇𝑇(1) × �1 − 𝐹𝐹𝑇𝑇(1)�2 × �𝐹𝐹𝑇𝑇(10)�2 × �1 − 𝐹𝐹𝑇𝑇(10)� × 𝐹𝐹𝑇𝑇(19) × �1 − 𝐹𝐹𝑇𝑇(19)�
× 𝐹𝐹𝑇𝑇(37) × �1 − 𝐹𝐹𝑇𝑇(37)�
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B.10.5 VBA code used for numerical approximation of the Bayesian updating integrals 

Sub integration() 
Dim a As Double, b As Double, t As Double, u As Double  'these are the variables to be used in 
the integration 
Dim Da As Double, Db As Double, Dt As Double 'these are the increments for each variable 
Dim aMax As Double, bMax As Double, tMax As Double 'these are the maximum values for the 
sum since I can't evaluate up to infinity 
Dim ia As Double, ib As Double, it As Double  ' these are counting variables 
Dim aHat As Double, bHat As Double 'these are the point estimates 
Dim a1 As Double, b1 As Double ‘these are the priors 
Da = Cells(26, 2) 
Db = Cells(27, 2) 
Dt = Cells(28, 2) 
aMax = Cells(26, 3) 
bMax = Cells(27, 3) 
tMax = Cells(28, 3) 
 
ia = 0 
Do 
    ib = 0 
    Do 
        it = 0 
        Do 
            a = (ia + 0.5 * Da) 
            b = (ib + 0.5 * Db) 
            t = (it + 0.5 * Dt) 
            u = u + Da * Db * Dt * Exp(-1 * (2 * (1 / b) ^ a + (10 / b) ^ a + (19 / b) ^ a + _ 
            (37 / b) ^ a + (t/b1)^a1)) * a1 / b1 * (t / b1) ^ (a1 - 1) * (1 - Exp(-1 * (1 / b) ^ a)) * _ 
            (1 - Exp(-1 * (10 / b) ^ a)) ^ 2 * (1 - Exp(-1 * (19 / b) ^ a)) * _ 
            (1 - Exp(-1 * (28 / b) ^ a)) 
            it = it + Dt 
        Loop Until it >= tMax 
        ib = ib + Db 
    Loop Until ib >= tMax 
    ia = ia + Da 
Loop Until ia >= tMax 
 
u = 1 / u 
 
ia = 0 
Do 
    ib = 0 
    Do 
        it = 0 
        Do 
            a = (ia + 0.5 * Da) 
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            b = (ib + 0.5 * Db) 
            t = (it + 0.5 * Dt) 
            aHat = aHat + a * Da * Db * Dt * u * Exp(-1 * (2 * (1 / b) ^ a + (10 / b) ^ a + _ 
            (19 / b) ^ a + (37 / b) ^ a +(t/b1)^a1))*a1/b1*(t/b1) ^ (a1 - 1) * (1 - Exp(-1 * (1 / b) ^ a)) _ 
            * (1 - Exp(-1 * (10 / b) ^ a)) ^ 2 * (1 - Exp(-1 * (19 / b) ^ a)) * (1 - Exp(-1 * (28 / b) ^ a)) 
            bHat = bHat + b * Da * Db * Dt * u * Exp(-1 * (2 * (1 / b) ^ a + (10 / b) ^ a + _ 
            (19 / b) ^ a + (37 / b) ^ a + (t/b1)^a1))*a1/b1*(t/b1)^ (a1 - 1) * (1 - Exp(-1 * (1 / b) ^ a)) _ 
            * (1 - Exp(-1 * (10 / b) ^ a)) ^ 2 * (1 - Exp(-1 * (19 / b) ^ a)) * (1 - Exp(-1 * (28 / b) ^ a)) 
            it = it + Dt 
        Loop Until it >= tMax 
        ib = ib + Db 
    Loop Until ib >= tMax 
    ia = ia + Da 
Loop Until ia >= tMax 
 
Cells(30, 2) = u 
Cells(31, 2) = aHat 
Cells(32, 2) = bHat 
 
End Sub 
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B.10.6 Formulation for the Maximum likelihood function  

ln 𝑢𝑢(𝛼𝛼,𝛽𝛽) ∝� ln
𝛼𝛼
𝛽𝛽 �

𝑡𝑡𝑖𝑖
𝛽𝛽�

𝛼𝛼−1
exp �− �

𝑡𝑡𝑖𝑖
𝛽𝛽�

𝛼𝛼
�

𝑛𝑛

𝑖𝑖=1

∝� ln𝛼𝛼 − ln𝛽𝛽 + 𝛼𝛼 ln 𝑡𝑡𝑖𝑖 − ln 𝑡𝑡𝑖𝑖 − 𝑟𝑟 ln𝛽𝛽 + ln𝛽𝛽 − �
𝑡𝑡𝑖𝑖
𝛽𝛽�

𝛼𝛼𝑛𝑛

𝑖𝑖=1

∝ 𝑛𝑛 × ln𝛼𝛼 − 𝑛𝑛 × ln𝛽𝛽 + 𝛼𝛼� ln 𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−� ln 𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 𝑛𝑛 × 𝛼𝛼 × ln𝛽𝛽 + 𝑛𝑛 ln𝛽𝛽

− 𝛽𝛽−𝛼𝛼�𝑡𝑡𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1

∝ 𝑛𝑛 × ln𝛼𝛼 + 𝛼𝛼� ln 𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−� ln 𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 𝑛𝑛 × 𝛼𝛼 ∗ ln𝛽𝛽 − 𝛽𝛽−𝛼𝛼�𝑡𝑡𝑖𝑖𝛼𝛼
𝑛𝑛

𝑖𝑖=1
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APPENDIX C.  

CROSSTIE LIFE-CYCLE COST SENSITIVITY ANALYSIS VALUES 

To perform the sensitivity analysis in Chapter 4, the timber crosstie life-cycle cost and 

concrete crosstie life-cycle cost was computed for both the lower and upper bounds for each 

parameter with all the others being kept at their base values. The ratio for each was computed 

and the arc elasticity was computed (Tables C.1 and C.2). The parameters were then sorted by 

the difference between their upper and lower bound elasticities.  
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Table C.1: No alternate route sensitivity values 

 

T/C Min 
ratio 

T/C Max 
ratio 

Lower bound 
elasticity 

Upper bound 
elasticity Range 

Possession time 1.04 1.05 0.04 0.05 0.01 
Idle fuel cost 1.00 1.02 -0.01 0.01 0.02 
Route length 1.03 1.01 0.02 0.00 0.02 
Running fuel cost 1.00 1.03 -0.02 0.02 0.03 
Setup/tear down time 1.00 1.03 -0.01 0.03 0.05 
Average train weight 0.96 1.04 -0.06 0.03 0.09 
Timber tie life 1.01 0.91 0.00 -0.11 0.11 
Timber renewal threshold 1.05 1.02 0.15 0.03 0.13 
Concrete accident cost 1.06 0.94 0.05 -0.08 0.13 
Concrete renewal speed 0.92 1.03 -0.13 0.03 0.16 
Concrete tamping cost 1.04 0.89 0.03 -0.13 0.16 
Timber accident cost  0.98 1.15 -0.04 0.15 0.19 
Timber tie cost 0.81 1.03 -0.23 0.02 0.25 
Timber tamping cost 0.86 1.16 -0.16 0.15 0.31 
Concrete renewal cycle 0.92 1.04 -0.28 0.08 0.35 
Concrete tamping speed 1.19 0.88 0.22 -0.15 0.37 
Delay cost less fuel 0.74 1.17 -0.30 0.18 0.48 
Timber accident rate 0.77 1.24 -0.25 0.24 0.48 
Concrete accident rate 1.24 0.76 0.25 -0.26 0.51 
Concrete tamping frequency 0.65 1.12 -0.41 0.12 0.53 
Timber tamping speed 0.73 1.28 -0.34 0.33 0.67 
Percent double track 1.20 0.73 0.29 -0.45 0.75 
Trains per day 0.65 1.40 -0.40 0.43 0.83 
Discount rate 1.44 0.74 0.50 -0.33 0.83 
Timber tamping frequency 1.48 0.66 0.62 -0.47 1.08 
Concrete tie spacing 0.86 1.13 -0.61 0.49 1.10 
Timber renewal speed 1.73 0.86 0.92 -0.20 1.12 
Concrete tie cost 1.99 0.66 1.08 -0.39 1.46 
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Table C.2  Alternate route sensitivity values 

 
T/C min 

ratio 
T/C Max 

ratio 
Lower bound 

elasticity 
Upper bound 

elasticity Range 
Siding/crossover spacing 0.88 0.89 0.00 0.00 0.01 
Possession time 0.91 0.90 0.04 0.02 0.02 
Average train weight 0.87 0.89 -0.02 0.01 0.03 
Setup/tear down time 0.88 0.90 -0.02 0.04 0.05 
Timber renewal threshold 0.92 0.90 0.17 0.06 0.11 
Concrete renewal speed 0.82 0.90 -0.11 0.03 0.13 
Timber tie life 0.88 0.77 0.00 -0.15 0.15 
Concrete accident cost 0.93 0.80 0.06 -0.10 0.16 
Alt. route double track % 0.91 0.83 0.06 -0.10 0.16 
Running fuel cost 0.81 0.95 -0.09 0.09 0.18 
Concrete tamping cost 0.91 0.76 0.04 -0.16 0.19 
Timber accident rate 0.79 0.98 -0.11 0.11 0.22 
Concrete accident rate 0.97 0.76 0.11 -0.14 0.25 
Timber accident cost  0.84 1.05 -0.05 0.22 0.27 
Delay cost less fuel 0.75 0.99 -0.17 0.14 0.31 
Concrete tamping speed 1.01 0.79 0.18 -0.13 0.31 
Timber tie cost 0.64 0.92 -0.31 0.05 0.35 
Route length 0.75 1.03 -0.17 0.19 0.36 
Alt. route trains per day 0.84 1.06 -0.07 0.31 0.37 
Concrete renewal cycle 0.79 0.90 -0.33 0.06 0.40 
Timber tamping cost 0.70 1.07 -0.22 0.21 0.44 
Alt. route class 0.96 0.69 0.13 -0.33 0.47 
Track class 0.67 0.96 -0.36 0.13 0.49 
Concrete tamping frequency 0.59 0.97 -0.38 0.11 0.49 
Trains per day 0.64 1.08 -0.31 0.25 0.56 
Reroute ratio 0.69 0.96 -0.45 0.18 0.62 
Timber tamping speed 0.64 1.11 -0.33 0.32 0.65 
Percent double track 1.02 0.65 0.26 -0.42 0.68 
Discount rate 1.38 0.61 0.67 -0.37 1.04 
Timber tamping frequency 1.34 0.54 0.69 -0.52 1.20 
Timber renewal speed 1.67 0.75 1.15 -0.20 1.35 
Concrete tie spacing 0.72 1.02 -0.73 0.62 1.36 
Concrete tie cost 2.28 0.54 1.75 -0.44 2.19 
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APPENDIX D.  

CROSSTIE COST COMPARISONS 

For the case study, each the life-cycle costs for renewal, derailments, slow orders, and surfacing were calculated for both timber 

and concrete crossties on each line.  

Table D.1: Life-cycle costs for Line A ($ millions) 

 Timber Concrete 
 Direct Delay Network Total Direct Delay Network Total 
Renewal 52.41 17.89 0.00 70.30 150.80 10.86 0.00 161.66 
Derailment 6.59 17.14 0.00 23.73 8.02 12.56 0.00 20.58 
Slow order  0.33 0.13 0.00 0.46 0.00 0.00 0.00 0.00 
Surfacing 84.37 165.97 0.00 250.34 8.18 45.75 0.00 53.93 
Total 143.69 201.14 0.00 344.83 167.00 69.17 0.00 236.17 
 
 

Table D.2: Life-cycle costs for Line B ($ millions) 

 Timber Concrete 
 Direct Delay Network Total Direct Delay Network Total 
Renewal 104.81 0.04 0.69 105.54 301.59 0.03 0.42 302.04 
Derailment 17.57 0.82 2.66 21.05 21.40 0.60 1.95 23.95 
Slow order  0.67 0.35 0.00 1.01 0.00 0.00 0.00 0.00 
Surfacing 168.74 0.41 6.39 175.54 16.36 0.11 1.76 18.23 
Total 291.78 1.62 9.75 303.15 339.35 0.74 4.13 344.22 
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Table D.3: Life-cycle costs for Line C ($ millions) 

 Timber Concrete    
 Direct Delay Network Total Direct Delay Network Total 
Renewal 88.08 1.70 0.00 89.77 253.44 1.03 0.00 254.47 
Derailment 19.76 143.41 0.00 163.17 24.07 105.06 0.00 129.13 
Slow order  0.56 0.66 0.00 1.22 0.00 0.00 0.00 0.00 
Surfacing 141.79 15.73 0.00 157.53 13.75 4.34 0.00 18.09 
Total 250.20 161.49 0.00 411.69 291.26 110.43 0.00 401.69 
 
 

Table D.4: Life-cycle costs for Line D ($ millions) 

 Timber Concrete    
 Direct Delay Network Total Direct Delay Network Total 
Renewal 88.08 2.39 0.00 90.46 253.44 1.45 0.00 254.89 
Derailment 21.96 178.56 0.00 200.53 26.75 130.82 0.00 157.57 
Slow order  0.56 0.73 0.00 1.29 0.00 0.00 0.00 0.00 
Surfacing 141.79 22.13 0.00 163.92 13.75 6.10 0.00 19.85 
Total 252.39 203.81 0.00 456.20 293.93 138.37 0.00 432.30 
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APPENDIX E.  

MODIFIED WEBSTER DERIVATIONS 

Equation 5.1 is based on the basice equation for a line, y = mx+b 

The period before TM, when maintenance is being performed, has no traffic, so it is zero at 

all points. 

The normal operations curve begins at the origin and has a known slope, so the equation is 

straightforward.  

𝑞𝑞𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑡𝑡 

When the slow order is in place, TM ≤ t ≤ (TE + TM), the slope is known, so only the 

intercept needs to be solved for. To simplify the calculations, the origin will be shifted to (0,TM), 

which negates the need to explicitly calculate b 

𝑞𝑞𝑡𝑡 = 𝛾𝛾𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁(𝑡𝑡 − 𝑇𝑇𝑀𝑀) 

The recovery period, (TE + TM) ≤ t ≤ TZ, has a known slope, so shifting the origin to the 

beginning of the curve (t = TE+TM, qt = γSONNTE), will once again negate the need to explicitly 

calculate the y-intercept.  

𝑞𝑞𝑡𝑡 − 𝛾𝛾𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁(𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑀𝑀 − 𝑇𝑇𝑀𝑀) = 𝛾𝛾𝑍𝑍𝑁𝑁𝑁𝑁�𝑡𝑡 − (𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑀𝑀)� 

𝑞𝑞𝑡𝑡 = 𝛾𝛾𝑍𝑍𝑁𝑁𝑁𝑁�𝑡𝑡 − (𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑀𝑀)� + 𝛾𝛾𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑇𝑇𝐸𝐸  

= 𝛾𝛾𝑍𝑍𝑁𝑁𝑁𝑁(𝑡𝑡 − 𝑇𝑇𝐸𝐸 − 𝑇𝑇𝑀𝑀) + 𝛾𝛾𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑇𝑇𝐸𝐸  

= 𝑁𝑁𝑁𝑁(𝛾𝛾𝑍𝑍(𝑡𝑡 − 𝑇𝑇𝐸𝐸 − 𝑇𝑇𝑀𝑀) + 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸) 
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The time TZ can then be calculated as the intersction between the normal operations and 

recovery lines.  

𝑁𝑁𝑁𝑁𝑇𝑇𝑍𝑍 = 𝑁𝑁𝑁𝑁(𝛾𝛾𝑍𝑍(𝑇𝑇𝑍𝑍 − 𝑇𝑇𝐸𝐸 − 𝑇𝑇𝑀𝑀) + 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸) 

𝑇𝑇𝑍𝑍 = 𝛾𝛾𝑍𝑍(𝑇𝑇𝑍𝑍 − 𝑇𝑇𝐸𝐸 − 𝑇𝑇𝑀𝑀) + 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸  

= 𝛾𝛾𝑍𝑍𝑇𝑇𝑍𝑍 − 𝛾𝛾𝑍𝑍𝑇𝑇𝐸𝐸 − 𝛾𝛾𝑍𝑍𝑇𝑇𝑀𝑀 + 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸  

𝛾𝛾𝑍𝑍𝑇𝑇𝑍𝑍 − 𝑇𝑇𝑍𝑍−= 𝛾𝛾𝑍𝑍𝑇𝑇𝐸𝐸 + 𝛾𝛾𝑍𝑍𝑇𝑇𝑀𝑀 − 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸  

𝑇𝑇𝑍𝑍(𝛾𝛾𝑍𝑍 − 1) = 𝛾𝛾𝑍𝑍(𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑀𝑀) − 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸 

𝑇𝑇𝑍𝑍 =
𝛾𝛾𝑍𝑍(𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑀𝑀) − 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸

(𝛾𝛾𝑍𝑍 − 1)  

Equation 5.7 is based on the difference in the area of two triangles 

𝑇𝑇𝐷𝐷 =
𝑇𝑇𝐵𝐵𝑄𝑄𝑍𝑍

2
−

(𝑇𝑇𝐵𝐵 − 𝑇𝑇𝑀𝑀)𝑄𝑄𝑆𝑆
2

 

=
1
2

(𝑇𝑇𝐵𝐵𝑄𝑄𝑍𝑍 − (𝑇𝑇𝐵𝐵 − 𝑇𝑇𝑀𝑀)𝑄𝑄𝑆𝑆) 

Equation 5.8 is found by finding the x-intercept of the recovery curve 

From Equation 5.1 

𝑞𝑞𝑇𝑇 = 𝑁𝑁𝑁𝑁(𝛾𝛾𝑍𝑍(𝑇𝑇𝐵𝐵 − 𝑇𝑇𝐸𝐸 − 𝑇𝑇𝑀𝑀) + 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸) 
= 0  

0 =  𝑁𝑁𝑁𝑁(𝛾𝛾𝑍𝑍(𝑇𝑇𝐵𝐵 − 𝑇𝑇𝐸𝐸 − 𝑇𝑇𝑀𝑀) + 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸) 
= 𝛾𝛾𝑍𝑍(𝑇𝑇𝐵𝐵 − 𝑇𝑇𝐸𝐸 − 𝑇𝑇𝑀𝑀) + 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸  

−𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸 = 𝛾𝛾𝑍𝑍(𝑇𝑇𝐵𝐵 − 𝑇𝑇𝐸𝐸 − 𝑇𝑇𝑀𝑀) 
−𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸 = 𝛾𝛾𝑍𝑍𝑇𝑇𝐵𝐵 − 𝛾𝛾𝑍𝑍𝑇𝑇𝐸𝐸 − 𝛾𝛾𝑍𝑍𝑇𝑇𝑀𝑀 
𝛾𝛾𝑍𝑍𝑇𝑇𝐵𝐵 = 𝛾𝛾𝑍𝑍𝑇𝑇𝐸𝐸 + 𝛾𝛾𝑍𝑍𝑇𝑇𝑀𝑀 − 𝛾𝛾𝑆𝑆𝑆𝑆𝑇𝑇𝐸𝐸  
𝑇𝑇𝐵𝐵 = 𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑀𝑀 −

𝛾𝛾𝑆𝑆𝑆𝑆
𝛾𝛾𝑍𝑍

𝑇𝑇𝐸𝐸  

= 𝑇𝑇𝑀𝑀 + 𝑇𝑇𝐸𝐸 �1 −
𝛾𝛾𝑆𝑆𝑆𝑆
𝛾𝛾𝑍𝑍
� 

 

226



Equation 5.9 is the point TZ on the normal operations curve and is self-explanatory.  

Similarly Equation 5.10 is the slow order curve evaluated at (TE+TM, γSONNTE) 

𝑄𝑄𝑆𝑆 = 𝛾𝛾𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁(𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑀𝑀 − 𝑇𝑇𝑀𝑀) 

= 𝛾𝛾𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑇𝑇𝐸𝐸 
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APPENDIX F.  

OPERATIONAL IMPACT SENSITIVITY ANALYSIS VALUES 

To conduct the sensitivity analysis in Chapter 5, each of the input parameters were varied to minimum and maximum values 

while all other parameters were kept at the average values (Table F.1). The delay for each scenario was then computed using the 

methodology in Chapter 5.   

Table F.1: Raw input and output values from the operational impact sensitivity analysis 

 
Inputs Output (train-hours) 

 
Minimum Average Maximum Minimum Average Maximum 

Track outage time, TM (hours) 0 12 24 4583.29 7328.85 10506.41 
Slow order duration, TE (hours) 0 120 240 216.00 7328.85 23608.29 
Route length, LR (mile) 21 1011 2001 14011.44 7328.85 4738.31 
Individual slow order length, LSO 

(mile) 0.011 0.5051 11 7111.95 7328.85 7541.78 

Average train length, LT  
(mile) 0.51 11 1.51 7109.74 7328.85 7543.91 

Normal train velocity, VN  

(mph)  301 551 801 4765.12 7328.85 9435.01 

Slow order train velocity, VSO 
(mph)  101 201 301 8311.14 7328.85 6981.52 

Number of slow orders, NSO 0 3 6 1728.00 7328.85 11216.91 
Additional acceleration and 
deceleration time TAD (hours) 0.1 0.3 0.5 4277.06 7328.85 9756.97 

Trains per hour, NN  0.1 1.05 2 697.99 7328.85 13959.72 
Normal capacity utilization, RN  0.4 0.65 0.9 5404.71 7328.85 18873.74 
1. 1 mile = 1.61 km       
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The arc elasticity was then computed for each case using the variance of the minimum and maximum parameter value delay 

output and sorted according to the difference between the maximum and minimum elasticities (Table F.2). 

Table F.2: Delay differences and arc elasticity calculations for the operational impact sensitivity analysis 

 
Difference from Average Arc elasticity 

 
Minimum Maximum Minimum Maximum Range 

Track outage time, TM (hours) -2745.56 3177.56 -0.375 0.434 0.808 
Slow order duration, TE (hours) -7112.85 16279.44 -0.971 2.221 3.192 
Route length, LR (mile [km]) 6682.58 -2590.54 0.930 -0.361 1.291 
Individual slow order length, LSO (mile [km]) -216.90 212.92 -0.030 0.030 0.060 
Average train length, LT (mile [km]) -219.11 215.05 -0.060 0.059 0.118 
Normal train velocity, VN (mph [km/h]) -2563.74 2106.15 -0.770 0.632 1.402 
Slow order train velocity, VSO (mph [km/h]) 982.29 -347.33 0.268 -0.095 0.363 
Number of slow orders, NSO -5600.85 3888.06 -0.764 0.531 1.295 
Additional acceleration and deceleration time TAD (hours) -3051.79 2428.12 -0.625 0.497 1.122 
Trains per hour, NN  -6630.87 6630.87 -1.000 1.000 2.000 
Normal capacity utilization, RN  -1924.15 11544.88 -0.683 4.096 4.778 
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APPENDIX G.  

BALLAST SLOW ORDER WEIBULL REGRESSION 

To find a ballast defect prediction model, data from the 2015 INFORMS Railway 

Applications Section Problem Solving Completion (RAS PSC) was used. The competition was 

to predict if a yellow defect would have developed into a red (FRA) defect after a specified 

amount of time. Although maintenance events were not indicated in the data, a more robust 

dataset could not be obtained. Capital maintenance events were assumed to have occurred if an 

inspection found a red defect (a red inspection) and the subsequent inspection did not find a 

defect. If an inspection was performed and no defect was found, I classified it as a green 

inspection. Maintenance was assumed to occur halfway between the initial red inspection and 

subsequent green inspection.  

The RAS PSC data was processed to find sets of inspections where the first was red, the 

second was green, and the third could be any result. The number of days and accumulated 

tonnage between the assumed maintenance and the red inspection was calculated. Normalized 

tonnage was also computed by dividing the accumulated tonnage by the number of days between 

the inspections. The RAS PSC data were randomly divided into training and testing datasets 

containing 80% and 20% of the data, respectively. Several combinations of explanatory variables 

were evaluated, and most had statistically significant results (Table G.1). If a coefficient cell is 

blank, it was not tested in that case. All models were applied to the testing dataset and their 

accuracy was calculated by counting the number of correct results, and dividing by the total 

number of records. A result was counted as correct if the Weibull probability was greater than 

0.5 and the record had a red defect, or the probability was less than 0.5 and the record did not 

have a red defect. The Weibull shape parameter is the inverse of the scale, and the scale 
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parameter was calculated as shown in Chapter 6. Even though some models were not statistically 

significant, they were all reasonably accurate (Table G.1).  

Although the model that does not include any explanatory variables was not the most 

accurate, it only varied from the most accurate by less than one-tenth of a percent. Given the 

limited dataset and assumptions, it was determined that the basic model without explanatory 

variables was sufficient for demonstration purposes. It was retrained against the complete dataset 

to provide the most accurate model. If additional data can be acquired, further analysis can be 

performed to develop a more robust model.  
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Table G.1: Weibull regression results 

 
  Coefficients 

 
 

Case Scale Intercept Class_5 Class_4 Class_3 Speed Curve Tons Norm_Tons Chi-squared probability Accuracy 
1      0.54 7.73  0.97 0.84 -0.60 -0.01 -2.79 0.01 -9.04 1.00 0.955 
2 0.43 6.75 

   
0.00 1.29 0.01 -3.78 0.00 0.955 

3 0.40 7.38 -0.66 -0.78 -0.87 
 

2.02 0.01 -3.44 0.00 0.956 
4 0.53 9.47  4.31 3.47 0.33 -0.08 

 
0.01 -10.32 1.00 0.955 

5 0.90 3.25 -8.13 -6.39 -3.39 0.20 3.37 
 

2.11 2.50E-10 0.954 
6 0.47 6.54 -2.68 -2.43 -1.50 0.04 2.71 0.01 

 
0.00 0.956 

7 0.43 6.81 
    

2.06 0.01 -3.76 0.00 0.955 
8 0.43 6.75 

   
0.00 

 
0.01 -3.81 0.00 0.955 

9 0.91 6.23 
   

0.04 3.54 
 

2.29 3.40E-06 0.955 
10 0.50 6.85 

   
-0.01 7.67 0.01 

 
0.00 0.955 

11 0.40 7.38 -0.66 -0.78 -0.87 
  

0.01 -3.44 0.00 0.956 
12 0.91 8.17  0.28 -0.08 -1.10 

 
8.16 

 
4.68 1.50E-04 0.955 

13 0.45 7.45 -1.06 -1.21 -0.97 
 

7.68 0.01 
 

0.00 0.956 
14 0.90 3.25 -8.13 -6.39 -3.39 0.20 

  
2.11 7.00E-11 0.954 

15 0.47 6.54 -2.68 -2.43 -1.50 0.04 
 

0.01 
 

0.00 0.956 
16 0.90 3.35 -7.60 -5.88 -3.19 0.19 3.29 

  
4.40E-10 0.954 

17 0.33 6.62 
     

0.02 -5.74 1.00 0.955 
18 0.91 7.91 

    
8.15 

 
6.65 1.90E-03 0.955 

19 0.52 6.58 
    

8.00 0.01 
 

0.00 0.954 
20 0.91 6.23 

   
0.04 

  
2.29 7.80E-07 0.955 

21 0.50 6.85 
   

-0.01 
 

0.01 
 

0.00 0.955 
22 0.91 6.20 

   
0.05 3.48 

  
1.90E-06 0.955 

23 0.91 8.17  0.28 -0.08 -1.10 
   

4.67 5.60E-05 0.955 
24 0.45 7.45 -1.06 -1.21 -0.97 

  
0.01 

 
0.00 0.956 

25 0.91 8.20  1.11 0.77 -0.89 
 

8.01 
  

3.70E-04 0.955 
26 0.90 3.35 -7.60 -5.88 -3.19 0.19 

   
1.10E-10 0.954 

27 0.91 8.20  1.11 0.77 -0.89 
    

1.20E-04 0.955 
28 0.91 6.20 

   
0.05 

   
2.80E-07 0.955 

29 0.92 9.12 
    

7.95 
  

9.50E-01 0.955 
30 0.52 6.58 

     
0.01 

 
0.00 0.954 

31 0.91 7.91 
      

6.64 4.00E-04 0.955 
32 0.92 9.12 

        
0.955 
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APPENDIX H.  

RISK ANALYSIS COMPONENT COSTS 

The four maintenance schedule alternatives in the case study in Chapter 7 were evaluated using the methodology described in that 

chapter to compute the component and total costs for each alternative (Table H.1).  

Table H.1: Cost components for the risk analysis case study 

 Maintenance direct cost Maintenance delay cost Acute disruption cost Slow Order cost Total 
Base  $44,038,542 $139,167,379 $905,858 $140,779,151 $324,890,930 
Alternative 1a $49,913,916 $153,783,045 $905,839 $130,294,736 $334,897,536 
Alternative 1b $43,871,265 $132,511,400 $905,864 $143,338,912 $320,627,441 
Alternative 2 $42,986,536 $128,059,671 $905,858 $140,781,153 $312,733,219 
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APPENDIX I.  

MAINTENANCE AGGREGATION ON LONG WORK WINDOW DIRECT COST 
MODIFICATIONS 

Since 24-hour work window values were not given in the original Burns & Franke (2005) 

report, they had to be calculated using their approach. Unless otherwise indicated all values come 

from Burns & Franke (2005). The basic calculation follows this form:  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 =
5280 ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑

𝑃𝑃𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 𝑝𝑝𝑑𝑑𝑐𝑐𝑝𝑝 ×  𝑃𝑃𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐
𝑐𝑐ℎ𝑚𝑚𝑓𝑓𝑐𝑐

 

The production rate was given in the report based on the authors’ experience. Production 

hours per shift were calculated using 

𝑃𝑃𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐
𝑐𝑐ℎ𝑚𝑚𝑓𝑓𝑐𝑐

= 𝑃𝑃𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑃𝑃𝑚𝑚𝑐𝑐𝑑𝑑 ×  𝑑𝑑𝑐𝑐𝑐𝑐𝑃𝑃𝑑𝑑𝑚𝑚 𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐 

𝑑𝑑𝑐𝑐𝑐𝑐𝑃𝑃𝑑𝑑𝑚𝑚 𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐
= 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐 − (𝑐𝑐𝑝𝑝𝑑𝑑𝑃𝑃𝑝𝑝𝑚𝑚, 𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝𝑐𝑐, & 𝑐𝑐𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚𝑝𝑝)
− (𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 𝑐𝑐𝑚𝑚𝑚𝑚𝑝𝑝 𝑑𝑑𝑃𝑃𝑝𝑝 𝑐𝑐𝑐𝑐 𝑚𝑚𝑝𝑝𝑑𝑑𝑚𝑚 & 𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝 𝑏𝑏𝑝𝑝𝑝𝑝𝑑𝑑𝑏𝑏𝑐𝑐) 

Meals and coffee breaks were assumed to be 30 and 15 minutes respectively. Travel, start, & 

clear time was taken as 1.5 hours per shift.  

The cost/day consisted of the cost of crews and equipment over the shift and was calculated 

based on the authors’ experience on an 8-hour shift. Equipment use time was based on the 

amount of time the equipment was in use, which is approximately the production time minus the 

breaks but isn’t explicitly calculated in the report.  

𝑐𝑐𝑑𝑑𝑝𝑝𝑐𝑐𝑚𝑚𝑑𝑑𝑚𝑚 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

= (8 ℎ𝑐𝑐𝑃𝑃𝑝𝑝 𝑚𝑚𝑑𝑑𝑏𝑏𝑐𝑐𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑝𝑝𝑑𝑑𝑚𝑚𝑑𝑑 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑

8

+ (8 ℎ𝑐𝑐𝑃𝑃𝑝𝑝 𝑝𝑝𝑒𝑒𝑃𝑃𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑃𝑃𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑝𝑝𝑒𝑒𝑃𝑃𝑚𝑚𝑝𝑝𝑚𝑚𝑝𝑝𝑃𝑃𝑐𝑐 𝑃𝑃𝑐𝑐𝑝𝑝 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐

8
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The exception to this was ballast cleaning that used the following equation and seems to be 

based on fixed and variable costs 

𝐵𝐵𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑐𝑐𝑐𝑐 𝑐𝑐𝑚𝑚𝑝𝑝𝑑𝑑𝑃𝑃𝑚𝑚𝑃𝑃𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

= (8 ℎ𝑐𝑐𝑃𝑃𝑝𝑝 𝑚𝑚𝑑𝑑𝑏𝑏𝑐𝑐𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑝𝑝𝑑𝑑𝑚𝑚𝑑𝑑 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑

8
+ (𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐)  

×  𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 𝑝𝑝𝑑𝑑𝑐𝑐𝑝𝑝 ×  2 + 1000 

The number of possessions required per mile was calculated using the production rate, 

production hours per shift, and a conversion factor based on the authors’ experience.  

𝑝𝑝𝑝𝑝𝑒𝑒𝑃𝑃𝑚𝑚𝑝𝑝𝑝𝑝𝑑𝑑 𝑃𝑃𝑃𝑃𝑚𝑚𝑏𝑏𝑝𝑝𝑝𝑝 𝑐𝑐𝑓𝑓 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝

= 5280 ×  
𝐴𝐴𝑑𝑑𝐴𝐴𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑃𝑃𝑐𝑐 𝑓𝑓𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝

𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 𝑝𝑝𝑑𝑑𝑐𝑐𝑝𝑝 𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑𝑃𝑃𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑃𝑃 ℎ𝑐𝑐𝑃𝑃𝑝𝑝𝑐𝑐
𝑐𝑐ℎ𝑚𝑚𝑓𝑓𝑐𝑐

 

As mentioned in Chapters 7 and 8, the tie replacement and undercutting costs and required 

number of windows were modified to include surfacing since that would be required for both 

activities. These were found by simply adding the values for crosstie replacement and ballast 

cleaning and surfacing. Actual values used are provided in the tables below. Where applicable 

values were converted to 2015 dollars using a factor of 1.136 (United States Census Bureau 

2016).  

Table I.1: Division of work window hours  
 
 Work window length 

Value 7.5 hours 24 hours 7 days 
Paid hours per day 10 24 24 
Possession hours 7.5 24 168 
Number of coffee breaks per day 1 4 4 
Number of meal breaks 1 2 2 
Equipment use hours per day 9.5 22 22 
Actual production hours per shift 5.25 20.5 152.5 
Productivity 0.95 0.85 0.85 
Production hours per shift 4.99 17.4 129.6 
Production hours per day 4.99 17.4 18.5 
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Table I.2: Track maintenance costs  
 
 Rail replace Tie replace Ballast 

cleaning 
Surfacing 

General values     
Production Rate (ft/hr) 1,000 1,500 1,200 4,000 
8 hour labor cost ($) 4,000 3,200 2,000 1,500 
8 hour equipment cost ($) 4,000 5,000 6,000 1,500 
Adjustment factor 1.5 1.5 1 1.25 
Materials cost ($) 172,6361 29,6002 108,0003 13,5003 

7.5-hour windows     
Possessions per mile 1.59 1.06 0.88 0.33 
Cost per day ($) 9,750 9,938 15,470 3,688 
Cost per mile ($) 10,322 7,014 13,648 968 
2015 Cost per mile ($) 11,726 7,968 15,504 1,100 
Total cost per mile ($) with materials  184,362 37,568 123,504 14,600 

24-hour windows     
Possessions per mile 0.45 0.30 0.25 0.09 
Cost per day ($) 23,000 23,350 48,820 8,625 
Cost per mile ($) 6969 4717 12328 653 
2015 Cost per mile ($) 7,917 5,359 14,005 742 
Total cost per mile ($) with materials  180,553 34,959 122,005 14,242 

7-day windows     
Possessions per mile 0.061 0.041 0.034 0.013 
Cost per day ($)     
Cost per mile ($) 6,558 4,439 12,223 615 
2015 Cost per mile ($) 7,450 5,043 13,885 699 
Total cost per mile ($) with materials  180,086 34,642 121,885 14,199 

1. (ACW Railway Company 2015) 
2. (Burns 1989) 
3. Using costs from ACW Railway Company (2015) and amounts from Chrismer (1988) 

 
I.1 References 

ACW Railway Company. 2015. Costs of a Rail Siding. URL http://www.acwr.com/economic-
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Unpublished Report to AREMA Committee 16. 
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APPENDIX J.  

AGGREGATION ON LONG WORK WINDOWS CASE STUDY COSTS 

 
The component and total costs for the case study from Chapter 8 were computed using the methodology in that chapter (Table J.1).  

Table J.1: Output from the Chapter 8 case study 

  Maintenance 
direct cost 

Maintenance 
delay cost 

Acute 
disruption costs Slow Order costs Total 

Baseline Traditional $73,974,722 $245,101,822 $1,013,943 $262,891,821 $582,982,308 

       

No Detour 

Agg. - Same year $73,167,490 $212,830,673 $1,013,943 $262,891,821 $549,903,927 
Agg. - First year $71,226,222 $166,275,375 $1,013,943 $262,891,452 $501,406,992 
Agg. - Mid. Year $68,290,108 $153,376,721 $966,169 $277,461,779 $500,094,777 
Agg. - Last year $66,674,503 $152,848,417 $1,057,266 $278,225,087 $498,805,273 

       

Detour 

Agg. - Same year $73,067,490 $143,283,584 $1,013,943 $262,891,821 $480,256,838 
Agg. - First year $71,107,717 $54,351,185 $1,013,943 $262,891,452 $389,364,297 
Agg. - Mid. year $68,167,258 $56,343,922 $966,169 $277,461,779 $402,939,128 
Agg. - Last year $66,559,101 $48,741,150 $1,057,266 $278,225,087 $394,582,604 
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APPENDIX K.  

SIMULATED ANNEALING MODEL CODE 

The following R code was developed to create the initial maintenance schedules and run the 

simulated annealing. The imported files contain tables with the annual tonnage, route lengths, 

detour lengths, double track indicator, capacity utilization, and time since previous maintenance 

for rail, crossties, and ballast.  

timestamp() 
starttime<-Sys.time() 
library(xlsx) 
 
TDelay<-function(NN,RN,TM,NSO,TE,TAD,VN,VSO,LR,LSO,LT){ 
   
    gz<-1/RN 
   
  if(VSO>0){ 
    TN<-LR/VN 
    TSO<-min(TN+NSO*((LSO+LT)*(1/VSO-1/VN)+TAD),LR/VSO) 
    gso<-TN/TSO 
     
  }else{ 
    gso<-1 
  } 
 
  TB<-TM+TE*(1-gso/gz) 
  QZ<-NN*(gso*TE-gz*(TM+TE))/(1-gz) 
  QS<-gso*NN*TE 
   
  return(max(.5*(TB*QZ-(TB-TM)*QS),0)) 
} 
 
#data import------------------------ 
#activities<-3 
#years<-50 
#routes<-3 
 
NAjk<-data.matrix(read.xlsx("C:/Users/alovett2/Box Sync/Maint Opt/Maint Opt data 
import.xlsx",sheetName =  "NAjk"))#data.matrix(read_excel("~/Box Sync/Maint Opt/Maint 
comparison - current.xlsm", sheet = "NAjk"))#array(1:years*routes, dim = c(years,routes))*0+30 
#MGT/year# 
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LNjk<-data.matrix(read.xlsx("C:/Users/alovett2/Box Sync/Maint Opt/Maint Opt data 
import.xlsx",sheetName =  "LNjk"))#data.matrix(read_excel("~/Box Sync/Maint Opt/Maint 
comparison - current.xlsm", sheet = "LNjk"))#NAjk*0+100 #route length# 
LLjk<-data.matrix(read.xlsx("C:/Users/alovett2/Box Sync/Maint Opt/Maint Opt data 
import.xlsx",sheetName =  "LLjk"))#data.matrix(read_excel("~/Box Sync/Maint Opt/Maint 
comparison - current.xlsm", sheet = "LLjk"))#NAjk*0+200 #MGT/year# 
VLjk<-data.matrix(read.xlsx("C:/Users/alovett2/Box Sync/Maint Opt/Maint Opt data 
import.xlsx",sheetName =  "VLjk"))#data.matrix(read_excel("~/Box Sync/Maint Opt/Maint 
comparison - current.xlsm", sheet = "VLjk"))#NAjk*0+40 #MGT/year#NAjk*0+40 
#MGT/year# 
djk<-data.matrix(read.xlsx("C:/Users/alovett2/Box Sync/Maint Opt/Maint Opt data 
import.xlsx",sheetName =  "djk")) #data.matrix(read_excel("~/Box Sync/Maint Opt/Maint 
comparison - current.xlsm", sheet = "djk"))#binary to indicate if there is double track on the 
route#NAjk*0+1# 
RNjk<-data.matrix(read.xlsx("C:/Users/alovett2/Box Sync/Maint Opt/Maint Opt data 
import.xlsx",sheetName =  "RNjk"))#data.matrix(read_excel("~/Box Sync/Maint Opt/Maint 
comparison - current.xlsm", sheet = "RNjk"))#route utilization#NAjk*0+.65 # 
Yi0k<-t(data.matrix(read.xlsx("C:/Users/alovett2/Box Sync/Maint Opt/Maint Opt data 
import.xlsx",sheetName =  "Yi0k")))#t(data.matrix(read_excel("~/Box Sync/Maint Opt/Maint 
comparison - current.xlsm", sheet = "Yi0k")))#years since the maintenance was performed as of 
year 0(array(1:routes*activities,dim = c(activities,routes))*0+1)*c(20,9,4) # 
 
ncjk<-c(6,6,6,4,1) #assume 20" tie spacing, 850 ties replaced every 9 years, assume this break 
down won't change even if the ties are being replace more frequently 
 
#index information---- 
imaint<-1:3 #types of maintenance 
wwindow<-1:3 #types of windows 
 
jyear<-1:(dim(NAjk)[1]) #years in analysis period 
kroute<-1:dim(NAjk)[2] #routes  
ccohort<-1:length(ncjk) #5 age groups of ties, but should probably import the actual number of 
cohorts 
 
#parameters---- 
#maybe updated some of these becuase of variations between lines 
RI<-.0961 #% discount rate from STB 
#CF<-130.76 #cost per hour for 3 flaggers  
CGjprime<-1000#$ per activity movement 
NRail<-273 #number of rail sections per mile from Orringer 1990 
Lambda<-0.014 #from Orringer 
theta<-10 #MGT min inspection interval from Orringer 
dN<-15#MGT based on the inspection opt paper 
TAD<-.2 #additional acceleration and deceleration for each slow order 
LSO<-.1#miles that are slow ordered 
CB<-1127 # $ per defect 
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PXRail<-0.0084 #proportion of broken rails that result in a derailment 
NEij<-4 #number of jobs of type i can be completed in year j 
 
CXRail<-616263*1.65 #rail break derailment cost 
VS<-10 #mph speed trains will season the track at 
NS<-0.2 #MGT to season the track 
S1<-19.5206 #sogin parameter 
S2<-19.149 #sogin parameter 
k<-0.0471 #sogin parameter 
CP<- 2000 #detour planning cost 
VNjk<-40 #mph normal route speed 
T2k<-30 #average life of a crosstie on route k, could also import this if we decide it should 
change 
LTjk<-1 #average train length 
CDjk<-950 #$/train hour based on the Lovett et al 2017 (train delay costing paper) 
CTjk<-.002 #millage $/ton-mile 
CKjk<-46.78 #additional crew member cost for a detour 
NT<-6987#tons per train based on AAR AC1RR 
TBD<-5 #hours to repair rail break 
TXD<-24 #hours to recover from derailment 
fjk<-23-8 #maximum allowable failed ties, anymore and there will be an FRA defect. class 2 or 3 
track with curves less than 2 degrees. Could import this if there are different track classes in the 
routes 
CBudget<-1E9 #annual budget 
 
CJiw<-array(c(184000,52000,138000,181000,49000,136000, 180000,49000,136000), dim = 
c(max(imaint),max(wwindow)),dimnames = list(c("Rail","Crossties","Ballast"),c("7.5 hr","24 
hr","7 day")))# per mile cost to perform maintenance 
CSOi<-c(859,285,1200) #direct cost to repair one defect 
TMw<-c(7.5,24,168)#window lengths 
CSw<-c(15000,14000,14000) #cost per mile to surface 
QSw<-c(.33,.09,.0014)#windows required to surface 1 mile 
QJiw<-array(c(1.59,1.39,1.21,.45,.39,.35,.061,.054, .047), dim = 
c(max(imaint),max(wwindow)),dimnames = list(c("Rail","Crossties","Ballast"),c("7.5 hr","24 
hr","7 day")))# per mile cost to perform maintenance 
TEi<-c(24,4*24,3*24) #slow order duration, this could also vary by line 
VSOi<-c(30,25,25) #mph slow order for each defect type 
alphai<-c(3.1,4.5606500420751,1/0.9193001) #weibull parameters 
betai<-c(2150,1.02128074524307,exp(9.089459)) #Weibull parameters 
TCik<-c(20,9,4) #normal renewal cycles for each component 
TIi<-c(4380,168,168) #inspection interval in hours 
 
NNjk<-NAjk*1000000/NT/365/24 #trains per hour  
TBjk<-TDelay(NNjk,RNjk,TBD,0,0,0,40,0,LNjk,0,LTjk)#based on 5 hours to maintain a rail 
break 

241



TXjk<-TDelay(NNjk,RNjk,TXD,0,0,0,40,0,LNjk,0,LTjk)#based on 24 hours to recover from a 
derailment 
#TSjk<-365*24/NAjk*NS #time to season the track 
 
TSJijk<-array(1:length(jyear)*max(kroute)*max(imaint), dim = 
c(max(imaint),length(jyear),max(kroute)),dimnames = 
list(c("Rail","Crossties","Ballast"),jyear,kroute))*0  
for(ii in imaint){ #determining the seasoning period for each route and year 
  if(ii==1){ 
    TSJijk[ii,,]<-0 
  } else{ 
    for(kk in kroute){ 
      TSJijk[ii,,kk]<-365*24/NAjk[,kk]*NS#TSjk 
    } 
  } 
} 
 
CX3ijk<-
c(0,.0410677618069815*(361102*1.65+TXjk*CDjk),0.137577002053388*(403091*1.65+TXjk
*CDjk))*.11 #rates may change between routes 
CX2ijk<-
c(0,.080814312152992*(131980*1.65+TXjk*CDjk),0.155459592843923*(200068*1.65+TXjk*
CDjk))*.22 
 
yc0k<-array(1:length(ccohort)*length(kroute),dim = c(length(ccohort),length(kroute))) #should 
import the actual amounts, and determine the number of cohorts from this imported value 
 
for(kk in kroute){ 
  yc0k[1,kk]<-Yi0k[2,kk]# the most recent cohort was installed in the last renewal 
  for(cc in ccohort[-1]){ #all others are installed in 9 year intervals 
    yc0k[cc,kk]<-yc0k[cc-1,kk]+TCik[2] 
  } 
} 
 
ycjk<-array(1:max(ccohort)*length(jyear)*max(kroute), dim = 
c(max(ccohort),length(jyear),max(kroute)))*0 # cohort ages through time, which will depend on 
when maintenance is performed 
yl<-0:100 # this is a dummy variable for use in populating pyk 
pyk<-array(1:length(yl)*max(kroute), dim = c(length(yl),max(kroute)))*0 #variable to store the 
probability of failure in each route for 50 years, so it doesn't have to be calculated everytime 
 
for(kk in kroute){ 
  pyk[,kk]<-pweibull(yl,alphai[2],betai[2]*T2k) 
} 
cntr<-1 #this process will need to change if there are different track classes represented 
Fjk1<-ccohort 
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temp<-expand.grid(0:ncjk[1],0:ncjk[2],0:ncjk[3],0:ncjk[4],0:ncjk[5]) # using the assumed 
cohorts above (ncjk)  
for(ii in 1:dim(temp)[1]){ 
  if(sum(temp[ii,])>fjk){ 
    Fjk1[cntr]<-ii 
    cntr<-cntr+1 
  } 
} 
Fk<-temp[Fjk1,] 
 
#intermediate vals----- 
Ctotaljk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #total cost 
on each route in each year 
Ctotalk<-kroute*0 
CMjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #maintenance 
cost per mile 
CSOjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #slow order 
cost per mile 
CXjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #accute 
disruption cost per mile 
QWjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #maintenance 
windows per mile 
TMjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #maintenance 
window length 
TSjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #surfacing 
time when blitz is used 
LMjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #length of 
track maintained per window 
RBjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)))*0 #annual rail 
break rate 
yijk<-array(1:length(jyear)*max(kroute)*max(imaint), dim = 
c(max(imaint),length(jyear),max(kroute)),dimnames = 
list(c("Rail","Crossties","Ballast"),jyear,kroute))*0 
RSOijk<-array(1:length(jyear)*max(kroute)*max(imaint), dim = 
c(max(imaint),length(jyear),max(kroute)),dimnames = 
list(c("Rail","Crossties","Ballast"),jyear,kroute))*0  
CSOijk<-array(1:length(jyear)*max(kroute)*max(imaint), dim = 
c(max(imaint),length(jyear),max(kroute)),dimnames = 
list(c("Rail","Crossties","Ballast"),jyear,kroute))*0  
CSODijk<-array(1:length(jyear)*max(kroute)*max(imaint), dim = 
c(max(imaint),length(jyear),max(kroute)),dimnames = 
list(c("Rail","Crossties","Ballast"),jyear,kroute))*0  
CXijk<-array(1:length(jyear)*max(kroute)*max(imaint), dim = 
c(max(imaint),length(jyear),max(kroute)),dimnames = 
list(c("Rail","Crossties","Ballast"),jyear,kroute))*0  
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CDMjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute))) #total 
maintenance delay cost 
 
CGj<-jyear 
 
PSOijk<-array(1:length(jyear)*max(kroute)*max(imaint), dim = 
c(max(imaint),length(jyear),max(kroute)),dimnames = 
list(c("Rail","Crossties","Ballast"),jyear,kroute))*0 
pHold<-matrix(1:(length(ccohort)*dim(Fk)[1]),ncol = length(ccohort))*0 #tie group by 
occurance holds the probability of observign the condition in question 
pHold1<-matrix(1:(length(ccohort)*dim(Fk)[1]),ncol = length(ccohort))*0 #tie group by 
outcome for the next year 
pHoldsum<-(1:dim(Fk)[1])*0 #hold the probability fo each event 
pHoldsum1<-(1:dim(Fk)[1])*0 #hold the probability fo each event 
 
#Variables---- 
#can to import the preexisting schedule  
 
# only have to deal with xijk since the base case will be no detour and only 7.5 hour windows 
xijk<-array(1:length(jyear)*max(kroute)*max(imaint), dim = 
c(max(imaint),length(jyear),max(kroute)),dimnames = 
list(c("Rail","Crossties","Ballast"),jyear,kroute))*0 #starting plan for selected maintenance 
activities  
ajkw<-array(1:length(jyear)*max(kroute)*max(wwindow), dim = 
c(length(jyear),max(kroute),max(wwindow)),dimnames = list(jyear,kroute,c("7.5 hr","24 hr","7 
day")))*0 #starting condition for windows selected 
bjk<-array(1:length(jyear)*max(kroute), dim = c(length(jyear),max(kroute)),dimnames = 
list(jyear,kroute))*0#+1 #if a detour is selected 
 
#xx<-expand.grid(0:1,0:1,0:1) 
#jj1<-0 
#kk<-1 
#jj<-0 
ajkw[,,1]<-1 #everything is one 7.5 hour windows except when there is aggregation 
for(kk in kroute){ 
  for (jj in jyear){ 
#    ifelse(jj1+1>8,jj1<-1,jj1<-jj1+1) 
    for(ii in imaint){ 
      if((Yi0k[ii,kk]+jj-1)/TCik[ii]==round((Yi0k[ii,kk]+jj-1)/TCik[ii])){ 
        xijk[ii,jj,kk]<-1 
      } 
      #xijk[ii,jj,kk]<-xx[jj1,ii] 
    } 
    if(sum(xijk[,jj,kk])>1){ 
      ajkw[jj,kk,1]<-0 
      ajkw[jj,kk,2]<-1 
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    } 
  } 
} 
 
#ajkw[jj,2,2]<-1 
#ajkw[jj,3,3]<-1 
#bjk[jj,3]<-1 
#ajkw[jj,2,1]<-0 
#ajkw[jj,3,1]<-0 
 
#Sim anneal------- 
T<-1e9#initial temperature 
alfa<-.85 #how quickly it cools 
Eil<-jyear #holder for the costs 
cntr<-2 #iterations of the annealing process 
EBest<-1E100 
Eil<-array(c(EBest,EBest),dim = c(1,2)) #holds the options 
NumSame<-5 
Tmin<-.5 
 
#objectives---- 
repeat{ 
   
  CDMjk<-CDMjk*0 
  Ctotalk<-Ctotalk*0 
  Ctotal<-0 
   
  for (jj in jyear){ 
    for (kk in kroute){ 
      #Maintenance costs##### 
      if(ajkw[jj,kk,1]==0 & xijk[1,jj,kk]==1){ #if we are blitzing and rail is being replaced 
        QWjk[jj,kk]<-sum(ajkw[jj,kk,]*QJiw[1,]) #rail is the longest 
      } else if (ajkw[jj,kk,1]==0 & xijk[1,jj,kk]==0 & xijk[2,jj,kk]==1){ #if we are blitzing and 
rail isn't being replaced, but ties are  
        QWjk[jj,kk]<-sum(ajkw[jj,kk,]*QJiw[2,]) #ties are the longest 
      } else { #everything else just sum up everything that happens and remove one surfacing if 
necessary 
        for (ww in wwindow){ 
          if(ajkw[jj,kk,ww]==1){ 
            QWjk[jj,kk]<-sum(xijk[,jj,kk]*QJiw[,ww])-xijk[2,jj,kk]*xijk[3,jj,kk]*QSw[ww] 
          } 
        } 
      } 
      TMjk[jj,kk]<-sum(ajkw[jj,kk,]*TMw) 
      CGj[jj]<-sum(xijk[,jj,])*CGjprime 
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      for (ww in wwindow){ 
        if(ajkw[jj,kk,ww]==1){ #if the window type ww is used then sum up the applicable costs 
and remove a surfacing if necessary 
          CMjk[jj,kk]<-sum(CJiw[,ww]*xijk[,jj,kk])-xijk[2,jj,kk]*xijk[3,jj,kk]*CSw[ww] 
        } 
      } 
    } 
    CMjk[jj,]<-CMjk[jj,]*LNjk[jj,]*(1+djk[jj,]) #converting from per mile to total costs 
     
    Nij<-0 #this is to check the resource constraint 
    for(ii in imaint){ 
      Nij<-Nij+ifelse(sum(xijk[ii])>NEij,1,0) 
    } 
     
    if((sum(CMjk[jj,])+CGj[jj]<=CBudget) & Nij==0){ 
    #this is where we would check for the budget constraint if the budget is exceeded then we 
don't carry through with the plan and pick another 
       
      for (kk in kroute){ 
       
      #Initializing---- 
        for(ii in imaint){ #this loop gives the years since maintenance 
          if(xijk[ii,jj,kk]==0){ 
            if(jj!=1){ 
              yijk[ii,jj,kk]<-yijk[ii,jj-1,kk]+1 
            }else{ 
              yijk[ii,jj,kk]<-Yi0k[ii,kk] 
            } 
          }else{ 
            yijk[ii,jj,kk]<-0 
          } 
        } 
         
        if(jj==1){#this loop gives the cohort ages 
          ycjk[1,jj,kk]<-yijk[2,jj,kk] 
          for(cc in ccohort[-1]){ 
            ycjk[cc,jj,kk]<-ycjk[cc-1,jj,kk]+TCik[2] 
          } 
        }else { 
          if(xijk[2,jj,kk]==0){ 
            ycjk[,jj,kk]<-ycjk[,jj-1,kk]+1 
          }else{ 
            ycjk[1,jj,kk]<-0 
            ycjk[-1,jj,kk]<-ycjk[-length(ccohort),jj-1,kk]+1 
          } 
        } 
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      #Slow order costs----     
        RSOijk[1,jj,kk]<-NRail*(pweibull((yijk[1,jj,kk]+1)*NAjk[jj,kk],alphai[1],betai[1])-
pweibull(yijk[1,jj,kk]*NAjk[jj,kk],alphai[1],betai[1]))/ 
          ((Lambda*(dN-theta)+1)) 
        RSOijk[3,jj,kk]<-5280/200*(pweibull((yijk[3,jj,kk]+1)*365,alphai[3],betai[3])) 
         
        #tie slow orders 
        for(ff in 1:dim(Fk)[1]){ 
          for(cc in ccohort){ 
            pHold[ff,cc]<-dbinom(Fk[ff,cc],ncjk[cc],pyk[ycjk[cc,jj,kk]+1])# 
            pHold1[ff,cc]<-dbinom(Fk[ff,cc],ncjk[cc],pyk[ycjk[cc,jj,kk]+2]) 
          } 
          pHoldsum[ff]<-prod(pHold[ff,]) 
          pHoldsum1[ff]<-prod(pHold1[ff,]) 
        } 
        RSOijk[2,jj,kk]<-5280/39*(sum(pHoldsum1)-sum(pHoldsum)) 
        for(ii in imaint){ 
          CSOijk[ii,jj,kk]<-RSOijk[ii,jj,kk]*CSOi[ii] 
          CSODijk[ii,jj,kk]<-
TDelay(NNjk[jj,kk],RNjk[jj,kk],0,TIi[ii]*RSOijk[ii,jj,kk]/24/365*LNjk[jj,kk],TEi[ii],TAD,VNj
k,VSOi[ii],LNjk[jj,kk],LSO,LTjk)* 
            CDjk/TIi[ii]*365*24 
        } 
        CSOjk[jj,kk]<-sum(CSOijk[,jj,kk]*LNjk[jj,kk],CSODijk[,jj,kk])*(1+djk[jj,kk]) 
      #Acute disruption costs---- 
        RBjk[jj,kk]<-NRail*Lambda*(dN-
theta)*(pweibull((yijk[1,jj,kk]+1)*NAjk[jj,kk],alphai[1],betai[1])- 
                                                  
pweibull(yijk[1,jj,kk]*NAjk[jj,kk],alphai[1],betai[1]))/((Lambda*(dN-theta)+1)) 
        CXijk[1,jj,kk]<-RBjk[jj,kk]*(TBjk*CDjk+CB+PXRail*(CXRail+CDjk*TXjk)) 
        for(ii in imaint[-1]){ 
          PSOijk[ii,jj,kk]<-min(LSO*RSOijk[ii,jj,kk]/24/365*TEi[ii],1) 
          CXijk[ii,jj,kk]<-NAjk[jj,kk]/1000*(PSOijk[ii,jj,kk]*CX2ijk[ii]+(1-
PSOijk[ii,jj,kk])*CX3ijk[ii]) 
        } 
        CXjk[jj,kk]<-sum(CXijk[,jj,kk])*LNjk[jj,kk]*(1+djk[jj,kk]) 
      #Delay costs----------- 
        LMjk[jj,kk]<-ifelse(QWjk[jj,kk]>0,1/QWjk[jj,kk],0) 
        TSjk[jj,kk]<-ifelse(xijk[2,jj,kk]+xijk[3,jj,kk]>0,TSJijk[2,jj,kk],0) 
        if(ajkw[jj,kk,1]==1 & bjk[jj,kk]==0){ #if it is not aggregated and not blitzed 
          if(djk[jj,kk]==0){ #if it isn't double track 
            for(ii in imaint){ 
              CDMjk[jj,kk]<-QJiw[ii,1]*xijk[ii,jj,kk]* 
                TDelay(NNjk[jj,kk],RNjk[jj,kk],TMjk[jj,kk]*(1-bjk[jj,kk])*(1-
djk[jj,kk]),1,TSJijk[ii,jj,kk],TAD,VNjk,VS,LNjk[jj,kk],1/QJiw[ii,1],LTjk)+CDMjk[jj,kk] 
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            } 
            CDMjk[jj,kk]<-CDMjk[jj,kk]-
xijk[2,jj,kk]*xijk[3,jj,kk]*QSw[1]*TDelay(NNjk[jj,kk],RNjk[jj,kk],TMjk[jj,kk],1,TSjk[jj,kk],T
AD,VNjk,VS,LNjk[jj,kk],1/QSw[1],LTjk) 
          } else{ # if it is double track 
            CDMjk[jj,kk]<-
QWjk[jj,kk]*(1+djk[jj,kk])*(TMjk[jj,kk]*NNjk[jj,kk]*LNjk[jj,kk]/240/60*(S1-S2*(LNjk[jj,kk]-
LMjk[jj,kk])/LNjk[jj,kk])*exp(24*k*NNjk[jj,kk])+ 
                                                              
TDelay(NNjk[jj,kk],RNjk[jj,kk],0,1,TSjk[jj,kk],TAD,VNjk,VS,LNjk[jj,kk],LMjk[jj,kk],LTjk)) 
          } 
          CDMjk[jj,kk]<-CDjk*CDMjk[jj,kk] 
        } 
         
        if(ajkw[jj,kk,1]!=1){ 
          if(bjk[jj,kk]==0){ #if a detour isn't used 
            if(djk[jj,kk]==0){ #if it isn't double track 
              CDMjk[jj,kk]<-
TDelay(NNjk[jj,kk],RNjk[jj,kk],TMjk[jj,kk],1,TSjk[jj,kk],TAD,VNjk,VS,LNjk[jj,kk],LMjk[jj,k
k],LTjk) 
            } else{ #if it is double track 
              CDMjk[jj,kk]<-(1+djk[jj,kk])*(TMjk[jj,kk]*NNjk[jj,kk]*LNjk[jj,kk]/240/60*(S1-
S2*(LNjk[jj,kk]-LMjk[jj,kk])/LNjk[jj,kk])*exp(24*k*NNjk[jj,kk])+ 
                                
TDelay(NNjk[jj,kk],RNjk[jj,kk],0,1,TSjk[jj,kk],TAD,VNjk,VS,LNjk[jj,kk],LMjk[jj,kk],LTjk)) 
            } 
            CDMjk[jj,kk]<-CDjk*CDMjk[jj,kk] 
          } else{ #if a detour is used 
            CDMjk[jj,kk]<-
CP+LLjk[jj,kk]*(CTjk*NAjk[jj,kk]*1000000/365/24*TMjk[jj,kk]+CKjk/VLjk[jj,kk])+CDjk*(L
Ljk[jj,kk]/VLjk[jj,kk]-LNjk[jj,kk]/VNjk)+ 
              
CDjk*(1+djk[jj,kk])*TDelay(NNjk[jj,kk],RNjk[jj,kk],0,1,TSjk[jj,kk],TAD,VNjk,VS,LNjk[jj,kk]
,LMjk[jj,kk],LTjk) 
          } 
          CDMjk[jj,kk]<-QWjk[jj,kk]*CDMjk[jj,kk] 
        } 
        CDMjk[jj,kk]<-CDMjk[jj,kk]*LNjk[jj,kk] 
      } #end of kk 
      Ctotaljk[jj,]<-(CMjk[jj,]+CSOjk[jj,]+CXjk[jj,]+CDMjk[jj,]) 
 
      Ctotal<-sum(Ctotaljk[jj,],CGj[jj])/(1+RI)^(jj-1)+Ctotal 
    } else { 
      Ctotal<-0 
      break 
    } 
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  } #end of jj   
   
  for(kk in kroute){ 
    for(jj in jyear){ 
      Ctotalk[kk]<-Ctotaljk[jj,kk]/(1+RI)^(jj-1)+Ctotalk[kk] 
    }  
  } 
 
  if(Ctotal>0){ #if the solution met the constraints, if it didn't then it will just change the best 
again 
    Eil<-rbind(Eil,c(sum(Ctotal),EBest)) 
    #Sim anneal-accept/reject---- 
    if(Eil[cntr,1]<min(Eil[,1])){ 
      xBestest<-xBest 
      aBestest<-ajkw 
      bBestest<-bjk 
      Ctotalkbest<-Ctotalk 
    } 
    if(exp(-(Eil[cntr,1]-EBest)/T)>=runif(1)){ 
      EBest<-Eil[cntr,1] 
      Eil[cntr,2]<-Eil[cntr,1] 
      xBest<-xijk 
      aBest<-ajkw 
      bBest<-bjk 
    } 
    if(cntr>NumSame){ #if there have been more than a given number with the same result 
      if((max(Eil[c((cntr-NumSame):cntr),2]) == min(Eil[c((cntr-NumSame):cntr),2]) & 
T<Tmin)){ #if there have been more than a given number with the same result and the temp is 
below the min value 
        break #end the search 
      } 
    } 
    cntr<-cntr+1 
    T<-T*alfa 
  }  
   
  #Sim anneal - change one thing--------- 
  xijk<-xBest #change the current best 
  ajkw<-aBest 
  bjk<-bBest 
   
  xabrand<-sample(2,1) #random variable to change, 1 is move a maintenance activity, 2 is add a 
detour 
  krand<-sample(kroute,1) #pick a random route to change 
 
  #jrand<-sample(jyear,1) #pick a random year to change 
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  if(xabrand==1){ # if the maintenance activity has been selected 
    irand<-sample(imaint,1) #pick a random activity 
    xirand<-sample(sum(xijk[irand,,krand]),1) # pick an occurance of that activity 
    audrand<-sample(2,1) #pick if it should be moved up or down 
    xcnt<-0 
    jrand<-0 
    for(jj in jyear){#this counts to find the selected occurance of maintenance type i 
      if(xijk[irand,jj,krand]==1){ 
        xcnt<-xcnt+1 
        if(xcnt==xirand){ 
          jrand<-jj 
          break 
        } 
      } 
    } 
     
    xijk[irand,jrand,krand]<-0#turn it off in the selected year 
    if(sum(xijk[,jrand,krand])<2){ #if there is only one activity being performed in that year, it 
should go back to being 7.5 hr windows 
      ajkw[jrand,krand,1]<-1 
      ajkw[jrand,krand,2]<-0 
      ajkw[jrand,krand,3]<-0 
      bjk[jrand,krand]<-0 
    } 
     
    if(audrand==1){#move one year earlier 
      if(jrand>1){ #if the original activity took place in the first year, then it will just fall off the 
planning period 
        xijk[irand,jrand-1,krand]<-1 
        ajkw[jrand-1,krand,]<-0 
        if(sum(xijk[,jrand-1,krand])>1){ 
          if(bjk[jrand-1,krand]==1){ 
            ajkw[jrand-1,krand,3]<-1 
          } else{ 
            ajkw[jrand-1,krand,2]<-1 
          } 
        } else{ 
          ajkw[jrand-1,krand,1]<-1 
          bjk[jrand-1,krand]<-0 
        } 
      } 
       
      if(xirand==sum(xijk[irand,,krand]) & jrand==length(jyear)-(TCik[irand]-1)){#add new one 
at the end if necessary to match the cycle, this will only happen when the activity was originally 
scheduled one less than the cycle from the last year 
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        xijk[irand,length(jyear),krand]<-1 
        ajkw[length(jyear),krand,]<-0 
        if(sum(xijk[,length(jyear),krand])>1){ 
          if(bjk[length(jyear),krand]==1){ 
            ajkw[length(jyear),krand,3]<-1 
          } else{ 
            ajkw[length(jyear),krand,2]<-1 
          } 
        } else{ 
          ajkw[length(jyear),krand,1]<-1 
          bjk[length(jyear),krand]<-0 
        } 
      } 
    } else{ #move one year later 
      if(jrand<length(jyear)){ #if the original activity took place in the last year, then it will just 
fall off the planning period 
        xijk[irand,jrand+1,krand]<-1   
        ajkw[jrand+1,krand,]<-0 
        if(sum(xijk[,jrand+1,krand])>1){ 
          if(bjk[jrand+1,krand]==1){ 
            ajkw[jrand+1,krand,3]<-1 
          } else{ 
            ajkw[jrand+1,krand,2]<-1 
          } 
        }else{ 
          bjk[jrand+1,krand]<-0 
          ajkw[jrand+1,krand,1]<-1 
        } 
      } 
    } 
  }else{#if the detour was selected 
    bjkrand<-sample(length(jyear)-sum(ajkw[,krand,1]),1) #pick a random occurance of 
aggregation to add a detour to 
    xcnt<-0 
    jrand<-0 
    for(jj in jyear){#this counts to find the selected occurance of aggregation 
      if(ajkw[jj,krand,1]==0){ 
        xcnt<-xcnt+1 
        if(xcnt==bjkrand){ 
          jrand<-jj 
          break 
        } 
      } 
    } 
    bjk[jrand,krand]<-abs(bjk[jrand,krand]-1) #change it from on to off or vise versa 
    ajkw[jrand,krand,]<-0 
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    if(sum(xijk[,jrand,krand])>1){ 
      if(bjk[jrand,krand]==1){ 
        ajkw[jrand,krand,3]<-1 
      } else{ 
        ajkw[jrand,krand,2]<-1 
      } 
    } else{ 
      ajkw[jrand,krand,1]<-1 
      bjk[jrand,krand]<-0 
    } 
  } 
} 
 
timestamp() 
print(Sys.time()-starttime) 
print(min(Eil[,1])) 
print(EBest) 
#print(proc.time()) 
#print(xBest) 
#print(aBest) 
#print(bBest) 
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APPENDIX L.  

SIMULATED ANNEALING PARAMETER TEST RESULTS 

The code in Appendix K was run with different values of the initial T and α to determine the 

optimal values (Table L.1). This data is summarized in Chapter 9. 

Table L.1: Simulated annealing parameter test results 

Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+06 0.85 1,183,514,065 4.05% 3.267 1.24% 
1E+07 0.85 1,203,672,507 2.42% 3.925 0.62% 
1E+08 0.85 1,225,926,394 0.62% 4.334 0.14% 
1E+09 0.85 1,200,800,972 2.65% 4.794 0.55% 
1E+10 0.85 1,185,200,750 3.92% 5.301 0.74% 
1E+11 0.85 1,142,993,094 7.34% 5.883 1.25% 
1E+12 0.85 1,200,337,508 2.69% 6.314 0.43% 
1E+13 0.85 1,116,023,117 9.53% 6.711 1.42% 
1E+14 0.85 1,189,790,996 3.55% 7.023 0.50% 
1E+06 0.90 1,189,977,513 3.53% 4.849 0.73% 
1E+07 0.90 1,194,067,012 3.20% 5.452 0.59% 
1E+08 0.90 1,190,825,935 3.46% 6.203 0.56% 
1E+09 0.90 1,157,837,932 6.14% 7.066 0.87% 
1E+10 0.90 1,157,445,419 6.17% 7.807 0.79% 
1E+11 0.90 1,148,780,370 6.87% 8.429 0.82% 
1E+12 0.90 1,159,142,162 6.03% 9.379 0.64% 
1E+13 0.90 1,217,943,879 1.26% 9.819 0.13% 
1E+14 0.90 1,203,897,043 2.40% 10.578 0.23% 
1E+06 0.95 1,185,527,236 3.89% 9.995 0.39% 
1E+06 0.85 1,197,873,348 2.89% 3.459 0.84% 
1E+06 0.85 1,192,404,910 3.33% 3.549 0.94% 
1E+07 0.85 1,181,994,600 4.18% 4.037 1.03% 
1E+07 0.85 1,194,374,160 3.17% 3.967 0.80% 
1E+08 0.85 1,184,739,769 3.96% 4.764 0.83% 
1E+08 0.85 1,176,852,056 4.59% 4.136 1.11% 
1E+09 0.85 1,180,352,084 4.31% 4.657 0.93% 
1E+09 0.85 1,195,204,579 3.11% 4.680 0.66% 
1E+10 0.85 1,157,139,620 6.19% 5.141 1.20% 
1E+10 0.85 1,130,903,428 8.32% 5.110 1.63% 
1E+11 0.85 1,122,924,600 8.97% 5.686 1.58% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+11 0.85 1,183,714,087 4.04% 5.634 0.72% 
1E+12 0.85 1,095,926,396 11.16% 6.089 1.83% 
1E+12 0.85 1,200,989,489 2.64% 6.202 0.43% 
1E+13 0.85 1,125,648,788 8.75% 6.748 1.30% 
1E+13 0.85 1,229,265,795 0.35% 6.865 0.05% 
1E+14 0.85 1,194,595,730 3.16% 6.998 0.45% 
1E+14 0.85 1,233,529,944 0.00% 7.508 0.00% 
1E+06 0.90 1,193,369,492 3.26% 5.107 0.64% 
1E+06 0.90 1,197,834,033 2.89% 5.171 0.56% 
1E+07 0.90 1,197,122,088 2.95% 5.959 0.50% 
1E+07 0.90 1,194,939,533 3.13% 5.712 0.55% 
1E+08 0.90 1,197,401,719 2.93% 6.617 0.44% 
1E+08 0.90 1,200,768,942 2.66% 6.420 0.41% 
1E+09 0.90 1,142,147,841 7.41% 7.052 1.05% 
1E+09 0.90 1,166,049,593 5.47% 6.985 0.78% 
1E+10 0.90 1,159,194,679 6.03% 7.976 0.76% 
1E+10 0.90 1,219,044,691 1.17% 7.866 0.15% 
1E+11 0.90 1,161,507,905 5.84% 8.554 0.68% 
1E+11 0.90 1,175,619,272 4.69% 8.945 0.52% 
1E+12 0.90 1,150,815,055 6.71% 9.368 0.72% 
1E+12 0.90 1,150,619,067 6.72% 9.268 0.73% 
1E+13 0.90 1,214,944,172 1.51% 9.864 0.15% 
1E+13 0.90 1,219,154,447 1.17% 10.228 0.11% 
1E+14 0.90 1,200,861,915 2.65% 11.022 0.24% 
1E+14 0.90 1,214,132,646 1.57% 10.940 0.14% 
1E+06 0.95 1,185,527,236 3.89% 9.947 0.39% 
1E+06 0.95 1,185,527,236 3.89% 9.625 0.40% 
1E+07 0.95 1,185,527,236 3.89% 11.141 0.35% 
1E+07 0.95 1,164,018,093 5.64% 11.767 0.48% 
1E+07 0.95 1,173,096,984 4.90% 11.409 0.43% 
1E+08 0.95 1,160,560,006 5.92% 12.846 0.46% 
1E+08 0.95 1,143,561,870 7.29% 13.911 0.52% 
1E+08 0.95 1,188,723,885 3.63% 13.081 0.28% 
1E+09 0.95 1,161,167,296 5.87% 14.384 0.41% 
1E+09 0.95 1,155,950,054 6.29% 14.279 0.44% 
1E+09 0.95 1,155,413,711 6.33% 14.510 0.44% 
1E+10 0.95 1,176,473,708 4.63% 15.947 0.29% 
1E+10 0.95 1,155,363,504 6.34% 15.636 0.41% 
1E+10 0.95 1,124,231,736 8.86% 15.743 0.56% 
1E+11 0.95 1,163,417,370 5.68% 17.312 0.33% 
1E+11 0.95 1,150,389,488 6.74% 16.769 0.40% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+11 0.95 1,119,574,745 9.24% 18.906 0.49% 
1E+12 0.95 1,190,671,667 3.47% 20.515 0.17% 
1E+12 0.95 1,184,590,279 3.97% 20.764 0.19% 
1E+12 0.95 1,166,363,166 5.45% 20.789 0.26% 
1E+13 0.95 1,155,312,742 6.34% 22.089 0.29% 
1E+13 0.95 1,223,004,344 0.85% 21.494 0.04% 
1E+13 0.95 1,221,373,241 0.99% 21.261 0.05% 
1E+14 0.95 1,205,829,160 2.25% 22.596 0.10% 
1E+14 0.95 1,158,854,320 6.05% 22.225 0.27% 
1E+14 0.95 1,215,337,755 1.47% 21.900 0.07% 
1E+06 0.99 1,185,527,236 3.89% 50.110 0.08% 
1E+07 0.99 1,100,620,490 10.77% 55.855 0.19% 
1E+07 0.99 1,138,318,266 7.72% 57.381 0.13% 
1E+08 0.99 1,058,923,648 14.16% 66.344 0.21% 
1E+08 0.99 1,119,816,028 9.22% 65.937 0.14% 
1E+06 0.99 1,125,709,026 8.74% 49.720 0.18% 
1E+09 0.99 1,199,784,087 2.74% 73.887 0.04% 
1E+10 0.99 1,212,165,185 1.73% 80.713 0.02% 
1E+06 0.85 1,193,476,638 3.25% 3.123 1.04% 
1E+09 0.99 1,223,889,300 0.78% 71.774 0.01% 
1E+06 0.99 1,181,634,585 4.21% 49.635 0.08% 
1E+07 0.99 1,082,620,257 12.23% 56.618 0.22% 
1E+08 0.99 1,137,808,756 7.76% 64.758 0.12% 
1E+09 0.99 1,156,865,768 6.22% 74.026 0.08% 
1E+10 0.99 1,209,492,730 1.95% 80.036 0.02% 
1E+10 0.99 1,232,099,326 0.12% 79.469 0.00% 
1E+07 0.85 1,159,206,568 6.03% 3.668 1.64% 
1E+08 0.85 1,193,935,942 3.21% 4.133 0.78% 
1E+09 0.85 1,177,674,190 4.53% 4.641 0.98% 
1E+10 0.85 1,200,284,954 2.70% 5.087 0.53% 
1E+11 0.85 1,196,379,974 3.01% 5.624 0.54% 
1E+11 0.99 1,219,154,447 1.17% 86.228 0.01% 
1E+12 0.85 1,214,635,520 1.53% 6.308 0.24% 
1E+13 0.85 1,122,162,043 9.03% 6.363 1.42% 
1E+12 0.99 1,214,944,172 1.51% 93.501 0.02% 
1E+13 0.99 1,209,280,214 1.97% 106.745 0.02% 
1E+14 0.85 1,219,119,405 1.17% 7.364 0.16% 
1E+14 0.90 1,167,034,000 5.39% 10.944 0.49% 
1E+13 0.90 1,220,730,962 1.04% 10.274 0.10% 
1E+14 0.99 1,210,380,926 1.88% 109.486 0.02% 
1E+12 0.90 1,145,839,596 7.11% 9.153 0.78% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+11 0.90 1,158,997,875 6.04% 8.377 0.72% 
1E+10 0.90 1,180,761,485 4.28% 7.930 0.54% 
1E+09 0.90 1,140,501,451 7.54% 7.221 1.04% 
1E+08 0.90 1,207,307,194 2.13% 6.618 0.32% 
1E+07 0.90 1,192,566,292 3.32% 5.672 0.59% 
1E+06 0.90 1,166,504,991 5.43% 4.935 1.10% 
1E+06 0.95 1,178,169,017 4.49% 9.963 0.45% 
1E+07 0.95 1,182,464,148 4.14% 11.534 0.36% 
1E+08 0.95 1,116,853,477 9.46% 13.184 0.72% 
1E+09 0.95 1,176,087,233 4.66% 14.773 0.32% 
1E+10 0.95 1,146,703,868 7.04% 16.478 0.43% 
1E+11 0.95 1,127,053,291 8.63% 17.544 0.49% 
1E+12 0.95 1,211,472,384 1.79% 19.128 0.09% 
1E+13 0.95 1,143,107,551 7.33% 20.695 0.35% 
1E+14 0.95 1,225,453,275 0.65% 22.218 0.03% 
1E+14 0.99 1,212,765,077 1.68% 109.795 0.02% 
1E+13 0.99 1,187,946,965 3.70% 104.660 0.04% 
1E+11 0.99 1,216,685,910 1.37% 89.086 0.02% 
1E+11 0.99 1,166,886,294 5.40% 87.317 0.06% 
1E+12 0.99 1,189,999,448 3.53% 97.510 0.04% 
1E+12 0.99 1,178,422,026 4.47% 98.719 0.05% 
1E+13 0.99 1,218,291,701 1.24% 106.510 0.01% 
1E+14 0.99 1,224,584,817 0.73% 110.798 0.01% 
1E+06 0.99 1,138,327,961 7.72% 50.991 0.15% 
1E+07 0.99 1,167,637,714 5.34% 58.684 0.09% 
1E+08 0.99 1,127,952,101 8.56% 67.211 0.13% 
1E+09 0.99 1,151,094,523 6.68% 74.311 0.09% 
1E+10 0.99 1,214,570,550 1.54% 82.807 0.02% 
1E+11 0.99 1,219,128,597 1.17% 87.161 0.01% 
1E+12 0.99 1,214,068,913 1.58% 94.561 0.02% 
1E+13 0.99 1,206,107,238 2.22% 103.831 0.02% 
1E+14 0.99 1,217,626,455 1.29% 109.906 0.01% 
1E+06 0.85 1,189,103,535 3.60% 3.351 1.07% 
1E+07 0.85 1,175,614,553 4.70% 3.939 1.19% 
1E+08 0.85 1,139,389,740 7.63% 4.345 1.76% 
1E+09 0.85 1,176,189,411 4.65% 5.489 0.85% 
1E+10 0.85 1,211,174,737 1.81% 5.649 0.32% 
1E+11 0.85 1,128,657,576 8.50% 5.757 1.48% 
1E+12 0.85 1,165,555,345 5.51% 6.107 0.90% 
1E+13 0.85 1,202,274,401 2.53% 6.702 0.38% 
1E+14 0.85 1,174,929,685 4.75% 6.989 0.68% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+14 0.90 1,185,924,418 3.86% 10.835 0.36% 
1E+13 0.90 1,181,956,092 4.18% 10.149 0.41% 
1E+12 0.90 1,219,158,156 1.17% 9.386 0.12% 
1E+11 0.90 1,196,119,594 3.03% 9.492 0.32% 
1E+10 0.90 1,160,142,986 5.95% 8.648 0.69% 
1E+09 0.90 1,175,380,548 4.71% 7.592 0.62% 
1E+08 0.90 1,196,593,960 2.99% 6.255 0.48% 
1E+07 0.90 1,183,201,083 4.08% 5.522 0.74% 
1E+06 0.90 1,194,249,002 3.18% 4.743 0.67% 
1E+06 0.95 1,188,769,246 3.63% 9.622 0.38% 
1E+07 0.95 1,131,145,649 8.30% 11.101 0.75% 
1E+08 0.95 1,126,767,145 8.66% 12.609 0.69% 
1E+09 0.95 1,077,864,514 12.62% 14.158 0.89% 
1E+10 0.95 1,160,103,578 5.95% 15.658 0.38% 
1E+11 0.95 1,214,252,365 1.56% 17.052 0.09% 
1E+12 0.95 1,219,849,964 1.11% 18.590 0.06% 
1E+13 0.95 1,183,839,901 4.03% 20.237 0.20% 
1E+14 0.95 1,218,711,694 1.20% 22.181 0.05% 
1E+06 0.99 1,122,673,699 8.99% 50.634 0.18% 
1E+07 0.99 1,119,099,977 9.28% 58.155 0.16% 
1E+08 0.99 1,089,294,092 11.69% 67.083 0.17% 
1E+09 0.99 1,178,187,503 4.49% 78.068 0.06% 
1E+10 0.99 1,233,529,944 0.00% 83.650 0.00% 
1E+11 0.99 1,222,170,866 0.92% 89.536 0.01% 
1E+12 0.99 1,186,071,056 3.85% 94.449 0.04% 
1E+13 0.99 1,187,107,128 3.76% 102.014 0.04% 
1E+14 0.99 1,194,410,728 3.17% 109.283 0.03% 
1E+06 0.85 1,195,769,607 3.06% 3.236 0.95% 
1E+07 0.85 1,192,755,271 3.31% 3.771 0.88% 
1E+08 0.85 1,195,716,218 3.07% 4.271 0.72% 
1E+09 0.85 1,192,038,852 3.36% 4.876 0.69% 
1E+10 0.85 1,097,429,443 11.03% 5.176 2.13% 
1E+11 0.85 1,206,637,999 2.18% 5.755 0.38% 
1E+12 0.85 1,216,504,201 1.38% 6.146 0.22% 
1E+13 0.85 1,105,794,040 10.36% 6.714 1.54% 
1E+14 0.85 1,217,616,092 1.29% 7.195 0.18% 
1E+14 0.90 1,191,836,188 3.38% 11.042 0.31% 
1E+13 0.90 1,188,694,863 3.63% 10.437 0.35% 
1E+12 0.90 1,090,253,126 11.62% 9.266 1.25% 
1E+11 0.90 1,214,256,201 1.56% 8.933 0.17% 
1E+10 0.90 1,155,380,762 6.34% 8.409 0.75% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+09 0.90 1,175,281,923 4.72% 7.890 0.60% 
1E+08 0.90 1,178,169,017 4.49% 7.059 0.64% 
1E+07 0.90 1,193,222,374 3.27% 6.752 0.48% 
1E+06 0.90 1,194,499,204 3.16% 5.749 0.55% 
1E+06 0.95 1,189,772,870 3.55% 10.314 0.34% 
1E+07 0.95 1,157,320,477 6.18% 11.722 0.53% 
1E+08 0.95 1,139,684,254 7.61% 12.771 0.60% 
1E+09 0.95 1,146,953,426 7.02% 14.259 0.49% 
1E+10 0.95 1,144,987,470 7.18% 16.040 0.45% 
1E+11 0.95 1,214,890,298 1.51% 17.639 0.09% 
1E+12 0.95 1,233,529,944 0.00% 19.518 0.00% 
1E+13 0.95 1,233,040,607 0.04% 20.396 0.00% 
1E+14 0.95 1,196,962,336 2.96% 21.615 0.14% 
1E+06 0.99 1,108,219,957 10.16% 48.304 0.21% 
1E+07 0.99 1,128,084,569 8.55% 55.887 0.15% 
1E+08 0.99 1,123,523,689 8.92% 65.030 0.14% 
1E+09 0.99 1,218,965,393 1.18% 72.227 0.02% 
1E+10 0.99 1,223,215,167 0.84% 81.136 0.01% 
1E+11 0.99 1,145,942,306 7.10% 91.030 0.08% 
1E+12 0.99 1,233,529,944 0.00% 95.466 0.00% 
1E+13 0.99 1,178,317,407 4.48% 103.583 0.04% 
1E+14 0.99 1,225,226,459 0.67% 111.156 0.01% 
1E+06 0.85 1,196,653,363 2.99% 3.100 0.96% 
1E+06 0.90 1,198,124,992 2.87% 4.709 0.61% 
1E+06 0.95 1,095,341,576 11.20% 9.619 1.16% 
1E+06 0.99 1,175,088,389 4.74% 49.335 0.10% 
1E+07 0.85 1,174,070,864 4.82% 3.567 1.35% 
1E+07 0.90 1,196,303,002 3.02% 5.456 0.55% 
1E+07 0.95 1,193,898,641 3.21% 11.448 0.28% 
1E+07 0.99 1,139,111,593 7.65% 59.101 0.13% 
1E+08 0.85 1,181,113,846 4.25% 4.364 0.97% 
1E+08 0.90 1,099,232,783 10.89% 6.415 1.70% 
1E+08 0.95 1,159,983,609 5.96% 13.026 0.46% 
1E+08 0.99 1,120,365,673 9.17% 66.621 0.14% 
1E+09 0.85 1,197,471,747 2.92% 4.553 0.64% 
1E+09 0.90 1,135,147,941 7.98% 7.018 1.14% 
1E+09 0.95 1,110,562,965 9.97% 14.328 0.70% 
1E+09 0.99 1,198,851,987 2.81% 73.058 0.04% 
1E+10 0.85 1,140,473,630 7.54% 5.038 1.50% 
1E+10 0.90 1,093,848,578 11.32% 7.859 1.44% 
1E+10 0.95 1,141,315,058 7.48% 15.876 0.47% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+10 0.99 1,210,310,874 1.88% 80.723 0.02% 
1E+11 0.85 1,159,795,111 5.98% 5.546 1.08% 
1E+11 0.90 1,202,017,954 2.55% 8.549 0.30% 
1E+11 0.95 1,224,584,817 0.73% 17.368 0.04% 
1E+11 0.99 1,214,890,298 1.51% 88.123 0.02% 
1E+12 0.85 1,200,722,333 2.66% 6.106 0.44% 
1E+12 0.90 1,115,839,720 9.54% 9.187 1.04% 
1E+12 0.95 1,113,895,640 9.70% 18.852 0.51% 
1E+12 0.99 1,233,529,944 0.00% 95.964 0.00% 
1E+13 0.85 1,186,656,291 3.80% 6.469 0.59% 
1E+13 0.90 1,132,843,313 8.16% 10.026 0.81% 
1E+13 0.95 1,211,423,525 1.79% 20.453 0.09% 
1E+13 0.99 1,214,944,172 1.51% 103.559 0.01% 
1E+14 0.85 1,228,368,326 0.42% 7.282 0.06% 
1E+14 0.90 1,107,731,388 10.20% 10.739 0.95% 
1E+14 0.95 1,214,890,298 1.51% 21.833 0.07% 
1E+14 0.99 1,171,047,505 5.07% 111.603 0.05% 
1E+06 0.85 1,179,870,994 4.35% 3.105 1.40% 
1E+06 0.90 1,171,851,546 5.00% 4.663 1.07% 
1E+06 0.95 1,191,849,874 3.38% 9.509 0.36% 
1E+06 0.99 1,090,302,624 11.61% 49.605 0.23% 
1E+07 0.85 1,194,586,085 3.16% 3.529 0.89% 
1E+07 0.90 1,190,834,291 3.46% 5.405 0.64% 
1E+07 0.95 1,139,188,336 7.65% 11.048 0.69% 
1E+07 0.99 1,088,403,591 11.77% 56.025 0.21% 
1E+08 0.85 1,204,607,964 2.34% 3.999 0.59% 
1E+08 0.90 1,160,944,387 5.88% 6.164 0.95% 
1E+08 0.95 1,182,674,274 4.12% 12.694 0.32% 
1E+08 0.99 1,156,895,731 6.21% 63.896 0.10% 
1E+09 0.85 1,169,728,005 5.17% 4.472 1.16% 
1E+09 0.90 1,204,812,654 2.33% 6.891 0.34% 
1E+09 0.95 1,182,217,121 4.16% 14.050 0.30% 
1E+09 0.99 1,050,479,174 14.84% 71.509 0.21% 
1E+10 0.85 1,102,578,690 10.62% 4.963 2.14% 
1E+10 0.90 1,187,496,413 3.73% 7.878 0.47% 
1E+10 0.95 1,210,292,877 1.88% 15.613 0.12% 
1E+10 0.99 1,084,531,123 12.08% 79.298 0.15% 
1E+11 0.85 1,137,694,723 7.77% 5.607 1.39% 
1E+11 0.90 1,159,432,452 6.01% 8.310 0.72% 
1E+11 0.95 1,189,365,594 3.58% 17.101 0.21% 
1E+11 0.99 1,229,490,608 0.33% 86.918 0.00% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+12 0.85 1,214,279,174 1.56% 5.918 0.26% 
1E+12 0.90 1,163,495,084 5.68% 9.090 0.62% 
1E+12 0.95 1,144,751,782 7.20% 18.591 0.39% 
1E+12 0.99 1,227,425,442 0.49% 94.544 0.01% 
1E+13 0.85 1,150,869,269 6.70% 6.386 1.05% 
1E+13 0.90 1,172,252,870 4.97% 9.833 0.51% 
1E+13 0.95 1,194,274,723 3.18% 20.146 0.16% 
1E+13 0.99 1,228,464,071 0.41% 102.362 0.00% 
1E+14 0.85 1,132,907,078 8.16% 6.863 1.19% 
1E+14 0.90 1,186,251,418 3.83% 10.540 0.36% 
1E+14 0.95 1,193,104,109 3.28% 21.588 0.15% 
1E+14 0.99 1,208,217,892 2.05% 110.499 0.02% 
1E+06 0.85 1,198,552,466 2.84% 3.275 0.87% 
1E+06 0.90 1,173,903,202 4.83% 4.683 1.03% 
1E+06 0.95 1,140,450,414 7.55% 9.547 0.79% 
1E+06 0.99 1,139,179,796 7.65% 48.388 0.16% 
1E+07 0.85 1,196,653,363 2.99% 3.707 0.81% 
1E+07 0.90 1,192,879,353 3.30% 5.422 0.61% 
1E+07 0.95 1,191,812,626 3.38% 11.037 0.31% 
1E+07 0.99 1,115,893,549 9.54% 56.223 0.17% 
1E+08 0.85 1,182,624,336 4.13% 4.008 1.03% 
1E+08 0.90 1,201,666,006 2.58% 6.163 0.42% 
1E+08 0.95 1,142,622,242 7.37% 12.533 0.59% 
1E+08 0.99 1,187,530,097 3.73% 63.839 0.06% 
1E+09 0.85 1,136,118,232 7.90% 4.480 1.76% 
1E+09 0.90 1,089,899,870 11.64% 6.917 1.68% 
1E+09 0.95 1,129,285,508 8.45% 14.059 0.60% 
1E+09 0.99 1,233,529,944 0.00% 71.532 0.00% 
1E+10 0.85 1,150,394,837 6.74% 4.949 1.36% 
1E+10 0.90 1,182,435,549 4.14% 7.649 0.54% 
1E+10 0.95 1,219,706,849 1.12% 15.584 0.07% 
1E+10 0.99 1,102,637,233 10.61% 79.378 0.13% 
1E+11 0.85 1,147,252,663 6.99% 5.573 1.25% 
1E+11 0.90 1,229,722,287 0.31% 8.378 0.04% 
1E+11 0.95 1,174,249,529 4.81% 17.074 0.28% 
1E+11 0.99 1,225,359,493 0.66% 87.170 0.01% 
1E+12 0.85 1,189,017,702 3.61% 5.920 0.61% 
1E+12 0.90 1,180,204,332 4.32% 9.111 0.47% 
1E+12 0.95 1,210,550,181 1.86% 18.762 0.10% 
1E+12 0.99 1,206,488,168 2.19% 94.839 0.02% 
1E+13 0.85 1,140,471,948 7.54% 6.405 1.18% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+13 0.90 1,163,868,307 5.65% 9.817 0.58% 
1E+13 0.95 1,204,357,658 2.36% 20.143 0.12% 
1E+13 0.99 1,223,893,009 0.78% 102.477 0.01% 
1E+14 0.85 1,129,373,936 8.44% 6.864 1.23% 
1E+14 0.90 1,207,104,173 2.14% 10.689 0.20% 
1E+14 0.95 1,232,630,806 0.07% 21.619 0.00% 
1E+14 0.99 1,222,661,064 0.88% 110.087 0.01% 
1E+06 0.85 1,198,479,229 2.84% 3.067 0.93% 
1E+06 0.90 1,182,642,883 4.13% 4.661 0.89% 
1E+06 0.95 1,188,607,863 3.64% 9.527 0.38% 
1E+06 0.99 1,069,507,324 13.30% 48.489 0.27% 
1E+07 0.85 1,200,486,785 2.68% 3.532 0.76% 
1E+07 0.90 1,177,721,965 4.52% 5.471 0.83% 
1E+07 0.95 1,185,527,236 3.89% 11.046 0.35% 
1E+07 0.99 1,119,137,680 9.27% 56.156 0.17% 
1E+08 0.85 1,200,259,384 2.70% 3.987 0.68% 
1E+08 0.90 1,113,241,166 9.75% 6.142 1.59% 
1E+08 0.95 1,109,959,018 10.02% 12.547 0.80% 
1E+08 0.99 1,145,097,053 7.17% 66.059 0.11% 
1E+09 0.85 1,197,499,946 2.92% 4.848 0.60% 
1E+09 0.90 1,124,540,933 8.84% 7.282 1.21% 
1E+09 0.95 1,173,414,719 4.87% 14.828 0.33% 
1E+09 0.99 1,206,698,815 2.18% 76.631 0.03% 
1E+10 0.85 1,213,402,721 1.63% 5.657 0.29% 
1E+10 0.90 1,164,169,807 5.62% 8.421 0.67% 
1E+10 0.95 1,156,243,933 6.27% 17.052 0.37% 
1E+10 0.99 1,212,907,951 1.67% 89.426 0.02% 
1E+11 0.85 1,233,529,944 0.00% 5.854 0.00% 
1E+11 0.90 1,158,719,862 6.06% 8.859 0.68% 
1E+11 0.95 1,179,549,682 4.38% 19.364 0.23% 
1E+11 0.99 1,219,849,964 1.11% 99.218 0.01% 
1E+12 0.85 1,197,704,046 2.90% 6.646 0.44% 
1E+12 0.90 1,174,386,041 4.79% 10.192 0.47% 
1E+12 0.95 1,219,625,151 1.13% 20.733 0.05% 
1E+12 0.99 1,233,529,944 0.00% 104.001 0.00% 
1E+13 0.85 1,179,640,416 4.37% 6.796 0.64% 
1E+13 0.90 1,082,919,905 12.21% 10.416 1.17% 
1E+13 0.95 1,109,081,536 10.09% 21.414 0.47% 
1E+13 0.99 1,161,080,855 5.87% 109.138 0.05% 
1E+14 0.85 1,179,725,395 4.36% 7.375 0.59% 
1E+14 0.90 1,169,783,787 5.17% 11.329 0.46% 
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Initial T α Minimum Cost Percent 
improvement 

Time elapsed 
(min) 

Percent improvement 
per minute 

1E+14 0.95 1,143,953,729 7.26% 23.321 0.31% 
1E+14 0.99 1,208,118,303 2.06% 118.074 0.02% 
1E+06 0.85 1,192,797,789 3.30% 3.330 0.99% 
1E+06 0.90 1,196,464,384 3.00% 5.057 0.59% 
1E+06 0.95 1,142,686,213 7.36% 10.196 0.72% 
1E+06 0.99 1,176,222,471 4.65% 52.407 0.09% 
1E+07 0.85 1,189,324,282 3.58% 3.979 0.90% 
1E+07 0.90 1,177,695,616 4.53% 5.818 0.78% 
1E+07 0.95 1,185,527,236 3.89% 11.912 0.33% 
1E+07 0.99 1,155,981,685 6.29% 60.254 0.10% 
1E+08 0.85 1,196,389,744 3.01% 4.261 0.71% 
1E+08 0.90 1,091,845,399 11.49% 6.652 1.73% 
1E+08 0.95 1,092,501,435 11.43% 13.338 0.86% 
1E+08 0.99 1,090,664,827 11.58% 67.909 0.17% 
1E+09 0.85 1,168,049,717 5.31% 4.758 1.12% 
1E+09 0.90 1,185,189,663 3.92% 7.310 0.54% 
1E+09 0.95 1,172,234,219 4.97% 14.971 0.33% 
1E+09 0.99 1,122,976,158 8.96% 75.881 0.12% 
1E+10 0.85 1,163,628,036 5.67% 5.276 1.07% 
1E+10 0.90 1,160,780,260 5.90% 8.305 0.71% 
1E+10 0.95 1,225,940,978 0.62% 16.776 0.04% 
1E+10 0.99 1,035,116,034 16.09% 84.165 0.19% 
1E+11 0.85 1,139,793,671 7.60% 5.929 1.28% 
1E+11 0.90 1,213,574,523 1.62% 8.865 0.18% 
1E+11 0.95 1,124,865,370 8.81% 18.328 0.48% 
1E+11 0.99 1,219,849,964 1.11% 92.484 0.01% 
1E+12 0.85 1,233,529,944 0.00% 6.282 0.00% 
1E+12 0.90 1,218,642,428 1.21% 9.657 0.12% 
1E+12 0.95 1,076,245,079 12.75% 19.783 0.64% 
1E+12 0.99 1,215,115,110 1.49% 100.787 0.01% 
1E+13 0.85 1,168,926,729 5.24% 6.933 0.76% 
1E+13 0.90 1,220,511,558 1.06% 10.405 0.10% 
1E+13 0.95 1,177,540,771 4.54% 21.431 0.21% 
1E+13 0.99 1,192,008,794 3.37% 108.867 0.03% 
1E+14 0.85 1,129,983,845 8.39% 7.578 1.11% 
1E+14 0.90 1,167,082,060 5.39% 11.328 0.48% 
1E+14 0.95 1,197,467,955 2.92% 22.969 0.13% 
1E+14 0.99 1,229,703,666 0.31% 117.114 0.00% 
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APPENDIX M.  

SIMULATED ANNEALING CASE STUDY RESULTS 

One of the results obtained during the sample testing for the ideal initial T and α was analyzed to see the costs compared to the 

base case (Table M.1). 

Table M.1: Component and total costs from one simulated annealing output 

  Maintenance 
direct cost 

Maintenance 
delay cost Acute disruption Slow Orders Routing cost Total 

Single track -
short detour 

Base $6,595,266 $30,505,589 $181,187 $178,955,962 $2,618 $216,238,004 

Optimized $8,212,150 $23,096,479 $221,011 $139,553,287 $3,350 $171,082,928 

Single track - 
long detour 

Base $6,595,266 $30,505,589 $181,187 $178,955,962 $2,618 $216,238,004 

Optimized $7,837,223 $34,102,697 $181,175 $149,333,421 $2,656 $191,454,516 

Double track 
- short detour 

Base $13,190,533 $29,056,903 $362,374 $357,911,924 $2,618 $400,521,733 

Optimized $13,196,711 $4,349,787 $287,416 $373,744,887 $2,571 $391,578,801 

Double track 
- long detour 

Base $13,190,533 $29,056,903 $362,374 $357,911,924 $2,618 $400,521,733 

Optimized $15,046,806 $29,538,464 $482,658 $315,022,024 $3,025 $360,089,952 

Total 
Base $39,571,598 $119,124,983 $1,087,121 $1,073,735,772 $10,471 $1,233,519,474 

Optimized $44,292,890 $91,087,427 $1,172,261 $977,653,618 $11,603 $1,114,206,196 
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