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ABSTRACT 

 

 Continuous improvement in safety is an ongoing goal of the railroad industry and 

a critically important element of this is reducing the number of train accidents.  

Accomplishing this efficiently requires understanding of the factors that contribute to 

accident occurrence.  Train accident rates are an important metric of railroad 

transportation safety and risk.  These rates have been the subject of a number of analyses 

but they have generally not considered the effect of train length.  In this thesis, Federal 

Railroad Administration (FRA) accident data were used to develop a new quantitative 

metric to classify FRA accident causes as either train-mile or car-mile-related and the 

results were used to revise a previous classification of these causes.  These reclassified 

causes were then incorporated into a model to calculate new train-length dependent 

accident rates. A sensitivity analysis was conducted to investigate the effects of changes 

in train length on an individual train’s accident likelihood and on the system-wide 

accident rate. 

 The second major focus of this thesis was an analysis of factors related to the 

occurrence of broken rails.  Broken rails are the leading cause of major derailments and 

hazardous material release accidents on U.S. Class I railroads.  From 2003 through 2006 

there was an average of 84 mainline broken-rail derailments per year with an average 

track and equipment damage cost of $525,000 per incident.  In the last ten years their 

annual frequency has increased 18%; consequently, efforts to reduce their occurrence are 

increasingly important.  The purpose of this study was to examine the factors that 

influence the occurrence of broken rails and develop a predictive tool that will enable 

railroads to identify locations that have a high probability of broken rail occurrence.  The 

factors that were considered included rail characteristics, infrastructure features, 

maintenance activity, operational information, and rail testing results.  To analyze the 

factors related to broken rails two modeling techniques were applied, one using statistical 

regression and the other employing artificial neural networks (ANN).  Several variations 

of the logistic regression (LR) and ANN techniques were developed, including hybrid 

LR/ANN models.  The accuracy and practicality of the models were evaluated and 

compared.  A “practical” logistic regression model was developed that used only the top 
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eight related factors and was able to identify broken rail locations with approximately 

65% accuracy. 

 Finally, to assist with decisions regarding broken rail prevention, the economic 

impact of broken rails was also studied.  This included the associated costs of broken rail 

service failures and derailments, as well as the cost of typical prevention measures.  A 

train delay calculator was developed based on railroad industry operating averages.  The 

results and methodologies presented in this thesis are intended to help railroads better 

understand the factors contributing to the occurrence and severity of railroad accidents 

and more effectively allocate resources to improve their safety and risk management 

efforts.
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CHAPTER 1: INTRODUCTION 

 

The purpose of the research described in this thesis was to improve our 

understanding of factors related to railroad accidents, particularly broken rail derailments, 

and provide modeling tools to assist in risk analysis and accident prevention.  Improving 

the safety of rail transportation is an ongoing objective of the railroad industry.  This 

research examines two topics that are particularly timely with regard to railroad operating 

practices.  The first topic is an evaluation of train accident rates and accident causes 

based on train length.  Understanding the effect of train length on accident likelihood is 

important because as railroad freight traffic increases railroads must either run more 

trains or longer trains, or both.  This research provides insight into the safety implications 

of both of these practices.  The second topic is focused on accident reduction by 

preventing broken rails.  Broken rails are the leading cause of major train accidents and 

the frequency of broken rail derailments has increased 18% in the last ten years (FRA 

2007a).  This thesis presents several modeling techniques for the prediction of broken rail 

locations and an evaluation of costs associated with broken rails. 

 

1.1 Objective and Scope 

The first topic considered is the relationship between train length and train 

accident causes.  Accident data and causes from the Federal Railroad Administration 

(FRA) Office of Safety accident database were analyzed for a 16 year period from 1990 

through 2005.  During this period, U.S. Class I freight railroads experienced 13,181 

reportable mainline and siding accidents (FRA 2007a).  Evaluating the average length of 

trains involved in specific causes provided the ability to develop conclusions in regards to 

the relationship between a train’s length and likelihood of an accident.  The results of this 

study were used to calculate new train-length dependent accident rates. 

The second topic, and primary focus, of this thesis is a study to understand the 

factors related to broken rail service failures and derailments.  Broken rails are an 

increasing concern to the railroad industry due to both their frequency and severity.  A 

service failure in this thesis is defined as a broken rail that does not result in a derailment.  

Better understanding the factors that contribute to broken rails is necessary for efficient 
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prevention of their occurrence.  The analysis of broken rails was divided into three main 

areas.  The first section is an evaluation of previous work as well as a presentation of new 

predictive modeling techniques.  The second section presents a predictive model based on 

recent service failure data.  Finally, the third section summarizes the economic impact to 

railroads from broken rail service failures, derailments, and prevention measures. 

I used data on broken rail service failures and derailments for a four-year period 

from 2003 through 2006.  Class I railroads in the U.S. experienced an average of 84 

mainline broken rail derailments per year.  The average equipment and track damage cost 

of a broken rail derailment during the study period was approximately $525,000 (FRA 

2007a). 

 

1.2 Organization 

 This thesis is divided into seven chapters, an introduction, a literature review, four 

chapters describing the research, and a conclusion.  The majority of the research chapters 

have been presented, published, or are being prepared for publication in various 

engineering conference proceedings and journals as discussed below.  Also included in 

this thesis is an appendix with further information regarding the prediction models 

presented.  Following is a summary of each of the five main chapters. 

 

Chapter 2: 

 In this chapter I present a review of previous literature on the topics presented in 

this thesis.  This literature includes work both directly and indirectly related to this 

research.  Some of the references in this section are also cited elsewhere in this thesis; 

however, this chapter provides a more detailed review of previously published work.  The 

topics surveyed include accident causes, accident rates, fracture defect growth, factors 

influencing broken rails, statistical modeling techniques, neural network modeling 

applications, and railroad economic research. 
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Chapter 3: 

Accepted for publication in the Transportation Research Record 

 This chapter presents an analysis of train accident causes and rates based on train 

length.  Train accident causes were separated into two distinct categories, those related to 

the train’s length (car-mile-related) and those independent of train length (train-mile-

related).  The decision to dispatch the same number of shipments in fewer longer trains 

versus more, shorter trains will affect the overall network accident rate.  Since some 

accident causes are correlated with car-miles and others with train-miles, accurate 

classification of the causes is important to correctly determine the effect of changes on 

accident rates.  In a previous study, all FRA accident causes were combined into 51 

unique accident cause groups and classified as either car or train-mile-related.  I 

developed a new metric to quantitatively evaluate each cause group based on accident 

data.  Use of the metric led to a reclassification of 11 cause groups.  The new 

classification was found to be more representative of car and train-mile expectations.  

Mainline car-mile and train-mile-related accident rates were calculated for Class I freight 

railroads.  These rates were used in a sensitivity analysis to illustrate the effect of changes 

in train length on accident rate. 

 

Chapter 4: 

Presented in part at INFORMS 2007 annual conference and SRA 2007 annual meeting 

 This chapter is an introduction to the analysis of broken rail service failures and 

derailments.  Broken rail derailments are the second leading cause of train accidents; only 

grade crossing collisions occur more frequently.  This chapter presents initial work 

evaluating factors leading to broken rails in order to develop a prediction model.  A 

previous study by Dick (2001) used service failure data from the BNSF Railway to 

develop a logistic regression prediction model.  I evaluated the robustness of Dick’s 

model using unseen service failure data.  I also developed three new prediction models 

using artificial neural networks (ANN).  The models developed were a stand-alone ANN 

and two hybrid ANN-logistic regression (ANN/LR) models.  I determined that all four 

models have similar predictive abilities and are robust for unseen data. 
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Chapter 5: 

Presented in part at the Joint Rail Conference in 2008 and the 8th World Congress on 

Railway Research in 2008  

Currently being prepared for submission to the journal Accident Analysis & Prevention 

 This chapter extends the work presented in the previous chapter using a more 

recent and comprehensive dataset to attempt to better understand and quantify the factors 

affecting broken rails.  Chapter 4 used service failure data and information on train 

movement and track information for a two-year period.  In this new study I used a four-

year period of recent data as well as an expanded dataset to include more possible factors 

that lead to service failures.  The factors that were considered included rail 

characteristics, infrastructure features, maintenance activity, train operation data, and on-

track testing results.  Multiple predictive models, using both logistic regression and 

artificial neural network techniques, were evaluated to determine the factors related to 

service failures.  A “practical” prediction model with a limited number of input 

parameters was constructed that was both understandable and useable.  The models were 

also tested against unseen data and found to be robust.  Finally, the practical prediction 

model was applied to a hypothetical case study to illustrate the potential use of the model 

as a maintenance planning tool. 

 

Chapter 6: 

Currently being prepared to be presented in part at the AREMA 2008 Annual Conference 

 This chapter examines the economic impact of broken rails.  The purpose is to 

quantify the cost of broken rails to assist with decision making regarding their prevention.  

Average track and equipment damages for broken rail derailments for U.S. Class I freight 

railroads were examined using available FRA accident data.  Additionally, average 

service failure repair cost and broken rail accident clean-up time and cost were 

determined from data provided by railroad industry experts.  Train delay cost was 

evaluated based on car cost, locomotive cost, fuel cost, labor cost, and traffic density of 

the line.  Based on this information, combined with FRA data, a new, more complete 

estimate of the cost of broken rails was developed.  Finally, the cost of preventive  
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maintenance techniques, such as rail grinding, rail replacement, and track surfacing, were 

summarized.
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CHAPTER 2: LITERATURE REVIEW  

 

 In this chapter I present a survey of literature describing previous work completed 

on the topics presented in this thesis.  Many of the references presented here are also 

cited elsewhere in this thesis; however, this chapter presents a more in-depth description 

of the most important previous work pertinent to my research.  This chapter is divided 

into four specific sections: accident causes and rates, factors related to broken rails, 

statistical and neural network modeling techniques, and railroad economic research.   

 The literature reviewed regarding accident causes and rates is the framework for 

the analysis conducted in Chapter 3.  The previous research conducted on the factors 

leading to broken rails revealed that crack growth is linked to a number of variables but is 

also somewhat unpredictable.  The literature sources reviewed regarding modeling 

techniques are the basis for the advanced logistic regression and artificial neural network 

models presented in Chapters 4 and 5.  Finally, the previous work examined on railroad 

economic research is used as background information for the methodology used to 

calculate the cost of broken rails in Chapter 6.  The literature reviewed in each section is 

presented starting with the most significant contribution to the work completed in this 

thesis. 

 

2.1 Accident Causes and Rates 

 The literature presented in this section was used to develop the premise that the 

likelihood of a train accident is dependent on train length.  ADL (1996) introduced the 

concept that train accident causes can be separated into two groups, those related to the 

train length and those independent of train length.  Anderson (2005) and Anderson & 

Barkan (2005a) considered some of the implications of this.  I conducted a similar 

analysis in Chapter 3 of this thesis to analyze how accident causes are affected by train 

length. 

 Anderson & Barkan (2005a) conducted an in-depth examination of train accident 

rates on U.S. freight railroads.  With regard to train-mile and car-mile-related causes, 

they stated, 
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 “The likelihood that a train will be involved in an accident is a function of both 

 train-miles (TM) and car-miles (CM) operated.  Car-mile related causes are those 

 for which the likelihood of an accident is proportional to the number of car-miles 

 operated.  These include most equipment failures for which accident likelihood is 

 directly proportional to the number of components (e.g. bearing failure) and also 

 include most track component failures for which accident likelihood is 

 proportional to the number of load cycles imposed on the track (e.g. broken rails 

 or welds).  Train-mile related causes are those for which accident likelihood is 

 proportional to the number of train miles operated.  These include most human 

 error failures for which accident likelihood is independent of train length and 

 depends only on exposure (e.g. grade crossing collisions)…The probability that 

 an accident will occur is then a summation of the number of train-miles multiplied 

 by the train-mile accident rate and the number of car-miles multiplied by the car-

 mile accident rate.  Thus, it follows that longer trains have an increased likelihood 

 of having an accident due to a larger number of car-miles of exposure.” 

 

 Anderson & Barkan (2005a) grouped accidents by track class, which they used as 

a proxy for train speed.  The frequency of accidents and the average number of cars 

derailed were examined for each group.  They found that the likelihood of a train accident 

varies by track class.  The effects of train length and the position of derailed cars were 

also examined.  The authors concluded that the position of a car within a train’s consist 

affects its probability of derailment.  They also found that the number of cars derailed, or 

the severity of an accident, is dependent on train length.  Therefore, the probability that a 

particular car will be derailed in a derailment is largely a function of train length, train 

speed, and position within the consist. 

 Anderson & Barkan (2004) examined railroad accident rates for U.S. freight 

railroads based on different FRA track classes.  Mainline accident rates were calculated 

for each FRA track class and reported in terms of both accidents per train-mile and per 

car-mile.  They found a difference of two orders of magnitude between accident rates for 

the lowest and highest track classes.  They concluded that incorporating a track class term 
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in the calculation of derailment probabilities and risk increases the accuracy and 

usefulness of the results. 

 Arthur D. Little, Inc (ADL) (1996) examined the risk involved with transportation 

of hazardous materials by rail.  ADL examined each FRA accident cause and grouped 

similar accident causes together.  Each cause group was classified as either car-mile-

related or train-mile-related based on industry expert opinion.  The number of accidents 

for each cause group and track class was determined and accident rates per car-mile and 

per train-mile were calculated for each FRA track class. 

 Saccomanno & El-Hage (1989 & 1991) completed studies evaluating how the 

placement of dangerous commodity cars within a train consist affect the probability of 

their derailment.  The authors determined that the number of cars derailing is a function 

of the cause of derailment, train speed, and the residual train length.  It was also found 

that the point of derailment (POD) was strongly affected by the cause of derailment and 

train length.  The authors demonstrated that the derailment probability of each car in a 

train can be calculated based on train length.  The authors concluded that effective 

marshalling strategies may reduce the number of derailments in which hazardous 

materials are released. 

 Transport Canada (2006) conducted an evaluation of risk associated with 

stationary dangerous goods (DG) railway cars.  They calculated the probability of a 

derailment of trains moving on tracks adjacent to stationary DG cars.  The expected 

number of freight train derailments per million freight train miles was calculated based 

only on factors for traffic density and track class.  The work concluded,  

 “Derailments due to certain types of causes were found to be more influenced by 

 these factors [traffic density and track class].  The relationship of higher 

 derailment rates on low-density lines was anticipated for track-related causes.  

 The track quality of low density lines often reflects a lower capital investment and 

 there are less stringent tolerances in the maintenance standards for these lines, as 

 they would often be uneconomical to keep operating otherwise.” 

 

  Barkan et al. (2003) examined railroad derailment factors in the context of 

hazardous materials transportation risk.  This study determined that the speed of a train 
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and the number of cars derailed was significantly related to hazardous materials release 

probability.  Certain accident causes were found to be more likely than others to create 

accident conditions in which hazardous materials may be released.  In particular, these 

causes were broken rails or welds, buckled track, improper train handling, and broken 

wheels.  The authors determined that different derailment causes resulted in different 

accident severities and distributions of cars derailed. 

 Dennis (2002) performed an analysis on the decline of accident rates for railroads 

since deregulation in 1980.  Dennis developed a model that evaluated changes in the rail 

industry from 1983 to 1994 to understand the effect of these changes on accident rates.  

He concluded that federal regulation, whether measured by defect rates, violation rates, 

or inspection rates, had a statistically insignificant effect on the rate of track accidents 

during the period.  However, Dennis determined that the investment in railroad track by 

railways did have a statistically significant effect on the decline in track accidents. 

   

2.2 Factors Related to Broken Rails 

 The literature reviewed in this section was used as a framework for the analyses 

presented on service failure prediction in Chapters 4 and 5.  The logistic regression 

service failure prediction model presented in Dick et al. (2003) was examined and 

evaluated for recent service failure data.  In my analysis I expanded on the logistic 

regression technique examined in their study.  The model developed to predict broken rail 

locations by Sourget & Riollet (2006) led to the conclusion that inclusion of additional 

factors such as maintenance activities, could be used to create a more accurate service 

failure prediction model.  Additional literature sources reviewed here focused on the 

mechanistic analysis of broken rails.  Kim & Kim (2002), da Silva et al. (2003), 

Skyttebol et al. (2005), and Aglan & Gan (2001) all conducted studies examining fatigue 

crack growth in rail.  Their analyses were used to understand the factors and some of the 

unexplained variance in the service failure prediction models that I developed. 

 

2.2.1 Statistical Prediction of Broken Rails 

 Dick et al. (2003) developed a service failure prediction model based on factors 

related to broken rails.  They determined that broken rails were the most frequent cause 
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of severe train accidents on U.S. freight railroads.  A prediction model was developed 

that evaluated track and traffic characteristics.  The factors examined included rail age, 

rail weight, degree of curvature, speed, average tons per car, average dynamic tons per 

car, percent grade, annual gross tonnage, annual wheel passes, presence of insulated 

joints, and presence of mainline turnouts.  The prediction model was developed using the 

step-wise logistic regression technique.  The data that were used in this analysis were 

service failures for a two-year period from the BNSF Railway.  The retrospective model 

they developed was found to be 87.4% accurate for predicting service failures.  The 

model terms found to be significant for service failure prediction were rail age, degree of 

curvature, annual traffic, rail weight, annual number of wheel passes, average dynamic 

wheel load, presence of a turnout, tons per car, and track speed.  They concluded that the 

model could be used to provide probabilistic estimates of the likelihood of service failure 

occurrence on the basis of engineering and operational input parameters. 

 Dick (2001) completed research focused on evaluating the factors affecting 

broken rail service failures and derailments.  The first objective of the study was to 

examine the importance of broken rail derailments for freight railroads.  He determined 

that broken rail derailments were far above the average in terms of frequency and 

consequence.  The second objective was to determine possible predictive factors for 

service failures.  Each possible predictive factor was evaluated by the means of a single 

variable statistical analysis.  The final objective was to complete a multivariate analysis 

of predictor variables, as described in Dick et al (2003) and to show how the model can 

be used to reduce broken rail derailments. 

 Sourget & Riollet (2006) developed a statistical tool, called PROBARAIL, to 

assist railroads with decision making regarding the optimal trade-off between 

maintenance cost and the damage cost of broken rails.  A predictive model using logistic 

regression, based on Dick et al. (2003), was developed to identify the probability of 

broken rail failure at specific locations and compare that to an acceptable threshold level 

for failure.  The model also allowed for different weights to be associated with certain 

portions of the rail network according to the seriousness of the consequences inherent to a 

failure in that particular location.  The logistic regression model that was developed takes 
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into account the rail age, rail weight, rail profile, curve locations, track cant, gradient, 

track speed, traffic levels, and maintenance activities. 

 Sourget & Riollet (2006) developed two models for prediction of broken rails: 

logistic regression and decision trees.  The models were developed by creating a 

“learning” sample of data and comparing that to a validation sample.  The authors first 

experimented with developing the models for a 20-year period; however, they found that 

changes in railway operations resulted in an inaccurate model.  The authors state, “The 

analyses carried out have showed that the quality of prediction is decreasing with the 

length of the history.”  Therefore, the models were re-created using only five years of 

data.  It was determined that the use of a logistic regression equation for data from 1999 

through 2003 led to an accuracy level of approximately 75%.  The authors concluded that 

there was a positive correlation between the failure probability and the traffic tonnage, 

rail weight, and maximum allowable track speed. 

  Sourget & Riollet (2006) also developed a severity model of a broken rail failure 

to assist with maintenance decisions.  Segments with high probability of rail failure were 

examined in the context of two impact classes.  The first class was the impact on the 

railroad’s guaranteed level of safety.  The second class is the financial impact for the 

railroad, such as maintenance costs, train delay costs, and derailment costs.  Based on a 

number of factors, including sleeper characteristics, track circuit type, bridges, speed, and 

the closest maintenance center, the model determines the level of severity for the broken 

rail.  The user of this model has access to both the failure prediction model information as 

well as the failure severity model information.  Users can also examine an 

occurrence/severity matrix to compare different track sections on the network.  The 

authors concluded that these tools allow for better decisions regarding maintenance work 

for preventing broken rails. 

 Shry & Ben-Akiva (1996) developed a model that established a relationship 

between fatigue failures of rail and factors affecting fatigue.  The research examined 

discrete usage periods for multiple types of rail defects.  A Weibull distribution was used 

to include variables for the dynamic operation of the rail line and changing maintenance 

conditions.  The authors developed both a survival function and a hazard function for the 
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condition of the rail.  They concluded that the defect rate for a specific rail only depends 

on current conditions and not historical data. 

 Zarembski & Palese (2005) completed a study regarding rail transportation risk 

due to broken rails.  The authors stated, “The risk of broken rail derailments is directly 

related to the rate of rail defect development and the associated relationship between 

service defects and detected defects.”  The authors used a statistical analysis to evaluate 

the relationship between service defects and derailments.  They found a correlation 

between broken rail derailments and service defects, with approximately 1 derailment per 

125 service defects for main line track under current axle loading.  Additionally, they 

determined that if a greater number of detected defects were found then the risk from 

broken rail derailments would decrease.  Therefore, the authors examined the effect of 

improved inspection techniques.  The research found that the use of risk-based ultrasonic 

inspection scheduling techniques will reduce the risk of broken rail derailments, due to 

the increase in detected defects.  The authors stated that the use of risk based scheduling 

reduced the rate of broken rails and service defects by 30% or more. 

 Palese & Zarembski (2001) described the risk-based ultrasonic inspection 

program currently implemented by the BNSF railway.  They considered a risk-based 

approach to scheduling inspections based on three factors, defect initiation, defect 

growth, and detection reliability.  The authors state, “Combining the knowledge that not 

every defect will be found during a given test with the understanding of how defects 

initiate and propagate allows for a better understanding of how often ultrasonic tests must 

be conducted to increase the chance of finding these rail defects.”  Some of the risk 

factors developed for specific BNSF track segments were passenger-carrying-miles, dark 

territory, single-track territory, and BNSF-defined key routes.  The authors determined 

that both the service failure rate and the service-failure-to-detected-defect ratio have 

decreased significantly with use of the risk-based inspection scheduling.  The authors 

concluded that more defects were being found by the detector cars as opposed to being 

found as service failures, thereby reducing the risk associated with broken rails. 

 Zhao et al. (2007) studied the risk of derailment of railway vehicles due to rail 

defects and broken rails.  The risk of a derailment was measured by the expected number 

of broken rails multiplied by the severity of the broken rail event.  Four models were 
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developed and combined to predict the number of broken rails over a particular segment.  

The four models that were developed were breaks due to: thermit weld defects, imperfect 

inspections, fatigue defects, and the impact of grinding on reducing defects.  The 

combination of the models was used to calculate the risk of broken rails. 

 

2.2.2 Mechanistic Analysis of Broken Rails 

 In Hay’s (1982) textbook on railroad engineering he reviews the types of rail 

defects that lead to broken rail service failures and derailments.  Defects are divided into 

four groups: longitudinal defects, transverse defects, base defects, and other defects.  He 

stated that the most dangerous type of rail defects are transverse fissures that initiate 

inside the rail head due to minute shatter cracks and then expand across the rail head due 

to cyclic loading until the rail breaks, often with little or no prior indication of the 

weakened condition.  He also discussed different defect detection techniques used, such 

as induction systems, residual magnetic systems, and ultrasonic inspection systems.  He 

also examined surface defects that arise from contact and shearing stresses.  These 

include head checks, spalling, flaking, and shelly defects. 

 Sperry Rail Service (1999) published a guide to assist railroads with rail defect 

management and identification.  The manual is divided into sections explaining each type 

of possible rail defect.  The categories of rail defects that the authors defined are 

transverse defects, longitudinal defects, web defects, base defects, damaged rail, nicked 

rail, surface defects, and miscellaneous defects.  The guide stated, 

 “The growth of a rail defect depends on a great many variables.  The chemical 

 composition of the rail and the amount of rail flexing are factors which must be 

 considered.  The type of rolling stock (freight, passenger, or motive power), its 

 weight, and its condition of repair are important, as well as the frequency of these 

 loads.  The conditions of the roadbed and weather changes which result in track 

 movement also affect growth.  With so many variables contributing to 

 development, it is impossible to predict accurately the growth of any defect.” 

 

 Smith (2005) completed an overview of railway wheel and rail fatigue failures.  

Smith stated that the quality of steel manufacturing has improved over the last 30 years, 
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thus eliminating many fatigue failures from internal defects in the rail head; instead a 

large proportion of rail failures are now occurring at weld locations.  Smith also found 

that the life of a rail is principally determined by wear at the railhead.  The wear can lead 

to shape change along the length of the rail, which in turn produces greater stresses in the 

wheel-rail contact.  The author stated that rail grinding can be used to remove 

corrugations and to restore the accurate rail head profiles that are essential for controlling 

these stresses. 

 Zarembski et al. (2005) and Zarembski (2005) examined the effectiveness and use 

of rail grinding.  Traditional rail grinding objectives and uses are explored, as well as 

applications of profile rail grinding.  The authors examined how to monitor the 

effectiveness of rail grinding by developing grinding quality indices.  These indices can 

be used to determine if rail grinding is improving the quality of the track from pre-grind 

to post-grind.  Additionally, the authors determined that for high rail in curves, rail 

grinding was 76% effective for improving rail profile, while rail grinding on the low rail 

in curves was only 46% effective and 61% effective in tangent track sections.  The 

authors also conducted an economic study of rail grinding and found that the savings due 

to extended rail life alone pays for the cost of rail grinding.  In addition there are a 

number of other benefits from rail grinding, such as reduced fuel consumption, reduced 

track geometry degradation, reduced tie-fastener degradation, reduced damage to rolling 

stock, and reduced noise and vibration. 

 da Silva et al. (2003) performed tests on newly manufactured rail to determine 

fatigue crack growth rate.  Four different European rail manufacturers’ steels were each 

tested under stress with temperature and humidity maintained at a laboratory level.  To 

determine fatigue crack growth, manual measurements of surface cracks were recorded at 

regular intervals.  The tests showed that regression analysis could be used to model the 

crack growth in each of the specimens.  Additionally, by examining the regression, three 

different states (stage I, stage II, and stage III) of crack growth can be identified in steel.  

The authors found that crack growth is difficult to predict, because in stage III, crack 

growth can accelerate, remain steady, or slow down.  The authors concluded there was no 

significant difference in the crack growth rates in the samples from the four different 

manufactures. 
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 Skyttebol et al. (2005) studied the effect of residual stresses on fatigue crack 

growth in rail welds.  The authors used finite element analysis and fracture mechanics to 

calculate residual stresses in a flash-butt welded rail.  The authors varied a number of 

parameters in this test, including axle load, crack location, crack size, and rail 

temperature.  The authors concluded that, “the analyses show that typical crack sizes that 

can be found in a weld may grow to failure in a very short time if the residual stress fields 

interact with the axle load.”  The authors also found that, fatigue is strongly dependent on 

ambient temperature, time to failure depends on axle load, and that surface cracks are 

more dangerous than an embedded crack in the rail. 

 Kim & Kim (2002) completed a study examining the fatigue behavior of rail steel 

under mixed loading levels, such as what is experienced by typical railway steel.  To 

simulate the affect of mixed loadings in the laboratory, the fatigue crack growth behavior 

was evaluated using various comparative stress intensity ranges.  The results of this 

analysis were compared to the testing completed under constant stress.  Specifically, the 

authors examined the transition from shelling to a transverse crack under mixed mode 

loadings.  Finite element modeling was used to analyze the effects from the wheel/rail 

interface.  The authors determined that internal cracks first grew in the longitudinal plane 

and turned into a transverse crack.  The authors also concluded that fatigue crack growth 

rate under mixed loading conditions was slower than that under constant load. 

 Aglan & Gan (2001) examined the fatigue crack growth behavior of head 

hardened premium rail steel under load.  The authors used the modified crack layer 

theory to model fatigue crack growth behavior.  They recorded the crack length and 

number of cycles of loading to determine the crack speed and the energy release rate of 

the steel.  Three distinct stages of crack growth were observed, crack initiation, stable 

crack growth, and unstable crack growth.  The results of this study showed that a 

microscopic examination of the crack reveals microcracks, inter-granular separation, and 

plastic deformation of the material which lead to a deceleration of crack growth in the 

second stage.  The authors also found that cleavage facets initiated from the grain 

boundaries led to unstable growth in the third stage of crack growth. 

 Fletcher et al. (2004) completed an examination of rails in which large rolling 

contact fatigue cracks had developed.  The study focused on the interaction between 
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adjacent long cracks, at least 10mm in length, that are at the beginning of their bending-

stress-driven propagation phase.  The authors developed a model based on the boundary 

element technique for the growth of adjacent long cracks.  The results of the analysis 

were shown in a series of plots of stress intensity factors around crack fronts for both 

single and multiple-crack situations.  The conclusions reached in their study were that the 

previous models of single-crack growth are misleading when dealing with a rail 

containing multiple adjacent cracks. 

 Fischer et al. (2006) studied the growth and behavior of surface cracks on railway 

track under load.  The research considered the situation of a shallow angle surface crack 

that may propagate either parallel or perpendicular to the surface of the rail.  This 

situation was tested for various strain and stress states.  The authors found that small 

surface cracks are common but generally experience slow crack growth.  However, some 

surface cracks were found to grow up to a few millimeters in length, and then change 

their direction towards the rail surface.  The authors concluded that this deviation occurs 

at a crack length where the stress intensity ranges reach a threshold where the tensile 

residual stress are sufficiently large to change the direction of the crack. 

 Zumpano & Meo (2006) and Bouteiller et al. (2006) were studying the possibility 

of new detection techniques for rail damage and broken rails.  Currently, the majority of 

rail inspection is completed externally with geometric measurements and internally with 

ultrasonic inspection.  Zumpano & Meo (2006) were studying a new technique using 

wave propagation phenomena to identify discrepancies, or damage, to the rail.  Bouteiller 

el al. (2006) were investigating the use of a voltage application to project a high 

frequency wave through the rail structure to detect broken rails.  Both new developments 

work under the same principle: an improper returning wave indicates damage on or 

within the rail. 

 

2.3 Statistical and Artificial Neural Network Modeling Techniques 

 The literature reviewed in this section serves as an introduction to the statistical 

and artificial neural network models developed in Chapters 4 and 5.  Hocking’s (1976) 

work established the four main variable selection techniques I used to determine the 

factors related to service failures.  The research conducted by Dougherty (1995) and Tu 
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(1996) serve as background information on how artificial neural networks (ANN) are 

formed as well as their advantages and disadvantages compared to logistic regression.  

Finally, techniques developed by Yim & Mitchell (2003) on hybrid artificial neural 

network / logistic regression (ANN/LR) models were used to develop my ANN/LR 

hybrid service failure prediction models. 

 

2.3.1 Statistical Models 

 Hocking (1976) completed an analysis reviewing the different variable selection 

techniques in linear regression models.  The research described various computational 

procedures for the inclusion or removal of variables from a logistic regression model.  

The first computational technique described is the method to include all possible 

predictors for regression and compute the best regression model based on those 

parameters.  Some of the more advanced techniques included forward selection, 

backward elimination, and step-wise.  The forward selection technique starts with zero 

variables in the model and adds one variable at a time until a specified threshold level is 

achieved.  The backward selection technique performs the opposite procedure where all 

variables are initially included in the model and variables are removed until a given 

threshold is reached.  The hybrid of these two models, step-wise selection, begins as 

forward selection, but after each variable is added, the backward selection technique is 

then performed.  In conclusion the author stated, “neither forward, backward, nor step-

wise selection will assure that the ‘best’ subset is revealed.”  The author recommended 

that all three techniques should be performed in the hope of seeing agreement between 

the developed models. 

 Lei & Jing-feng (2006) developed a logistic regression model for determining 

landslide susceptibility.  The logistic regression method is used to analyze the 

relationship between the binary response variable of a landslide occurrence and the 

continuous or binary explanatory variables.  The first logistic regression equation 

developed showed that elevation, proximity to a road, river, and residential area are main 

factors triggering landslide occurrences in the study area.  The predicted accuracy of the 

landslide susceptibility map was shown to be approximately 80%.  In order to improve 

the accuracy, the authors developed a second logistic regression equation which was used 
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only on areas with high susceptibility to landslides and used only engineering and 

geological condition data.  The second logistic regression model yielded a higher level of 

accuracy for these locations.  The authors concluded that using the double logistic 

regression modeling technique improved the predictive ability of the model. 

 

2.3.2 Artificial Neural Network Models 

 Dougherty (1995) completed a review of the use of artificial neural networks 

(ANN) for transportation applications.  The author reviewed the different learning 

techniques that can be used to form neural networks.  The most traditional method, 

supervised learning, is a network that is constructed based on the inputs, the computed 

output, and the actual output value.  A global error function is created that computes the 

difference between the calculated output value and what actually occurred.  The neural 

network adds neurons and adjusts the connection weights in order to minimize the global 

error function.  Some other types of learning explored in the paper include, reinforcement 

learning, self-organizing networks, and combined networks.  The author also explored 

some of the possible applications in transportation such as predicting driver behavior, 

pavement maintenance, vehicle classification, traffic pattern analysis, etc.  The author 

concluded that many of the problems in transportation systems are highly non-linear and 

the use of ANNs for these applications may prove to be a useful tool. 

 Tu (1996) completed a study to evaluate the advantages and disadvantages of 

using ANNs versus logistic regression.  This study specifically looked at the application 

of ANNs and logistic regression in the context of predicting medical outcomes.  Tu 

described multiple advantages of ANNs over traditional statistical methods: the neural 

network models require less formal statistical training to develop, ANN models can 

implicitly detect complex nonlinear relationships between independent and dependent 

variables, ANNs have the ability to detect all possible interactions between predictor 

variables, and ANNs can be developed using multiple learning algorithms.  Tu also 

considered the disadvantages of ANNs compared to statistical methods: ANNs are 

referred to as “black box” model due to their limited ability to explicitly identify variable 

relationships, ANN models may be more difficult to use in field applications, ANN 

modeling requires greater computational resources, ANN models are prone to over-
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fitting, and ANN model development is empirical and many methodological issues 

remain unsolved.  Tu concluded that logistic regression remains the clear choice when the 

primary goal of model development is to look for possible causal relationships and when 

the modeler wishes to understand the effect of predictor variables on the outcome.  Tu 

also concluded that a hybrid version of both ANNs and logistic regression may lead to 

the best possible prediction model. 

 Yim & Mitchell (2003) completed a study that compared ANNs, logistic 

regression models, discriminant analysis (DA), and hybrid models for the use of 

predicting corporate firm failure in Australia.  The authors applied traditional statistical 

methods and neural network techniques, but also developed two hybrid models for 

prediction.  The first hybrid model, “Logit-ANN”, used logistic regression to preselect 

the significant variables for prediction.  Only these significant variables were then used as 

input variables for the ANN.  The second hybrid model, “PLogit-ANN”, used the output 

value (probability of failure) from the logistic regression technique as a new input to the 

neural network.  ANNs in this study were constructed using backpropagation.  The 

results of this analysis showed that stand-alone ANNs outperformed the traditional 

statistical techniques.  Yim & Mitchell also found that of all the models examined in the 

study, the PLogit-ANN hybrid model performed the best.  They concluded that the use of 

ANNs and hybrid models are a valuable tool for event prediction. 

 Odom & Sharda (1990) developed a neural network model for the prediction of 

firm bankruptcy occurrence by examining past financial data.  The authors compared the 

predictive power of ANNs to the predictions made by a multivariate discriminant 

analysis.  The results for the training sample were that the neural networks classified 

100% of the cases correctly and discriminant analysis classified 96% correctly.  

However, when the models were tested against “unseen”, validation data, the neural 

network only classified 59% correctly and the discriminant analysis classified 81% 

correctly, indicating that the neural networks had over-fit the data in this study. 

 Fanning & Cogger (1994) and Towell & Shavlik (1994) conducted studies using 

advanced neural network modeling techniques.  Fanning & Cogger (1994) examined the 

use of a generalized adaptive neural network algorithm (GANNA) processor in 

comparison to traditional backpropagation neural nets and logistic regression techniques.  
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The advantages of a GANNA are that they do not require the size of the network to be 

predefined, but instead layers are added by measuring the additional performance and 

generalization of the model.  Fanning & Cogger concluded that both ANN and GANNA 

performance was similar to the traditional statistical methods.  Towell & Shavlik (1994) 

completed a study developing knowledge-based ANNs (KBANN).  KBANN is described 

by the authors as a hybrid learning system built by mapping specific “domain theories” 

into neural networks and then refining the neural network using backpropagation.  Towell 

& Shavlik concluded that KBANN networks generalized better than other traditional 

ANN models. 

 

2.4 Railroad Economic Research 

 The literature reviewed in this section is used as background information for my 

economic impact study of broken rails presented in Chapter 6.  Cannon et al. (2003) 

determined the different types of costs associated with broken rails.  Their breakdown of 

broken rail costs is used as the framework for my economic impact analysis.  The study 

by Zhao et al. (2006) was used to understand how the economic life of rail is affected by 

frequency of detected rail defects.  Finally, Poole’s (1962) study provided several tools to 

assist with calculating costs associated with railroad operations.  His methods were used 

in the development of my train delay cost calculator. 

 Cannon et al. (2003) completed an overview of rail defects in railway track.  One 

specific section of his analysis examined the cost of rail failures.  The authors stated that 

the costs of rail failures include the following: track inspection, train delay, remedial 

treatments, pre-emptive treatments, derailments, and loss of business.  Track inspection 

cost, referring to both visual and ultrasonic testing, highly depends on the frequency of 

inspection.  Train delay cost includes a railroad’s own equipment as well as required 

payouts as penalties to other railroads due to operating agreements.  Remedial treatment 

costs include the cost for expenses such as rail replacement and weld repair.  Pre-emptive 

treatment costs refer to rail grinding and track surfacing.  The final two costs examined 

by the author were the cost of derailments from broken rails and the corresponding loss 

of business due to loss of customer confidence and support.  The authors concluded that 
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some costs associated with rail failures can be stated with certainty, while many others 

cannot. 

 Zhao et al. (2006) conducted research assessing the economic life of rail based on 

the frequency of rail defects.  The authors examined the occurrence of rail defects and 

broken rails as they relate to maintenance activities.  Specifically, the research evaluated 

the impact of rail grinding on the occurrence of rail defects.  Additionally, the authors 

attempted to model the chance of imperfect track inspections.  The authors determined 

that the life-cycle cost of rail is calculated by accounting for the cost of track inspections, 

rail repairs, train accidents, and rail renewal.  The authors developed a model to 

determine the economically optimal amount of time rail should remain in service based 

on a given set of circumstances. 

 Poole (1962) examined and developed tools to assist with calculating the costs 

associated with railroad operations.  For freight transportation costs, Poole examined the 

costs of maintenance of way and structures, maintenance equipment, depreciation and 

interest costs, cost of car repairs, and other transportation expenses.  Poole also developed 

a method to determine the number of meets and passes and associated costs from 

diverting or rerouting traffic to another line.  Other topics he explored in regards to track 

operating costs were the economics of faster train speeds, abandonment of alternative 

routes, and cost of transporting heavier cars with more capacity.
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CHAPTER 3: THE RELATIONSHIP BETWEEN TRAIN LENGTH AN D 

ACCIDENT CAUSES AND RATES 

 

 Train accident rates are a critical metric of railroad transportation safety and risk 

performance. Understanding factors affecting accident rates is also important for 

evaluating the effectiveness of various accident prevention measures.  Accident rates 

have been the subject of a number of analyses but these have generally not considered the 

effect of train length on accident rate.  Accident causes can be classified into two groups, 

those dependent on train length and correlated with the number of cars in the train, and 

those independent of train length, corresponding to the number of train-miles operated.  

These classifications have implications for the quantitative effect of various changes in 

railroad operating practices on railroad safety performance.  Whether an accident cause is 

a function of car-miles or train miles affects how safety measures that might reduce the 

likelihood of that cause will affect overall train accident rate.  Accident causes have been 

classified as car or train-mile-related based on expert opinion but these classifications 

have not been quantitatively tested.  FRA accident data were used to develop a metric to 

objectively classify accident causes and 11 causes were reclassified from the previous 

classification.  Based on the results of the study a sensitivity analysis was conducted to 

evaluate how changes in train length affect individual trains' accident likelihood and 

system-wide accident rate.  The concept of car-mile versus train-mile accident causes 

leads to the premise that, although longer trains are expected to experience more 

accidents than shorter trains, operation of longer trains results in a lower system-level 

accident rate. 

 

3.1 Introduction to Railroad Accident Causes and Rates 

 Train accident rates are a critical measure of rail transportation safety and risk and 

understanding them is necessary to evaluate the effect of accident prevention measures.  

Accident rates have been calculated by various organizations and railroads and 

aggregated statistics for all U.S. railroads are published annually by the Federal Railroad 

Administration (FRA) Office of Safety (FRA 2006, FRA 2007c).  Rates have been used 

to assess various factors such as track class, geographic location, train speed, and track 
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type (Treichel & Barkan 1993, Anderson & Barkan 2004, Transport Canada 2006).  

However, these analyses have generally not considered the effect of train length on train 

accident rate. Train length is thought to have an effect on accident rate because more cars 

in a train increase the likelihood that a car or track component in or under a train may 

fail.  Based on this premise, it has been suggested that accident causes can be classified 

into two types, those that are a function of the number of train-miles operated and those 

that are a function of car-miles operated (CCPS 1995, ADL 1996).  The initial 

classification into these two categories was developed by Arthur D. Little Inc. (ADL) 

based on the opinions of railroad industry experts.  These classifications have 

implications for the quantitative effect of various changes in practice on railroad safety 

performance and have been used in subsequent studies of railroad safety (STB 2002, 

Zhao et al. 2007, Kawprasert & Barkan 2008).  Therefore, statistical evaluation of the 

classifications will enhance their utility and may also clarify our understanding of them.  

Furthermore, this classification has implications for an accurate understanding of the 

relationship between train length and accident rate and consequent policy implications for 

railroad operating practices. 

 I undertook a study to investigate and evaluate the ADL accident cause 

classifications with the goal of understanding how operating practices, such as train 

length, affect the likelihood of a train accident. The objectives of this analysis were: 

• Present the methodology for calculating train accident rates based on car-mile 

and train-mile accident causes, 

• Develop a metric to quantitatively evaluate the classification of accident 

causes as car or train-mile-related, 

• Use the metric to properly classify train accident causes, 

• Develop new, up-to-date, train accident rates based on train length, and 

• Conduct a sensitivity analysis on the model to illustrate how changes in train 

length may affect train accident rate. 

 

3.2 Train Length Based Accident Rates 

 Train accidents include derailments, collisions, highway-rail grade crossing 

accidents, and other accident types.  The likelihood that a train will be involved in an 
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accident is a function of both car-miles and train-miles operated (ADL 1996, Anderson 

2005, Anderson & Barkan 2005b).  The number of car-miles operated for a particular 

train is affected by train length; longer trains accumulate more car-miles per train mile.  

However, not all accident causes are directly related to the length of the train; instead, 

some are related only to the operation of a train, irrespective of its length.  Train accident 

causes that are a function of car and train-miles can be defined as follows: 

"Car-mile-related causes are those for which the likelihood of an accident is 

proportional to the number of car-miles operated.  These include most equipment failures 

for which accident likelihood is directly proportional to the number of components (e.g. 

bearing failure) and also include most track component failures for which accident 

likelihood is proportional to the number of load cycles imposed on the track (e.g. broken 

rails or welds).” 

“Train-mile-related causes are those for which the accident likelihood is 

proportional to the number of train-miles operated.  These include most human error 

failures for which accident likelihood is independent of train length and depends only on 

exposure (e.g. grade crossing collisions).” (Anderson & Barkan 2005a) 

 

3.2.1 Car vs. Train-Mile Expectations 

 The car-mile cause and train-mile cause definitions lead to the premise that longer 

trains will experience more accidents than shorter trains.  This is because longer trains are 

more susceptible to car-mile-related accidents than shorter trains due to the additional 

cars in the train.  Conversely, a train should experience accidents due to train-mile-related 

causes regardless of train length.  The length of a train, referred to here and throughout 

the paper, is the number of cars in the train and not the linear measure of a train’s actual 

length. 

This premise leads to two expectations that should be evident when examining 

accident data and can be used to evaluate different train accident causes.  The first 

expectation is that the average length of a train involved in an accident should be greater 

for car-mile-related causes compared to train-mile-related causes because longer trains 

will experience a greater proportion of car-mile-related accidents.  Conversely, train-
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mile-related accidents are independent of train length and should not be biased towards 

long or short trains.   

The second expectation is that the percentage of accidents for car-mile-related 

accidents should be an asymptotically increasing function of train length, whereas the 

percentage of train-mile-related accidents should be an asymptotically decreasing 

function of train length.  Longer trains should experience a higher percentage of accidents 

from car-mile-related causes due to their higher percentage of car-miles per train-mile 

operated.  Conversely, shorter trains are expected to experience a greater percentage of 

accidents from train-mile-related causes.   

 

3.2.2 Accident Rate Equation 

 Under the premise that train accidents can be separated into two distinct groups, 

car-mile-related causes and train-mile-related causes, a new accident rate model that 

takes into account the two types of classifications can be developed.  The new accident 

rate equation must include a factor for train length to account for accidents that are 

dependent on the number of car-miles operated. 

 To develop the new model, all FRA train accident causes were examined (FRA 

2007a, FRA 2007b).  A previous study by ADL classified each accident cause as either 

car-mile or train-mile-related (ADL 1996).  The purpose of this study was to quantify the 

risk of hazardous material transportation by examining all accident causes.  The ADL 

study showed that accident types should be classified as either car-mile or train-mile-

related to properly quantify the car-mile and train-mile related risk.  By determining the 

number of accidents that have occurred due to each cause, two independent and mutually 

exclusive accident rates can be calculated, the car-mile-accident rate and the train-mile-

accident rate.  The expected number of accidents that a train will be involved in is the 

sum of the car-mile-accident rate multiplied by number of car-miles and the train-mile-

accident rate multiplied by the number of train-miles.  The expected number of train 

accidents that will occur can be calculated as follows:  
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TTCCEXP MRMRA +=                        (3.1) 

where, 

 

AEXP = Accidents expected 

RC = Car-mile-accident rate (accidents per car mile) 

MC = Number of car miles 

RT = Train-mile-accident rate (accidents per train mile) 

MT = Number of train miles 

 

 Under this model it is expected that longer trains will experience more train 

accidents.  As a train’s length increases, train-miles operated remains constant, but the 

number of car-miles increases with each additional car.  Therefore, the number of 

expected accidents for a single train increases due to the additional car-miles (Figure 

3.1a). 

 

 

 

 

 

 

 

Figure 3.1 Expected Accidents from Car-Mile and Train-Mile-Related  
Causes as a Function of Train Length for a Single Train (a) and for a  

Fixed Amount of Traffic (b) 

 

If one extends this model to any given number of cars that must be transported, it 

suggests the general result that operating longer trains should result in fewer accidents.  

As train length decreases, more trains are required to move the same number of cars 

thereby leading to more train-mile-related accidents.  Under this simple scenario, 

accidents will be minimized by running the longest trains feasible given infrastructure 

and other constraints (Figure 3.1b). 
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It should be noted that there are limits to the validity of this result for very long 

train lengths (>150).  This is because the expectations presented, as well as the data used 

in my analysis, apply to trains less than this length.  In practice it is possible that accident 

rates for certain train-mile-related accidents may increase as train length becomes very 

long due to causes such as train handling, train braking, and other factors. The intention 

of this analysis is not to suggest that longer trains will necessarily improve safety; instead 

the purpose is to develop a better quantitative understanding of how changes that affect 

various accident causes, such as number of trains and train length, may affect overall 

accident rates. 

 

3.3 Classification of Accident Causes 

 To accurately determine the car-mile and train-mile-accident rates, proper 

classification of each FRA accident cause is needed.  The FRA accident cause 

classification system is very detailed and often includes several variations of one related 

group of causes.  This is a useful attribute of the database, but is more detailed than 

necessary for the purpose of this analysis.  Consequently, ADL combined similar 

accident causes into 51 unique groups, 34 of which they classified as car-mile-related 

(CM) and 17 as train-mile-related (TM) (Table 3.1) (ADL 1996). The FRA accident 

causes are separated into five main groups, mechanical, human, signal, track, and 

miscellaneous causes.  ADL defined most track and mechanical failures as car-mile-

related, while most human and signal errors were defined as train-mile-related.  The 

various miscellaneous causes were assigned to either car-mile or train-mile-related. 

I used FRA accident data, “Rail Equipment Accidents” from the FRA Office of 

Safety, to evaluate the ADL classification of accident causes for the period 1990 to 2005 

(FRA 2007a).  These data included all accidents occurring on either mainline or siding 

tracks for all classes of railroads.  Accidents on yard and industry tracks were excluded 

because the average train length for these types of accidents is comparatively shorter due 

to yard operations.  Mainline and siding accidents were combined because of similar 

accident causes and train length.  Car and train-mile relationship predictions for each 

cause group were compared with the corresponding data from the FRA database.  Train  

 



  

 28 

Table 3.1 ADL/AAR Accident Cause Groups and Classification of FRA Accident 
Causes 

 
Group CM/TM Cause Description Group CM/TM Cause Description

01E CM Air Hose Defect (Car) 06H TM Radio Communications Error
02E CM Brake Rigging Defect (Car) 07H TM Switching Rules
03E CM Handbrake Defects (Car) 08H TM Mainline Rules
04E CM UDE (Car or Loco) 09H TM Train Handling (excl. Brakes)
05E CM Other Brake Defect (Car) 10H TM Train Speed
06E CM Centerplate/Carbody Defects (Car) 11H TM Use of Switches
07E CM Coupler Defects (Car) 12H TM Misc. Track and Structure Defects
08E CM Truck Structure Defects (Car) 01M TM Obstructions
09E CM Sidebearing, Suspension Defects (Car) 02M TM Grade Crossing Collisions
10E CM Bearing Failure (Car) 03M CM Lading Problems
11E CM Other Axle/Journal Defects (Car) 04M CM Track-Train Interaction
12E CM Broken Wheels (Car) 05M TM Other Miscellaneous
13E CM Other Wheel Defects (Car) 01S TM Signal Failures
14E CM TOFC/COFC Defects 01T CM Roadbed Defects
15E CM Loco Trucks/Bearings/Wheels 02T TM Non-Traffic, Weather Causes
16E CM Loco Electrical and Fires 03T CM Wide Gauge
17E CM All Other Locomotive Defects 04T CM Track Geometry (excl. Wide Gauge)
18E CM All Other Car Defects 05T CM Buckled Track
19E CM Stiff Truck (Car) 06T CM Rail Defects at Bolted Joint
20E CM Track/Train Interaction (Hunting) (Car) 07T CM Joint Bar Defects
21E CM Current Collection Equipment (Loco) 08T CM Broken Rails or Welds
01H TM Brake Operation (Main Line) 09T CM Other Rail and Joint Defects
02H TM Handbrake Operations 10T CM Turnout Defects-Switches
03H TM Brake Operations (Other) 11T CM Turnout Defects-Frogs
04H TM Employee Physical Condition 12T CM Misc. Track and Structure Defects
05H TM Failure to Obey/Display Signals  

 

lengths were grouped into 10-car bins and the percentage of all car-mile-related and train-

mile-related accident causes was graphed versus train length (Figure 3.2). 

A regression analysis was conducted in which a power function, of the form 

y=axb, was fitted to the data to evaluate how well they conformed to an asymptotically 

increasing or decreasing functional form.  The critical term regarding the curve form of 

the power function, is the exponent, b.  If b > 0, the data are more representative of an 

asymptotically increasing function (Figure 3.3a).  If b < 0, the data are more 

representative of an asymptotically decreasing function (Figure 3.3b).  As b approaches 

zero the power curve approaches linearity; whereas for larger absolute values of b, the 

power function curves more sharply.  In the case of b > 0, the function will be convex for 

b > 1 or concave for b < 1.  The residual error from the fitted power curves was also 

calculated as a function of train length (Figure 3.2). 

The results were generally consistent with the car and train-mile premises 

developed.  The average length of trains involved in an accident due to car-mile-related  
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Figure 3.2 Percentage of Car and Train-Mile-Related Accidents versus Train 
Length using the ADL Accident Cause Classification 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.3 Characteristics of Exponential Term, b, of Power Function baxy = ,  
where (a) Represents a Car-Mile-Related Cause and (b) Represents a  

Train-Mile-Related Cause 
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causes was 68.3 cars, whereas the average for train-mile-related causes was 52.5 cars.  

Also, the percentage of train-mile-related accidents declined asymptotically as a function 

of train length.  However, although the R2 values for the regression analysis were 

significant, it was evident that there were some discrepancies between the observed data 

and the predicted relationships, as indicated by the large residual error for the extreme 

train lengths (Figure 3.2). 

These discrepancies suggested that the previous classification of accident causes 

should be re-evaluated to see if they could be improved based on newer data and analysis.  

Therefore, a more detailed analysis of individual accident causes was conducted.  The 

relationships between number of accidents and percentage of accidents as a function of 

train length were graphed for each cause group.  Although there were not enough data for 

accurate assessment of all the accident cause groups, many of them conformed well to the 

expectations for train-mile or car-mile-related causes, examples of which were grade 

crossing collisions and air hose defects, respectively (Figures 3.4a and 3.4b).  However, 

examination of the data also suggested that some of the cause groups needed to be 

reclassified because the results were inconsistent with the car and train-mile expectations 

(Figures 3.4c and 3.4d). 

A possible explanation exists for the cause group “train handling”, which is 

caused by a locomotive engineer improperly handling the train and commonly attributed 

to excessive horsepower use.  This had been previously defined as a train-mile-related 

cause because it is due to human error.  However, accidents caused by the use of 

excessive horsepower are in fact more common in long trains than short trains and 

therefore resemble a car-mile-related cause.  Conversely, the cause group “all other 

locomotive defects” had been classified as a car-mile cause because it is a mechanical 

failure.  However, the number of locomotives, and therefore the likelihood of a 

locomotive defect, is not necessarily affected by an increased number of cars.  Several 

discrepancies were also observed in other accident cause groups.  Therefore a 

quantitative metric was developed to objectively classify each accident cause group as 

train-mile or car-mile-related. 
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Figure 3.4 Percentage of Accidents versus Train Length for Four Example Cause 
Groups; Correctly Classified (a) and (b), and Incorrectly Classified (c) and (d) 

 

3.3.1 Development of Classification Metric 

 I used the previously stated premise about car and train-mile-related causes to 

develop a quantitative metric to classify each of the ADL accident cause groups.  Car-

mile accidents should be more prevalent in longer trains and should be an asymptotically 

increasing function of the percentage of accidents as train length increases, and the 

reverse should be true for train-mile-related causes. 

 Two parameters were calculated for each accident cause to characterize them as 

either car-mile or train-mile-related.  The first parameter is the average length of trains 

involved in an accident for each cause group.  The second parameter is derived from the 

power function curve and its goodness of fit to the data for the percentage of accidents for 

each cause group as a function of train length.  The exponent in the power function was 

used to assess the asymptotical increase or decrease in the data (Figure 3.3).  The greater 

the difference between the calculated value of b and zero, the stronger the asymptotically 

increasing or decreasing function, and therefore the indication of either a car-mile or a 
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train-mile-related cause.  For example, cause group 2T, non-traffic/weather causes         

(b = -0.8666), showed a much stronger indication of a train-mile-related cause than 1M, 

obstructions (b = -0.3322). 

In addition to characterizing the shape of the curves for each accident cause 

group, it was also important to quantify how well they fit the data.  In some cases there 

were insufficient data to fit a curve and in others the data showed no trend.  In order to 

assess the goodness of fit, the coefficient of determination, R2, for each data set was 

calculated.  R2 values range from 0 to 1 and quantify the goodness of fit with higher 

values indicating a better fit.  Therefore the accident causes with a high R2 value are 

weighted more strongly in the metric than those with a low R2 value.  In summary, the 

accident metric, which was termed AMi, incorporates three characteristics associated with 

each accident cause group, i: the average length of trains, l, the “shape” of the curve as a 

function of train length as indicated by the exponential term, b, and the goodness of fit of 

the data to the curve, as indicated by the R2 value and is expressed as follows: 

 

)R(b
L

l
AM ii

i
i

2+=                      (3.2) 

where, 

 

AMi = Accident cause metric for cause group i 

l i = Average train length for cause group i 

L = Overall average length of trains involved in accidents in dataset = 61.79 

bi = Value of exponential term in power curve equation, y=axb, for cause group i 

Ri
2 = Coefficient of Determination for a power curve fit to the data for cause group i 

 

If the average length of trains in accidents due to cause i (l i) is greater than L, AMi 

is increased and vice versa.  The greater the difference between l i and L the more AMi is 

affected.  The second term of the metric is the power function exponent, b.  If bi > 0 for 

cause i it increases AMi; and vice versa.  Similarly, the greater the difference between bi 

and 0 the greater the effect on AMi.  Finally, b is multiplied by R2 to account for how well 

the function fits the data.  If R2 is close to 1, the second term will influence the metric 
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more strongly.  If the function is a poor fit (low R2), b will have little effect on AMi.  

Therefore, for R2 values close to 1, AMi will be calculated based on both average train 

length and b; whereas for low R2 values AMi will be calculated primarily based on 

average train length.   

The metric, AMi, was used to classify and rank the cause groups (Table 3.2).  Not 

all cause groups included enough data to properly classify them as either car-mile or 

train-mile-related and these were excluded from the analysis.  In particular, cause group 

21E, current collection equipment, was excluded because only short passenger trains 

(<10 cars) were involved in this cause group with none of the accidents resulting in a 

derailment.  The cause groups in Table 3.2 are ordered from most car-mile-related at the 

top, to most train-mile-related at the bottom.  Cause groups with rankings in the middle 

are not represented strongly by either car-mile or train-mile classifications. 

 

3.3.2 Reclassification of Accident Causes 

 AMi is used to classify accident causes as either more consistent with 

characteristics of car-mile-related accidents or train-mile-related accidents.  If AMi > 1 the 

cause group is classified as a car-mile accident; conversely, if AMi < 1 the cause group is 

classified as a train-mile-related accident (Table 3.2).  If the classification based on the 

metric is different from the previous ADL classification this is indicated by a “YES” in 

the column heading “Change”.  Using the metric reclassified 11 cause groups.  Cause 

groups 1H, 9H, and 1S were changed from train-mile to car-mile causes.  Groups 16E, 

17E, 18E, 19E, 1T, 3T, 4T, and 12T were changed from car-mile to train-mile causes.  

Cause groups 3E, 4E, 14E, 21E, 4H, and 11T were not evaluated using the metric due to 

the small number of accidents for each group.  The highest ranked car-mile-related 

accident cause is 1E, air hose defect, with a score of 3.277; whereas the highest ranked 

train-mile related-accident cause is 02H, handbrake operations, with a score of -0.0275. 

 As discussed above, there were instances where the accuracy of the initial 

classification based on the characteristics of the car and train-mile premise could be 

improved.  Using the calculated values for AMi I reexamined the overall train-mile and 

car-mile-related causes for comparison to the ADL classification.  After reclassifying the 

data, the values were now more clearly representative of car-mile and train-mile-related  
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Table 3.2 Classification, Score, and Rank of Accident Cause Groups Using Metric 

Cause Description a b R 2 Cases Avg. Length Score Rank Change
01E Air Hose Defect (Car) 0.000 2.539 0.600 50 108.30 3.2770 1 --
12E Broken Wheels (Car) 0.001 1.631 0.942 372 96.90 3.1054 2 --
10E Bearing Failure (Car) 0.002 1.409 0.893 780 89.24 2.7025 3 --
11E Other Axle/Journal Defects (Car) 0.001 1.218 0.863 156 95.81 2.6022 4 --
09H Train Handling (excl. Brakes) 0.005 1.068 0.946 647 89.34 2.4561 5 YES
01H Brake Operation (Main Line) 0.002 1.047 0.822 209 90.43 2.3238 6 YES
07E Coupler Defects (Car) 0.002 0.998 0.859 274 89.39 2.3043 7 --
13E Other Wheel Defects (Car) 0.003 0.924 0.886 324 88.38 2.2486 8 --
06E Centerplate/Carbody Defects (Car) 0.003 0.838 0.896 281 85.99 2.1423 9 --
05T Buckled Track 0.006 0.697 0.726 438 78.95 1.7842 10 --
08E Truck Structure Defects (Car) 0.000 0.834 0.059 61 94.66 1.5807 11 --
09T Other Rail and Joint Defects 0.003 0.498 0.667 153 75.65 1.5562 12 --
04M Track-Train Interaction 0.008 0.616 0.536 483 74.36 1.5337 13 --
05E Other Brake Defect (Car) 0.002 0.517 0.320 109 77.73 1.4233 14 --
08T Broken Rails or Welds 0.046 0.391 0.369 1798 71.66 1.3040 15 --
02E Brake Rigging Defect (Car) 0.001 0.384 0.014 73 79.15 1.2863 16 --
20E Track/Train Interaction (Hunting) (Car) 0.002 0.369 0.233 80 73.79 1.2799 17 --
07T Joint Bar Defects 0.004 -0.180 0.004 115 78.44 1.2688 18 --
09E Sidebearing, Suspension Defects (Car) 0.006 0.355 0.149 267 71.65 1.2125 19 --
06T Rail Defects at Bolted Joint 0.004 -0.018 0.000 110 72.82 1.1785 20 --
01S Signal Failures 0.000 0.724 0.053 64 69.27 1.1592 21 YES
10T Turnout Defects-Switches 0.026 0.034 0.009 528 65.37 1.0583 22 --
03M Lading Problems 0.020 0.131 0.082 469 64.60 1.0563 23 --
15E Loco Trucks/Bearings/Wheels 0.009 -0.415 0.038 127 64.59 1.0294 24 --

Cause Description a b R 2 Cases Avg. Length Score Rank Change
10H Train Speed 0.002 0.113 0.014 64 61.67 0.9996 21 --
19E Stiff Truck (Car) 0.021 -0.601 0.067 212 62.58 0.9728 20 YES
04T Track Geometry (excl. Wide Gauge) 0.040 -0.796 0.113 1064 63.69 0.9405 19 YES
03H Brake Operations (Other) 0.005 -0.122 0.060 80 58.05 0.9321 18 --
01T Roadbed Defects 0.040 -0.796 0.113 274 55.18 0.8028 17 YES
05H Failure to Obey/Display Signals 0.040 -1.134 0.138 213 56.79 0.7621 16 --
11H Use of Switches 0.098 -0.901 0.124 561 53.41 0.7526 15 --
02T Non-Traffic, Weather Causes 0.027 -0.867 0.159 155 53.28 0.7242 14 --
05M Other Miscellaneous 0.061 -0.255 0.294 814 48.16 0.7045 13 --
18E All Other Car Defects 0.017 -0.353 0.223 254 45.41 0.6562 12 YES
12H Misc. Track and Structure Defects 0.018 -0.308 0.347 248 45.14 0.6237 11 --
03T Wide Gauge 0.101 -0.480 0.407 933 49.68 0.6090 10 YES
06H Radio Communications Error 0.015 -1.196 0.214 67 52.39 0.5915 9 --
16E Locomotive Electrical and Fires 0.018 -0.799 0.139 161 43.12 0.5867 8 YES
01M Obstructions 0.057 -0.332 0.626 686 46.41 0.5430 7 --
02M Grade Crossing Collisions 0.233 -0.355 0.843 2546 50.27 0.5145 6 --
17E All Other Locomotive Defects 0.020 -0.908 0.168 169 38.56 0.4718 5 YES
07H Switching Rules 0.053 -0.601 0.678 411 44.72 0.3165 4 --
08H Mainline Rules 0.026 -0.473 0.475 349 31.64 0.2873 3 --
12T Misc. Track and Structure Defects 0.148 -1.379 0.303 569 30.30 0.0730 2 YES
02H Handbrake Operations 0.144 -1.475 0.349 442 30.13 -0.0275 1 --

Cause Description a b R 2 Cases Avg. Length Score Rank Change
04H Employee Physical Condition 27 59.56
11T Turnout Defects-Frogs 25 76.00
03E Handbrake Defects (Car) 25 32.80
04E UDE (Car or Loco) 39 103.72
14E TOFC/COFC Defects 19 54.26
21E Current Collection Equipment (Loco) 86 7.62

TRAIN-MILE-CAUSES Trendline  y=ax b Distribution Metric

CAR-MILE-CAUSES Trendline  y=ax b Distribution Metric

NOT EVALUATED USING METRIC Trendline  y=ax b Distribution Metric
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causes (Figure 3.5).  The average train lengths for car-mile-related causes increased from 

68.3 to 79.0 cars while the average train length of train-mile-related causes decreased 

from 52.5 to 48.4 cars.  Also, b increased to 0.6175 and R2 = 0.9147 for car-mile-related 

causes; whereas, b decreased to -0.4063 and R2 = 0.9201 for train-mile-related causes.  

Overall, the new classification is more consistent with expectations from the stated car-

mile and train-mile premise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Percentage of Car and Train-Mile-Related Accidents versus Train  
Length using the New Accident Cause Classification 

 

3.4 Calculation of Accident Rates 

 As stated earlier, train accident rates can be determined by summing the car-mile 

and train-mile-related rates.  The two rates can be calculated using known accident data, 

the number of car and train-miles operated, and the new classification of accident causes.  
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Data on car-miles and train-miles operated are available from the AAR (AAR 2007).  Car 

and train-miles are defined as the movement of a car or train the distance of one mile and 

is based on the distance run between terminals or stations.  Accident information was 

downloaded from the FRA Office of Safety for the time period 1990-2005 (FRA 2007a).  

Data for all accident types for Class I railroads operating on mainline and siding tracks 

were used to ensure consistency with the AAR definition of car and train-miles for this 

portion of the analysis.  The developed classification metric was used to classify each 

accident cause. 

The car and train-mile related accident rates from 1990 to 2005 were calculated 

by dividing the number of accidents by the number of miles operated (Table 3.3). In 2005 

the accident rate for car-mile-related causes was 1.05x10-8 or about 0.011 accidents per 

million car-miles and the train-mile-related accident rate was 8.62x10-7 or about 0.86 

accidents per million train-miles.  The expected number of train accidents, based on 2005 

data, can be calculated as follows:  

 

TCEXP MMA 78 10x62.810x05.1 −− +=           (3.3) 

where, 

 

AEXP = Accidents expected 

MC = Number of car miles 

MT = Number of train miles 

 

 It is clear based on this equation that if the number of cars per train is increased, 

the consequent increase in car-miles operated leads to an increase in the accident rate for 

each train so affected.  Similarly, an increase in the number of trains operated on a system 

will increase the number of train-miles operated, and thus increase the number of train-

mile-caused accidents.  To understand the effect of train length on accident likelihood, 

the accident rate equation can be expanded to include the term for train length: 
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)10x62.8 10x05.1(   10x62.8  10x05.1 7878
 

−−−− +=+= LLEXP TdndnTdnA             (3.4) 

where, 

 

AEXP = Accidents expected 

n = Number of trains operated 

d = Number of miles operated 

TL = Average cars per train (train length) 

 

This equation is useful for understanding how changes in operating procedures, 

such as train length or number of trains operated, will affect the expected number of train 

accidents. 

 

Table 3.3 Car and Train Mainline Accident Rates using the Reclassification of 
Accident Causes, Class I Freight Railroads, 1990-2005 

 

Year

Car-Mile Accident 
Rate (per million car 

miles)

Train-Mile Accident 
Rate (per million train 

miles)
1990 510 26,159 0.0195 486 380 1.280
1991 479 25,628 0.0187 465 375 1.240
1992 360 26,128 0.0138 414 390 1.061
1993 370 26,883 0.0138 432 405 1.065
1994 315 28,485 0.0111 418 441 0.948
1995 362 30,383 0.0119 457 458 0.997
1996 379 31,715 0.0120 402 469 0.858
1997 343 31,660 0.0108 418 475 0.880
1998 378 32,657 0.0116 422 475 0.889
1999 367 33,851 0.0108 362 490 0.738
2000 420 34,590 0.0121 433 504 0.859
2001 400 34,243 0.0117 468 500 0.937
2002 374 34,680 0.0108 380 500 0.761
2003 392 35,555 0.0110 431 516 0.835
2004 424 37,071 0.0114 453 535 0.847
2005 395 37,712 0.0105 472 548 0.862

1990-2005 6,268 507,400 0.0124 6,913 7,460 0.927

Car-Mile-
Caused 

Accidents

Car-Miles 
Operated 
(Millions)

Train-Mile-
Caused 

Accidents

Train-Miles 
Operated 
(Millions)

 

 

3.5 Accident Rate Sensitivity Analysis 

 I conducted two simple sensitivity analyses to illustrate the effect of changes in 

train length on train accident rate.  In the first I examined an operational choice of train 

length given a fixed number of car movements.  The analysis parameters are intended to 

represent a typical high density, long distance, Class I railroad mainline with 25,000 car 

movements per week and a distance of 2,000 miles with train length and number of trains 
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as the variables.  The estimated number of accidents based on 2005 data is 1.05x10-8 

accidents per car-mile plus 8.62x10-7 accidents per train mile as calculated by the 

previous reclassification of accident causes.  I varied train length from 10 cars to 150 cars 

per train (Table 3.4). 

 

Table 3.4 Sensitivity Analysis of the Effect of Train Length on Accident Rate 

Average Train 
Length (T L )

Number of 
Trains (n )

Probability of an Accident 
for each Individual Train

Total Expected Number 
of Accidents

10 2,500 0.00193 4.84
20 1,250 0.00214 2.68
30 833 0.00235 1.96
40 625 0.00256 1.60
50 500 0.00277 1.39
60 417 0.00298 1.24
70 357 0.00319 1.14
80 313 0.00340 1.06
90 278 0.00361 1.00
100 250 0.00382 0.96
110 227 0.00403 0.92
120 208 0.00424 0.88
130 192 0.00445 0.86
140 179 0.00466 0.83
150 167 0.00487 0.81

25,000 Carloads Shipped; 2,000 Miles; 150 Car Maximum Train Length  

 

 As train length increases, the likelihood that a train will be involved in an accident 

increases due to the increase in car-miles per train; however, because of the reduction in 

train miles, the net effect is a reduction in the total number of accidents.  So all other 

things being equal, train accidents will be minimized when train length is maximized or 

the number of trains operated is minimized. 

 The second study examined how an increase in traffic levels may affect train 

accident rates.  The analysis parameters are similar to those from the previous study of a 

2,000 mile Class I railroad freight mainline with the same weekly traffic level of 25,000 

car movements.  The railroad is currently operating trains with an average length of 100 

cars.  The car movements are expected to increase by 10% to a new total of 27,500 

movements.  The operational choice in this study is either to continue operating the same 

number, but longer trains, or maintain the current train length and operate more trains.  

The traffic increase will lead to an increase in overall accidents; however, this effect can 
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be minimized by increasing the length of trains instead of increasing the number of trains 

operated (Table 3.5).  Again, this study suggests for this type of scenario that a railroad 

may be able to reduce the overall number of accidents by running fewer, longer trains as 

opposed to a higher number of shorter trains. 

 

Table 3.5 Sensitivity Analysis of the Effect of Traffic Increase on Accident Rate 

Number of 
Trains (n )

Average Train 
Length (T L )

Probability of an Accident 
for each Individual Train

Total Expected 
Number of Accidents

250 100 0.00382 0.96
250 110 0.00403 1.01
275 100 0.00382 1.05

27,500 Carloads Shipped; 2,000 Miles  

 

3.6 Conclusions 

 Accident rates are affected by both car-mile and train-mile-related accident 

causes.  A consequence of this is that the length of trains affects accident likelihood.  

Previous research combined the FRA accident causes into 51 unique cause groups based 

on expert opinion.  I developed a new quantitative metric to classify the causes as either 

car-mile or train-mile-related.  Use of the new metric led to the reclassification of 11 of 

the cause groups and was found to be more representative of car and train-mile 

expectations.  Therefore, using the new classification and recent accident data, updated 

mainline car-mile and train-mile-related accident rates were calculated for Class I freight 

railroads.  These rates, as evaluated in a sensitivity analysis, showed that the decision to 

dispatch the same number of shipments in fewer longer trains versus more, shorter trains 

may affect the overall accident likelihood. 

 

3.6.1 Future Work on Train Length Analysis 

 The analysis completed in this paper is based on a binary classification of 

accident causes as either train-mile or car-mile-related.  However, many causes may not 

be purely train or car-mile-related, but instead depend on a combination of both.  Future 

work may be possible to define a function for each cause group based on both car-miles 

and train-miles.  Additional information, such as the distribution of trains operated by 

train length, would be useful in defining the linear or non-linear accident cause functions. 
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 Future work may also be possible to evaluate and further refine the accident cause 

classification metric.  For example, it may be possible to transform the current 

summation metric into a product metric using the same evaluation factors.  The product 

metric may strengthen the analysis because it would multiply the classification terms and 

their effects on the metric instead of a simple summation.  Further research into the 

classification metric might also reveal a better threshold for accident cause classification.  

An adjustment to the classification metric to include the average length of trains operated 

instead of average length of trains involved in accidents may remove potential bias. 

 Finally, it may also be possible to determine an optimal train length to minimize 

the number of cars derailed.  Longer trains may be involved in fewer total accidents, but 

longer trains derail or damage more cars on average than shorter trains (Barkan et al. 

2003). 
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CHAPTER 4: COMPARISON OF BROKEN RAIL PREDICTION MOD ELS 

 

Broken rails are the second most frequent cause of mainline accidents in the U.S., 

exceeded only by grade-crossing collisions (Figure 4.1).  More importantly, broken rails 

are the leading cause of major derailments and are the most frequent cause of hazardous 

materials releases.  The average cost of damage to track and equipment due to mainline 

broken rail derailments on Class I railroads is $525,000 (FRA 2007a).  Mainline broken 

rail derailments on U.S. Class I railroads have increased from 77 in 1997 to 91 in 2006, 

consequently steps to understand and prevent broken rail derailments are important.   
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Figure 4.1 Railroad Accidents by Cause Severity vs. Frequency Graph, 1996 – 2005 

 

One approach is to examine factors that potentially influence the occurrence of a 

broken rail in order improve the quantitative understanding of how they contribute to the 

likelihood of such an event.  The objective of this study is to develop an accurate, 

predictive tool that will enable railroads to identify locations with high likelihood for 

broken rail occurrence so they can better prioritize preventive and mitigation measures.  
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Among the factors of interest are track and rail characteristics, traffic, maintenance 

activity, on-track testing results, and the presence of special infrastructure (i.e. bridges) 

that affect track modulus. 

 

4.1 Introduction to Service Failure Prediction Model 

 Broken rail risk can be defined as the probability of a broken rail occurrence 

multiplied by its consequence.  The consequence of a broken rail depends on the type of 

broken rail event that occurs.  Broken rail events can be classified into two, broad 

categories: “service failures” and broken rail derailments.  A service failure refers to the 

occurrence of a broken rail that does not result in a derailment.  This generally occurs in 

situations where a broken rail is detected by the signal system or a track inspector.  Under 

these circumstances, trains generally do not proceed onto the track section with the 

broken rail.  The economic impact of service failures and broken rail derailments will be 

considered in more detail in Chapter 6. 

 Broken rails are caused by the growth of internal defects in the rail or surface 

defects on the head of the rail.  Internal defects are generally caused by inherent flaws in 

the rail that form when the rail is manufactured.  These internal defects are generally 

minute in size and nearly impossible to detect until they begin to grow.  The growth of 

these rail defects is linked to a number of factors.  Previous research as focused on both 

mechanistic analyses (Aglan & Gan 2001, Kim & Kim 2002, da Silva et al. 2003, 

Fletcher et al. 2004, Skyttebol et al. 2005, Smith 2005, Fischer et al. 2006) and statistical 

analyses (Shry & Ben-Akiva 1996, Dick 2001, Dick et al. 2003, Zarembski & Palese 

2005, Sourget & Riollet 2006) in order to understand the factors that cause crack growth 

in rails and ultimately broken rails. 

 Among the previous studies was a multivariate statistical analysis of various 

factors affecting service failure occurrence (Dick 2001, Dick et al. 2003).  This work 

used a discrete choice logistic regression model to determine the probability of a service 

failure occurrence for any given section of track.  Discrete choice models have been used 

extensively for various classification applications.  (Ben-Akiva & Lerman 1985, 

McCullagh & Nelder 1989).   
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 The purpose of my analysis was to evaluate the previous work and expand on it 

using artificial neural networks (ANN).   Different types of ANNs have been developed 

to predict events with promising results (Odom & Sharda 1990, Fanning & Cogger 

1994).  Both logistic regression analysis and ANNs have relative strengths and 

weaknesses, and for that reason, a hybrid model of both techniques was developed and 

evaluated.  Previous work has shown that hybrid ANN/logistical regression models 

outperform purely statistical approaches in economics (Yim & Mitchell 2003), but this 

approach has not previously been applied to the prediction of broken rails.  The 

objectives of this analysis were: 

• Evaluate the previous statistical prediction model, 

• Analyze the use of artificial neural networks as a classification tool, 

• Develop a hybrid logistic regression/neural network model, 

• Test all models for prediction capability of “unknown” cases, and 

• Compare strengths and weaknesses for each model. 

 

4.2 Statistical Prediction Model 

 The outcome of Dick et al.’s (2003) analysis was a model that used multiple 

parameters for specific locations in the railroad network and determined the probability 

of a service failure occurrence at any location.  Data for service failure locations were 

provided by the BNSF Railway for the time period 1998 to 2000.  The service failure 

prediction model was constructed using a logistic regression analysis. 

 

4.2.1 Data Set Description 

 In Dick’s (2001) study a “location” was defined as a track segment of length 0.01 

miles, or approximately 53 feet.  During the two-year period of May 1998 to May 2000, 

there were data for 1,903 service failures for the BNSF network.  Of these, 1,861 

segments contained sufficiently complete information to be included in the analysis.  

When modeling rare events, a commonly used approach is to sample all of the rare events 

and compare these with a similar sized sample of instances where the event did not occur 

(McCullagh & Nelder 1989).  Therefore 1,900 locations were randomly selected from the 

BNSF network.  Of these, 1,814 locations contained complete information and did not 
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have a service failure in the two-year study period.  Therefore, the data used in this 

analysis included 3,675 total locations from the BNSF network, approximately half of 

which had experienced a service failure and approximately half that had not. 

 In addition to data on the occurrence or non-occurrence of a service failure, the 

dataset that was developed included a large number of other parameters believed to have 

a possible effect on service failure occurrence.  The parameters that were considered 

included: 

• Rail age 

• Rail weight 

• Degree of curvature (if present) 

• Track speed 

• Average tons per freight car 

• Average dynamic tons per freight car 

• Percent grade (if present) 

• Annual gross tonnage 

• Annual wheel passes 

• Presence of an insulated joint 

• Presence of a turnout 

Additionally, each case in the database contained another parameter for the occurrence of 

a service failure during the two-year time period.  Each of the input parameters were 

entered as a numerical value, except for the presence of a service failure, insulated joint, 

or turnout, which were binary entries of either zero or one.  The output, or dependent 

variable, for these analyses of this dataset is the occurrence of a service failure, while the 

remaining 11 variables are the input or independent variables. 

 

4.2.2 Logistic Regression Model 

 The problem was defined as a discrete choice classification problem of either 

failure or non-failure.  A location with a failure was defined as the occurrence of a 

service failure during the two-year study period.  The input variables were the track, 

traffic, and infrastructure data available, as described previously.  The service failure 

probability model was developed using the Statistical Analysis Software (SAS) and the 
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LOGISTIC procedure (SAS 2006).  This procedure fits a discrete choice logistic 

regression model to the input data.  The output of this model is an index value between 

zero and one corresponding to the probability of a service failure.  A probability 

threshold value of 0.5 for classification of each track segment as either service failure or 

non-service failure was determined to be optimal. 

 The SAS LOGISTIC software has various possible regression analysis 

techniques.  The step-wise regression technique was determined to be the optimal method 

for classification.  Step-wise regression is a step-by-step method that selects the most 

important factor influencing the output value at each step until all factors are entered into 

the model.  The procedure stops when the there are no additional factors remaining that 

will improve the model by at least a defined level of significance.  At the beginning of 

each step the procedure uses a “goodness of fit” test to see how the inclusion of each 

factor influences the performance of the model.  The factor that results in the greatest 

increase in fit will be the next factor added to the model.  At the end of each step in the 

step-wise procedure, the model examines the factors already included and eliminates any 

that are no longer improving the model.  The SAS system also has the benefit of 

monitoring and alerting the user of the presences of collinear variables as well any 

parameters that are functions of each other that affect the results of the step-wise 

regression. 

 Dick (2001) used the step-wise regression technique to produce a retrospective 

service failure model.  The model was “retrospective” because it made predictions about 

past events in the database that was developed with approximately 50% failures.  

Therefore a “prospective model” was developed by adjusting a constant term to more 

appropriately represent the probability of a service failure.  The prospective model was 

used to calculate the number of expected service failures per mile, and identify locations 

that had a high likelihood of experiencing a service failure. 

 The retrospective model was of interest in this analysis for the purpose of further 

evaluating its predictive ability.  The prediction model that Dick developed using the 

logistic regression procedure is: 
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where, 

 

PSF2 = probability that a service failure occurred during a two-year period 

Z = -4.569, model specific constant 

A = rail age (in years) 

C = curvature of track (in degrees) 

T = annual traffic (in million gross tons) 

S = rail weight (in pounds per yard) 

W = annual number of wheel passes (in millions) 

P = dynamic wheel load (in tons) 

N = presence of turnout (1 if present, 0 otherwise) 

L = weight of car (in tons) 

V = track speed (in miles per hour)  

 

Dick’s model was limited to two-term interaction variables and second order exponential 

terms.  More detailed interpretation of each model term can be found in Dick (2001) and 

Dick et al. (2003). 

 The fitted model was evaluated by testing the accuracy of the prediction for each 

case.  This evaluation technique was conducted using the previous data set and did not 

incorporate any unseen cases of service failures.  An optimal threshold value of 

probability was determined to be 0.5 for the greatest accuracy.  Table 4.1 shows the 

results of the logistic regression model developed at the probability threshold of 0.5.  The 

model accurately predicted 3,212 of the 3,675 cases (87.4%) and had almost twice as 

many false positives as false negatives (302 compared to 161). 
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Table 4.1 Classification Results of Logistic Regression Model 

 

Model Type Outcome of Model Classification Cases Percent of Total
Correct Prediction 3,212 87.4%

False Positive 302 8.2%
False Negative 161 4.4%

Logistic 
Regression

 

 

4.2.3 Evaluation of Logistic Regression Model 

 To evaluate if a prediction model is accurate, a model should be tested not only on 

its original dataset but also an unknown dataset.  Dick’s (2001) study did not evaluate the 

accuracy of classification based on validation data, or unseen cases.  To determine if the 

previous model is robust for validation data, additional data near the time period of the 

study are required.  However, since all service failure data for the time period were used 

in the construction of the model, an alternative approach was needed to test the 

robustness of the model.  The approach used was to divide the original data into two 

groups.  The first group was defined as the training dataset and the second group was 

defined as the testing dataset.  Of the 3,675 available cases in the original database, 2,205 

cases (60%) were randomly selected for the training sample and the remaining 1,470 

cases (40%) were placed in the testing sample.  This process was replicated three times to 

produce three random samples of both training data and testing data for analysis. 

 The same step-wise logistic regression analysis described above was repeated on 

each of the three samples of training data and three new predictive equations were 

developed.  The equations were similar; each used the same parameters with only the 

coefficients changing slightly.  As was previously done, each prediction equation was 

used with a threshold level of 0.5 to evaluate the accuracy of the training dataset.  The 

accuracies of the training samples after completing the logistic regression on each sample 

were 87.03%, 87.21% and 87.89% (Figure 4.2). 

The next step was to test each prediction equation on the respective sample’s 

unseen testing dataset.  The predictive equations were used to determine the probability 

of a service failure for each case in the testing dataset.  Again, a probability threshold 

level of 0.5 was used to classify each case as either failure or non-failure.  The predicted 

classification of either failure or non-failure was compared to the actual event that 
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Figure 4.2 Accuracy of Training Data and Testing Data to Test the Robustness of 
the Logistic Regression Model 

 

occurred in the testing dataset.  The accuracy of each prediction model was found to be 

87.35%, 86.80%, and 86.12% (Figure 4.2). 

The prediction accuracy of each of the three models was similar for both the 

training dataset and the testing dataset (Figure 4.2).  The difference in prediction 

accuracies for each sample ranged from 1.8% to -0.3%.  The first sample actually had a 

higher level of accuracy for the testing dataset over the training dataset.  Therefore, the 

logistic regression technique and the prediction models that were developed are robust for 

unseen data.  These results affirmed and strengthened the validity of Dick’s (2001) 

service failure prediction model. 

 The next objective of this analysis was to evaluate different prediction and 

classification techniques for service failures.  The previous statistical methods were able 

to accurately classify service failures in approximately 87% of the cases in the original 

dataset.  The remaining analysis was conducted to determine if different classification 

techniques could increase the prediction accuracy.  One of the limitations of Dick’s 

original logistic regression model was that it only considered linear mathematical 

relationships.  Additionally, the statistical model was only evaluated for two term and 

second power interactions.  In the next section artificial neural networks are explored as a 

possible prediction tool for service failures. 
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4.3 Artificial Neural Network Classification Model 

  The use of artificial neural networks (ANNs) is an alternative technique to 

statistical methods for purposes of classification and prediction.  Many different types of 

neural network optimization procedures have been developed and more are currently 

being explored.  Initial research into the use of neural networks as a classification 

technique were driven by economic and medical topics but have since been expanded to 

include many other fields, including engineering.  Neural networks have both advantages 

and disadvantages when compared to statistical methods.  For this reason, simple ANNs, 

as well as hybrid models, that combine both ANNs and logistic regression techniques, 

were developed and evaluated in this study. 

 

4.3.1 Introduction to ANNs 

 Artificial neural networks have been used as an alternative to logistic regression 

in various applications.  ANNs are a computational tool that can “learn” mathematical 

relationships between a series of input variables and their respective output values.  

ANNs are an interconnected group of “neurons” that have the ability to change their 

structure based on information that flows through the network.  The development of 

ANNs was based on the idea of interconnected neural networks in biological systems 

such as animals.  Artificial neural networks refer to those developed by computer 

systems. 

 The main parts of an ANN are the inputs, hidden layer, output, and node 

connections (Figure 4.3).  The input layer of the ANN, shown on the far left, is comprised 

of the various input parameters into the classification problem.  The inputs for this 

analysis were the same input parameters as the service failure model.  The neurons in the 

hidden layer, shown in the middle of the diagram, are represented by mathematical 

equations and relationships that are determined by the algorithm.  The arrows on the 

diagram represent a series of weighted connections between various nodes.  The creation 

of node connections and their weights are determined by the ANN algorithms.  Finally, 

the output node, shown on the far right, is connected to the hidden layer; in this case the 

only possible outputs are failure or non-failure. 
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Figure 4.3 Diagram of an Artificial Neural Network 

 

 An artificial neural network is constructed by computer algorithms that add 

hidden neurons one by one until the optimal network is determined.  An optimal network 

and the optimal number of hidden neurons represent a balance of model accuracy versus 

generalization.  A network that generalizes well is one that is able to provide good results 

for data not used to train the neural net.  In other words, the algorithm attempts to 

produce a neural network that is both accurate and robust for unseen cases.  The software 

used for this analysis was “NeuroShell Classifier” developed by Ward Systems Group, 

Inc. (Ward Systems Group Inc., 2006). 

 Artificial neural networks have been used in various studies of event prediction, 

in particular classifying future events into either failure or non-failure.  A previous study 

conducted used neural networks for predicting bankruptcy failure of firms based on 

limited financial data (Odom & Sharda 1990).  The neural net developed by Odom & 

Sharda showed a higher level of prediction accuracy and robustness over previous 
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statistical techniques.  Another study used ANNs as well as a generalized adaptive neural 

network algorithm (GANNA) for the study of failing and non-failing firms (Fanning & 

Cogger 1994).  Fanning & Cogger’s study, using only three input variables, showed that 

ANNs, GANNA, and logistic regression models were comparatively similar in their 

prediction abilities. 

 

4.3.2 Comparison of ANNs to Logistic Regression 

 With the development of ANNs as an alternative to logistic regression for 

prediction studies, research has been conducted to explore the differences in the two 

techniques.  One study specifically examined the advantages and disadvantages of using 

artificial neural networks compared to logistic regression techniques to predict medical 

outcomes (Tu 1996).  Tu noted that for predicting dichotomous outcomes, logistic 

regression has emerged as the statistical technique of choice.  However, he also 

concluded that neural networks are not constrained by a predefined mathematical 

relationship between dependent and independent variables and therefore can have more 

accurate prediction models. 

There are advantages and disadvantages to the use of artificial neural networks as 

a classification tool.  As noted, the most important advantage of neural networks is the 

ability to detect complex non-linear relationships between input and output variables.  

The hidden layers and neurons as well as the node connections allow ANNs to have non-

linear relationships between the input values, nodes, and output value.  Another 

advantage is that ANNs can detect all possible interactions between input variables.  The 

previous statistical model that was developed only evaluated two term interactions as 

well as only second power terms.  The inherent design of a neural network evaluates and 

considers every possible variable interaction and power.  Finally, ANNs have the 

advantage that they can be developed and evaluated using different learning techniques 

and different objective functions.  This allows the creator of the neural network the 

ability to try different techniques to determine the optimal classification model. 

 The use of ANNs also has some disadvantages compared to statistical techniques 

such as logistic regression.  One disadvantage is that computation time is longer for 

ANNs.  This may be an important factor for large problems.  Also, ANNs do not give a 
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value for the probability of an outcome; instead they only classify an outcome as a failure 

or non-failure.  If there is utility in having a quantitative sense of the likelihood of an 

outcome, i.e. a probability, then the logistic regression technique is better.  Another 

disadvantage of neural networks is that they are “black box” models, meaning that the 

logic and quantitative functional relationships within a neural network are not easily 

reproduced.  This limits the ability to explain what the model is doing and why.  It means 

that a user cannot evaluate the possible relationships between input variables for an ANN 

model. 

In Tu’s (1996) research on ANNs, he concluded, “Neural networks may be 

particularly useful when the primary goal is outcome prediction and important 

interactions or complex nonlinearities exist in a dataset…Logistic regression remains the 

clear choice when the primary goal of model development is to look for possible causal 

relationships between independent and dependent variables, and a modeler wishes to 

understand the effect of predictor variables on the outcome…It is possible that some form 

of hybrid technique that incorporates the best features of both logistic regression and 

neural network modeling might lead to the best possible outcome prediction model.”  

 An objective of my study was to use simple ANNs, and to evaluate the use of 

hybrid ANN/Logistic Regression (ANN/LR) models for the purposes of producing a 

more accurate service failure prediction model. 

 

4.3.3 ANN Classification Model 

 A stand-alone artificial neural network was developed for classification of 

specific track locations as either failure or non-failure for a service failure.  As described 

earlier, the dataset used contained 3,675 cases of track segments in which approximately 

50% experienced a service failure in the two year time period.  The ANN learning 

method used was backpropagation, which is a type of “supervised learning”.  Supervised 

learning is when both the input and output values for each case are entered into the 

network and the objective of the learning function is to reduce the mismatch between the 

neural network output and the actual output value.  This is the most common form of 

computer learning for ANNs. 
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 The input parameters used for development of the ANN were the same as those 

used for the logistic regression model.  The ANN classified 3,223 of the 3,675 cases 

(87.7%) correctly (Table 4.2), as compared to the logistic regression model which 

classified 3,212 (87.4%) of the cases correctly.  The optimal number of hidden neurons 

used to ensure robustness of the model was 77 for this network.  The computation time 

for development of the ANN was eight seconds, as compared to two seconds for the 

logistic regression model.  The ANN also produced more false positives than false 

negatives, similar to the logistic regression model (Table 4.2).  The ANN was tested for 

robustness against unseen data in the same way as the logistic regression model.  The 

results were that the model predicted correct classification of either failure or non-failure 

in 86.8% of the cases in the testing sample. 

 

Table 4.2 Classification Results of Artificial Neural Network Model 

Model Type Outcome of Model Classification Cases Percent of Total
Correct Prediction 3,223 87.7%

False Positive 283 7.7%
False Negative 169 4.6%

Artificial Neural 
Network

 

 

4.3.4 Hybrid ANN / Logistic Regression Classification Model 

 As discussed, ANNs have some disadvantages compared to statistical modeling 

techniques.  However, previous work has investigated the possible benefits of using 

hybrid ANNs and logistic regression techniques to overcome some of the disadvantages 

of simple ANNs (Spackman 1992).  One study compared the use of ANNs, statistical 

models, and hybrid models for corporate firm failure (Yim & Mitchell 2003).  The 

authors studied two different forms of hybrid networks for combining ANNs and 

logistical regression techniques.  They concluded that the best statistical model was the 

logistic regression, but found that the results from the ANN were similar.  However, they 

also found that the performance of the ANN was improved when hybrid models were 

considered. 

 The two common types of hybrid ANN/Logistic Regression (ANN/LR) models 

studied in previous research were the pre-selection of input variables and the addition of a 

probability input value.  The first hybrid ANN/LR model form is for the pre-selection of 
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variables (Logit-ANN).  Logit-ANN uses logistic regression to determine the most 

influential input factors and develops an ANN based only on these factors for predicting 

failure or non-failure.  The second ANN/LR model form is developed using the logistic 

regression to calculate the probability of failure for each case and adding that value as an 

additional input parameter into the ANN (PLogit-ANN).  Again, the ANN is used to 

predict either failure or non-failure. 

 The two ANN/LR models produce advantages over the simple ANN classification 

technique.  First, the hybrid models will decrease the number of cases used for learning 

the ANN, meaning that more cases can be devoted to optimizing the network instead of 

learning the network.  Secondly, the hybrid models condense information for very large 

problems by pre-selection of variables.  Finally, hybrid models may have a decreased 

amount of learning time required due to the pre-selected or condensed information.  A 

decrease in learning time can be a significant factor for very large datasets with a large 

number of input variables, but this was not an important factor in this study. 

 The first hybrid model (Logit-ANN) developed for this analysis was the method 

of pre-selection of input variables.  The logistic regression technique was used and the 

following parameters were identified for inclusion in the ANN: rail age, degree of curve, 

annual traffic loads, rail weight, annual number of wheel passes, average dynamic wheel 

load, and the presence of a turnout.  The results from the ANN model were that 3,218 of 

the 3,675 cases (87.6%) were correctly classified (Table 4.3).  The optimal number of 

hidden neurons was 74. 

 

Table 4.3 Classification Results of Logistic Regression Artificial Neural Network  
Hybrid Models 

Model Type Outcome of Model Classification Cases Percent of Total
Correct Prediction 3,218 87.6%

False Positive 283 7.7%
False Negative 174 4.7%

Correct Prediction 3,220 87.6%
False Positive 290 7.9%
False Negative 165 4.5%

Logit-ANN Hybrid

PLogit-ANN 
Hybrid

 

 

 The second hybrid model (PLogit-ANN) developed included probability of failure 

calculated using logistic regression in the ANN.  Probability of failure for each case was 
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entered as a new input variable into the ANN and the neural network was constructed 

again.  The PLogit-ANN model classified 3,320 of the 3,675 cases (87.6%) correctly 

(Table 4.3).  The optimal number of hidden neurons for this model was 78. 

 In both cases the hybrid ANNs took the same amount of time to construct the 

neural network.  Also, both cases were tested for robustness against unseen data in a 

similar fashion as the previous models.  The Logit-ANN hybrid model 86.4% accurate 

for the testing samples, while the PLogit-ANN hybrid model was 87.1% accurate for the 

testing data.  Overall, these accuracy values were very similar to those produced by the 

previous models (Table 4.4). 

 

Table 4.4 Summary of Classification Results for all Prediction Models 

Model Type
Correct 

Prediction (%)
False 

Positives (%)
False 

Negatives (%)
Computation 
Time (sec)

Testing Sample 
Accuracy (%)

Logistic Regression 87.4% 8.2% 4.4% 2 86.8%

Artificial Neural Network 87.7% 7.7% 4.6% 8 86.8%

Logit - ANN Hybrid 87.6% 7.7% 4.7% 8 86.4%

Plogit - ANN Hybrid 87.6% 7.9% 4.5% 8 87.1%  

 

4.4 Conclusions 

 In this study four different classification models were developed and analyzed for 

the purpose of predicting service failure.  The first two models used stand-alone logistic 

regression and neural network techniques.  The second two were constructed using 

hybrid combinations of the two techniques.   

Four conclusions can be determined from this analysis.  The first is that the 

simple ANN model and the hybrid ANN/LR models performed as well as the logistic 

regression model for classification purposes.  This means that all models had a similar 

predictive ability for determining track segments that had a high likelihood of 

experiencing a service failure.  The second conclusion is that all the models were robust 

against unseen data and were equivalently accurate for predicting service failures for 

unseen or unknown track segments.  Additionally, the ANNs had a longer computation 

time compared to simple logistic regression analysis, but because of the limited data and 

input variables, computation time was short, eight seconds versus two seconds, 

respectively.  However, computation time could become a factor for very large datasets.  
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Finally, all models had more false positives than false negatives.  This means that all the 

models were more conservative when predicting service failures.  This outcome was not 

intended, however, this is probably more desirable than the reverse for service failure 

prediction. 

 

4.4.1 Next Steps in Service Failure Prediction Modeling 

 The next step is to apply the insights gained from the logistic regression, ANN, 

and hybrid ANN/LR models to a new, expanded dataset.  This analysis will use recent 

data and include more input variables such as maintenance activities, rail testing results, 

and additional track, infrastructure, and traffic data.  Also, the dataset will be expanded to 

evaluate a longer time period of study. 
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CHAPTER 5: STATISTICAL AND NEURAL NETWORK BROKEN RA IL 

PREDICTION MODELS 

 

 The purpose of this study was to consider the factors that influence the occurrence 

of broken rails and improve our understanding of the quantitative effect of these factors.  

In Chapter 4 I examined BNSF service failure data from a two-year period from May 

1998 to May 2000 for a limited number of factors.  The factors previously evaluated 

included only rail and traffic characteristics.  In this chapter I expand on the previous 

work by analyzing more recent, comprehensive service failure data for a four-year period 

from 2003 through 2006.  I have also included additional factors believed to affect 

service failures.  The factors considered in this analysis included rail characteristics, 

infrastructure features, maintenance activity, operational information, and rail testing 

results.  Two analytical approaches were used to understand the factors that affect service 

failures; statistical regression and artificial neural networks (ANN).  Both approaches 

have relative strengths and weaknesses, and for that reason, hybrid models were also 

developed.  The ultimate objective of this research was to develop a method that enables 

railroads to more effectively allocate resources to prevent the occurrence of broken rails. 

 

5.1 Introduction to Broken Rail Prediction 

Understanding the factors causing service failures and broken rail derailments is 

an important topic for U.S. freight railroads and is becoming more so because of the 

increase in their occurrence in recent years.  This increase is due to several factors, but 

the combination of increased traffic and heavier axle loads are probably the most 

important.  Broken rails are caused by the undetected growth of either internal or surface 

defects in the rail.  The prediction of fracture growth within a rail once a defect is 

detected has been examined previously (Kim & Kim 2002, da Silva et al. 2003, Skyttebol 

et al. 2005).  However, the majority of broken rails occur where a defect has not 

previously been detected.  This is due to both the rapid growth of defects under load and 

various impediments to detection of certain types of defects, allowing them to grow to 

criticality without being detected.  Previous research as focused on both mechanistic 

analyses (Aglan & Gan 2001, Kim & Kim 2002, da Silva et al. 2003, Fletcher et al. 2004, 
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Skyttebol et al. 2005, Smith 2005, Fischer et al. 2006) and statistical analyses (Shry & 

Ben-Akiva 1996, Dick 2001, Dick et al. 2003, Zarembski & Palese 2005, Sourget & 

Riollet 2006) in order to understand the factors that cause crack growth in rails and 

ultimately broken rails. 

The primary objective of this analysis was to develop a predictive tool that will 

enable railroads to identify locations with a high probability of broken rail occurrence 

based on service failure data and other possible influence factors.  All of the available 

parameters that might affect service failure occurrence, for which data were available, 

were analyzed.  These included rail characteristics, infrastructure data, maintenance 

activity, operational information, and rail testing results.   

I developed several new predictive models using various techniques to attempt to 

predict broken rail locations.  These included logistic regression (LR), artificial neural 

networks (ANN) and hybrid models that combined LR & ANN techniques.  Previous 

work has shown that hybrid ANN/LR models outperform purely statistical approaches in 

other fields (Yim & Mitchell 2003), but this approach has not previously been applied to 

the prediction of broken rails.  Each of these models was evaluated and a practical model 

was determined.  The practical model was used to create a prospective service failure 

prediction model.  The objectives of this analysis were as follows: 

• Evaluate the previous prediction model developed using current data, 

• Develop a new prediction model using various methods and techniques, 

• Determine a practical prospective prediction model, and 

• Examine the use of the model based on a hypothetical case study. 

 

5.2 BNSF Service Failure Data 

In order to develop a predictive model, it is desirable to initially consider as many 

factors as possible that might affect the occurrence of broken rails.  Dick (2001) 

conducted an in-depth analysis of possible track and traffic factors based on data 

available to him at the time.  In my study I considered these factors, as well as additional 

variables.  From the standpoint of rail maintenance planning it is just as important to 

determine which factors are correlated with broken rails, as it is to determine which are 

not.  Therefore the analysis included a wide-range of possible variables for which data 
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were available.  This included track and rail characteristics such as rail age, rail 

curvature, track speed, grade, and rail weight.  Also, changes in track modulus due to the 

presence of infrastructure features such as bridges and turnouts have a potential effect on 

rail defect growth and were examined as well.  Additionally, maintenance activities are 

included that can reduce the likelihood of a broken rail occurrence, such as rail grinding 

and tie replacement.  Finally, track geometry and ultrasonic testing for rail defects are 

used by railroads to assess the condition of track and therefore the results of these tests 

are included as they may provide predictive information about broken rail occurrence. 

The BNSF Railway provided relevant information regarding the location of 

service failures.  A “BNSF service failure” is defined as any incident where track must be 

taken out of service for repair or replacement.  For this study I define a “service failure” 

as an incident where a track was taken out of service due to a broken rail.  Therefore, my 

definition of a service failure does not include incidents where trains are halted due to a 

rail found to be badly worn or damaged.  Broken rail events in this analysis are then 

categorized as either service failures or broken rail derailments.  Service failures may be 

detected in a number of ways including signal system, track inspector, or train crews.  A 

broken rail derailment is defined as a broken rail that causes a train to derail. 

A database was developed from approximately 23,000 miles of mainline track 

maintained by the BNSF Railway covering the four-year period, 2003 through 2006.  The 

data available included specific locations for service failures occurring across the 

network.  BNSF experienced 12,685 service failures during the four-year period (Table 

5.1).  Additionally, rail characteristics, infrastructure data, maintenance activity, 

operational information, and track testing results were linked to each of these service 

failures, for an overall total of 28 variables (Table 5.2). 

 

Table 5.1 Summary of BNSF Network Data, 2003-2006 

Event Frequency
Annual Number of Geometric Defects 93,684
Annual Number of Ultrasonic Defects 45,294
Annual Number of Service Failures 3,171
Annual Number of Broken Rail Derailments 19

Track-miles Operated in 2006 37,003  
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Table 5.2 Variables Included in Service Failure Analysis 

Rail weight Degree of curvature
Rail type (bolted or welded) Length of curve
Age of rail Degree of superelevation
Maximum allowable track speed Percent rise of grade
Annual number of trains Length of grade
Annual number of tons Recent tie replacement or tie work
Accumulated tons on rail Presence of a bridge
Annual number of cars Presence of a culvert
Average tons per car Presence of a tunnel
Average dynamic tons per car Presence of a diamond
Annual number of wheel passes Presence of a turnout
Occurrence of a internal defect Presence of a grade crossing
Occurrence of a geometric defect Curve rail grinding activity
Severity of a geometric defect Out-of-face rail grinding activity  

 

BNSF’s network was divided into 0.01-mile-long segments (approximately 53 

feet each) and the location of each service failure recorded.  The initial dataset comprised 

the 12,685 0.01-mile track segments that experienced a service failure during the study 

period.  For the case of modeling rare events it is common to sample all of the rare events 

and compare these with a similar sized sample of instances where the event did not occur 

(McCullagh & Nelder 1989).  Therefore an additional 12,685 0.01-mile segments that did 

not experience a service failure during the four-year period were randomly selected from 

the same BNSF network of maintained track.  Additionally, the non-failure locations 

were assigned a random date within the four-year time period for use in evaluating 

certain temporal variables that might be factors, such as the recent occurrence of an 

internal defect.  Therefore, the dataset used in the remainder of this analysis included 

25,370 total segment locations, each with a particular date, from the railroad's network. 

 

5.3 Evaluation of Previous Service Failure Classification Model 

The most relevant previous work on this topic was a study conducted by Dick 

(2001) for the purpose of predicting service failures based on relevant track and traffic 

data.  The outcome of this study was a multivariate statistical model that was able to 

quantify the probability of a service failure at any particular location based on a number 

of track and traffic related variables.  The model’s classification equation is as follows: 
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where, 

 

PSF2 = probability that a service failure occurred during a two-year period 

Z = -4.569, model specific constant 

A = rail age (in years) 

C = curvature of track (in degrees) 

T = annual traffic (in million gross tons) 

S = rail weight (in pounds per yard) 

W = annual number of wheel passes (in millions) 

P = dynamic wheel load (in tons) 

N = presence of turnout (1 if present, 0 otherwise) 

L = weight of car (in tons) 

V = track speed (in miles per hour)  

 

Dick (2001) determined that an optimal probability threshold for Equation 5.1 

was 0.5 to classify each location as either failure or non-failure.  The data used included a 

total of 1,903 service failures from a two-year period from May 1998 to May 2000.  This 

model was found to classify locations correctly with 87.4% accuracy when using a 

dataset that was composed of half failures and half non-failures.  This model was not 

tested against any “unseen” cases, or validation data, at the time it was developed.   

The next step was to test Dick’s model against a two-year period of current 

service failure data.  During the time period of 2005 through 2006, the BNSF experienced 

6,613 service failures.  These service failures, as well as 6,613 random non-failure 

locations, were entered into the above model in Equation 5.2.  Again, using a probability 

threshold of 0.5 it was determined that the previous model classified 7,247 of the 13,226 

cases correctly (54.8%).  However, the new optimal probability threshold was found to be  
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0.1 with an accuracy of 57.2% (Table 5.3).  It is evident that the previous model had less 

predictive power for more recent service failure occurrences. 

 

Table 5.3 Results of Testing Previous Service Failure Model with Current Data 

Probability 
Threshold

Correct 
Predictions

Accuracy
False 

Positives
False 

Negatives
0.1 7,566 57.21% 29.79% 13.00%
0.2 7,500 56.70% 24.01% 19.29%
0.3 7,402 56.00% 19.69% 24.35%
0.4 7,338 55.48% 16.83% 27.69%
0.5 7,247 54.80% 13.96% 31.24%
0.6 7,070 53.50% 11.13% 35.42%
0.7 6,931 52.40% 7.96% 39.63%
0.8 6,807 51.50% 5.06% 43.47%
0.9 6,663 50.40% 2.10% 47.52%  

 

 These results raised the question as to why the model had lower predictive power 

than it previously had.  During the two-year interval that the model was based on the rate 

of service failures occurrences on the BNSF network was approximately 952 per year.  

During the more recent four-year period, BNSF experienced a total of 12,685 service 

failures, or approximately 3,171 per year.  This more than three-fold increase in service 

failures was substantially higher than the increase that BNSF and other railroads had 

actually experienced during this interval.  It suggested some unknown difference between 

the earlier and more recent databases. 

 A closer examination of the earlier service failure dataset compare to the more 

recent dataset revealed that there was a difference in the acquisition criteria for the two.  

The difference was due to a misinterpretation in the different reporting techniques for 

BNSF network locations that are on single track compared to those at multiple track 

locations.  The service failure data provided by BNSF during the two-year study period 

of May 1998 to May 2000 may have included only service failures occurring in locations 

of multiple track lines.  Whereas, the data provided for the more recent four-year study 

period included data for both single track as well as multiple track locations.  During the 

recent four-year study period, BNSF experienced 4,689 service failures in areas of 

multiple track, or approximately 1,172 per year.  This corresponds to a 23% increase in 
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service failures in areas with multiple tracks compared to the previous study.  This 

increase is much closer to the increase reported by railroads for this time period. 

 The distribution of BNSF service failures across their network can be graphically 

depicted using geographic information system (GIS) software and rail network data.  

Figure 5.1 shows the frequency of service failures per track mile on the BNSF network.  

A few line segments on the BNSF network are not included in this figure due to missing 

information.  Overall, this figure shows that, as expected, many service failures occur on 

high density lines, such as the BNSF Transcon from Los Angeles to Chicago and the line 

extending east from the Powder River Basin in Wyoming and Nebraska.  However, the 

figure also shows that there are service failures occurring elsewhere across the entire 

network, including many areas that are single track or unsignaled (dark) territory.  Due to 

the inherent difference between the previous and more recent dataset, a new classification 

model was developed based only on the most current four-year study period. 

 

5.4 Statistical Classification Model 

 The first new classification model that was developed to predict service failure 

locations used the same logistic regression techniques as Dick’s (2001) previous work.  

However, unlike the previous work, more factors that might influence crack growth in 

rails were included to develop the model, such as infrastructure data, maintenance 

activities, and track testing results.  The logistic regression technique was selected 

because it is a discrete choice model that calculates the probability of failure based on the 

input variables.  These probabilities are used to classify each case as either failure or non-

failure.  A statistical regression equation was developed based on the significant input 

parameters to determine the probability of failure.  To find the optimal classification 

model, the input parameters were evaluated with and without multiple term interactions 

allowed.  Multiple term interaction allows for more complex relationships and 

dependencies that may not have been previously known.  Additionally, a number of 

computational techniques for logistic regression are possible, and these were also 

examined and evaluated in this analysis. 
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5.4.1 Logistic Regression Methodology and Techniques 

 The logistic regression method (LR) uses a transformation that creates a 

prediction equation that calculates a value between 0 and 1.  LR predicts the natural log 

of the odds for a case being in one category or the other.  LR is widely used in 

multivariate regression problems in which the dependent variable is binary, or has only 

two levels, such as failure or non-failure (Cody & Smith 1997).  Logistic regression 

analysis has been widely used in fields, such as medicine, engineering, business, and 

physiology (Carthey et al. 2003, Lei & Jing-feng 2006, Sagberg 2006, Mojsilovic et al. 

2007). 

 Four possible computation techniques exist, and each technique was evaluated in 

this analysis, for the development of a logistic regression model.  The simplest method is 

referred to as “full-model”, or variable selection type “none” in SAS.  The full-model 

method uses every available input variable to determine the best regression model.  The 

other three methods are models which use variable selection techniques. 
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 The next method examined in this analysis is selection type “forward”.  Forward 

selection evaluates each input variable and initially adds the most significant variable to 

the model.  Next, the forward selection method adds the variable that, when evaluated in 

conjunction with the first variable, produces the greatest improvement. This process 

continues until no additional variables meet a defined significance level for inclusion in 

the model.  The entry and removal level used in this analysis was a 0.05 significance 

threshold. 

 The next logistic regression technique that was used was the “backward” 

selection.  This selection method starts with all input variables included in the model.  In 

the first step, the model determines the least significant effect that does not meet the 

defined significance level and removes it from the model.  This process continues until 

no other variables included in the model meet the defined level of removal. 

 The final logistic regression selection technique used was “step-wise” selection.  

The step-wise selection method is similar to the forward selection method because the 

model begins with the most significant terms and continues adding terms step-by-step.  

However, unlike the forward selection method, the step-wise process evaluates the 

importance of all model terms after each step.  If any term is determined to be 

insignificant, based on the defined significance level, than that term is removed and the 

process continues.  The step-wise selection process ends when no further variables are 

added or removed from the model based on the defined entry and exit thresholds.  Each 

of these four logistic regression models was used in the following analysis for both single 

and multiple term interaction.   

 Previous work has shown that use of the above described variable selection 

techniques may not lead to the optimal logistic regression model (Hocking 1976).  

Hocking stated that none of the variable selection techniques are superior to others, but 

instead all methods should be used to find the best model for the dataset.  Hocking 

concluded that the developed models from each of the techniques should be compared for 

similarities and that these similarities may reveal a near-optimal model.  For this study, 

each of the four variable selection techniques was evaluated. 

 

 



  

 66 

5.4.2 Simple Logistic Regression Model 

The first logistic regression model constructed was a multivariate analysis that did 

not allow for variable interaction.  All four logistic regression selection techniques were 

implemented to determine the best model.  SAS software was used (SAS 2006) for model 

construction.  All four models had a similar classification accuracy of 66.3% for 25,370 

cases being classified (Table 5.4).  Additionally, the three selection models used the same 

23 variables and developed the exact same logistic regression equation.  The developed 

logistic regression equation was: 
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where, 

 

PSF2 = probability that a service failure occurred during a four-year period 

Z = 6.32, model specific constant 

S = rail weight (in pounds per yard) 

R = rail type (1 if welded, 0 if bolted) 

A = rail age (in years) 

V = track speed (in miles per hour) 

F = annual number of trains (total, both directions) 

T = annual traffic (in million gross tons) 

H = accumulated tons on rail since rail was installed (in millions) 

L = weight of car (in tons) 

P = dynamic wheel load (in tons) 

W = annual number of wheel passes (in millions) 

I = presence of an ultrasonic defect in the last three years (1 if present, 0 otherwise) 

G = presence of a geometric defect in the last three years (1 if present, 0 otherwise) 
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C = curvature of track (in degrees) 

E = superelevation of track (in inches) 

J = length of grade (in feet) 

M = recent tie replacement or tie work in last three years (1 if present, 0 otherwise) 

B = presence of a bridge within 200 feet of segment (1 if present, 0 otherwise) 

K = presence of a culvert 200 feet of segment (1 if present, 0 otherwise) 

D = presence of a diamond within 200 feet of segment (1 if present, 0 otherwise) 

N = presence of a turnout within 200 feet of segment (1 if present, 0 otherwise) 

X = presence of a grade crossing within 200 feet of segment (1 if present, 0 otherwise) 

O = out-of-face rail grinding activity performed (1 if present, 0 otherwise) 

Q = curve rail grinding activity performed (1 if present, 0 otherwise) 

 

Table 5.4 Results of Simple Logistic Regression Service Failure Classification  
Models using Four Regression Techniques 

Regression 
Technique

Number of 
Parameters in Model

Number of Cases 
Correctly Classified

Accuracy of 
Classification

False 
Positives

False 
Negatives

Full-Model 28 16,820 66.30% 12.80% 20.90%
Forward 23 16,822 66.31% 12.83% 20.86%

Backward 23 16,822 66.31% 12.83% 20.86%
Step-wise 23 16,822 66.31% 12.83% 20.86%  

 

This new statistical model contains more variables that contribute to the 

likelihood of a service failure as compared to the previous classification model developed 

by Dick (2001).  This is because the previous model only examined 11 of the possible 

prediction factors; whereas the new model evaluated 28 possible factors.  The optimal 

probability threshold for classification was determined to be 0.05.  Altering the threshold 

of probability will change the classifications of the model (Table 5.5).    

The new step-wise model increased the accuracy of classification for the most 

recent service failure data by 11.5% over the previous model developed by Dick (2001).  

Therefore, the development of a new model, with the inclusion of additional possible 

factors leading to service failures, increased the model’s predictive ability.  In particular 

the first five terms, or most significant factors, entered into the new model were: presence 

of an ultrasonic defect, rail type, annual MGTs, average tons per car, and presence of a 

geometric defect.  Of these five terms neither ultrasonic nor geometric defects had been 
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Table 5.5 Results of Step-wise Logistic Regression Model for Varying Levels of  
Probability Threshold Classification 

Probability 
Threshold

Correct 
Predictions

Accuracy
False 

Positives
False 

Negatives
0.1 12,721 50.14% 49.83% 0.02%
0.2 13,298 52.42% 47.04% 0.54%
0.3 14,711 57.99% 38.99% 3.03%
0.4 16,545 65.21% 23.33% 11.45%
0.5 16,822 66.31% 12.83% 20.86%
0.6 16,485 64.98% 7.16% 27.86%
0.7 15,825 62.38% 3.83% 33.80%
0.8 14,787 58.29% 1.54% 40.17%
0.9 13,402 52.83% 0.26% 46.92%  

 

included in the previous model.  Additionally, the presence of infrastructure features, 

such as bridges, grade crossings, and diamonds, were not previously evaluated, but also 

have influence in the new statistical model. 

The next step was to examine if the model’s accuracy could be improved with 

changes to the logistic regression method.  One type of change that was investigated was 

transforming some of the input parameters from continuous variables to discrete choice 

variables.  Many of the inputs, such as the rail weight and the presence of infrastructure, 

were evaluated in the previous model as continuous variables, and may be better 

represented as discrete variables.  For example, rail weight has 13 different entries: 89, 

90, 100, 110, 112, 115, 119, 129, 131, 132, 136, 140, and 141 pounds per yard.  In the 

previous model, rail weight was a continuous variable, meaning that the change in rail 

weight was directly proportional to the change in likelihood of a service failure.  

However, this practice is limiting because the change from 110 to 119-lb. rail may not be 

proportional to a change from 132 to 141 lb rail, even though each of these cases show a 

9-lb. rail increase.  Additionally, different rail weights have different cross sections, and 

therefore a change in rail weight may not be directly correlated with a change in 

likelihood of a service failure.  Therefore, rail weight can be transformed to a discrete 

variable. 

To transform a variable from continuous to discrete the addition of more input 

parameters is needed.  The SAS software that was used to construct the logistic 

regression equations allows for the transformation of input parameters.  For example, the 

rail weight variable has 13 unique entries; therefore, a total of 12 new input variables 
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were created to represent the different entries (Figure 5.2).  By definition, binary choice 

variables that have unique entries of only 1 and 0 are already discrete variables.  

Therefore, no transformation of binary variables, such as the presence of a bridge, was 

needed.  Additionally, other variables that are continuous in nature, such as 

superelevation and annual tonnage, should not be transformed or the model may become 

over-fitted, or have a limited ability for prediction of future events.  

 

 

Figure 5.2 Transformation Chart for Rail Weight Var iable from Continuous to  
Discrete Choice by Creation of New Inputs 

 

Of the 28 variables, 13 were binary discrete and only one, rail weight, was a 

discrete variable with multiple unique values.  All other variables were continuous and 

therefore could not be transformed to a discrete variable without arbitrary divisions, or 

bins, being created.  The four logistic regression techniques were developed in a similar 

manner with the transformed dataset.  This model performed better than the previous 

model with an accuracy of 68.5%, showing an increase in accuracy of 2.2% (Table 5.6).  

Additionally, the three variable selection techniques selected the same variables to 

include in the model and developed the same regression equation.  None of the models in 
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Tables 5.4 and 5.6 allowed for variable interaction; therefore, the next step was to 

consider models with interactive terms. 

 

Table 5.6 Results of Simple Logistic Regression Models using Variable  
Transformation and Four Regression Techniques 

Regression 
Technique

Number of 
Parameters in Model

Number of Cases 
Correctly Classified

Accuracy of 
Classification

False 
Positives

False 
Negatives

Full-Model 40 17,351 68.39% 13.10% 18.51%
Forward 34 17,372 68.47% 13.01% 18.51%

Backward 34 17,372 68.47% 13.01% 18.51%
Step-wise 34 17,372 68.47% 13.01% 18.51%  

 

5.4.3 Multiple Term Interaction Logistic Regression Model 

 The next logistic regression model considered the allowance of input variable 

interaction.  Variable interaction is important to consider for prediction models due to the 

fact that some of the input variables may not be independent and may have a combined 

effect on the location of a service failure.  For example, rail age and degree of curve may 

each have an independent effect on the likelihood of a service failure; however, the 

combined effect of rail age multiplied by the degree of curvature may produce an even 

stronger correlation with service failure locations.  The software package included with 

SAS allows for a calculation of two and three-term interaction possibilities.  However, 

only two-term interaction is possible for this analysis because of the large number of 

input variables included in the dataset.  The initial model considered 28 independent 

variables; the two-term interaction model therefore considers 406 possible variables.  

Three-term or higher interaction was limited by the computational power available to 

process the large number of possible variable interactions. 

 Again, each of the four logistic regression techniques was used to develop service 

failure classification models with two-term interaction.  The procedures followed in this 

part of the analysis were the same as in the simple logistic regression model.  Initially, all 

input variables were considered to be continuous variables.  The most accurate model, 

using two-term interaction, is the backward selection technique.  This model classified 

71.1% of the cases correctly, or an increase in accuracy of 2.6% over the best previous 

model (Table 5.7).  In this case, the full-model included only 363 of the total possible 406 

variables due to the fact that the interaction of some of the variables produces the same 
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value as another input parameter.  For example, the product of the variables rail age and 

annual gross tons is the same value as the parameter for accumulated tons on the rail.  In 

each instance where the SAS software encounters a situation such as this, the variable is 

removed to prevent redundancy. 

 

Table 5.7 Results of Two Term Interaction Logistic Regression Service Failure  
Classification Models using Four Regression Techniques 

Regression 
Technique

Number of 
Parameters in Model

Number of Cases 
Correctly Classified

Accuracy of 
Classification

False 
Positives

False 
Negatives

Full-Model 363 17,921 70.64% 12.22% 17.14%
Forward 90 17,840 70.32% 12.23% 17.45%

Backward 145 18,025 71.05% 12.06% 16.89%
Step-wise 62 17,779 70.08% 12.20% 17.72%  

 

 As with the simple logistic regression models, the next step was to develop two-

term interaction models in which applicable input parameters were transformed from 

continuous to discrete variables.  Thus, the input variable for rail weight was split into 12 

different input parameters to differentiate between the 13 unique rail weight values 

(Figure 5.2).  Therefore, the total number of possible input parameters increased to 820, 

or more than double that of the model that did not account for discrete variables.  The 

logistic regression equations were constructed using a similar procedure of evaluating all 

four possible regression techniques.  The model that presented the highest level 

classification accuracy was the forward selection technique at 72.3% accuracy (Table 

5.8), which was higher than any of the previous models.  Overall, the results of the two-

term interaction models produced higher levels of accuracy, but also included 

substantially more input parameters than the single-variable techniques.   

  

Table 5.8 Results of Two Term Interaction Logistic Regression Models using  
Variable Transformation and Four Regression Techniques 

Regression 
Technique

Number of 
Parameters in Model

Number of Cases 
Correctly Classified

Accuracy of 
Classification

False 
Positives

False 
Negatives

Full-Model 565 18,333 72.26% 12.47% 15.27%
Forward 336 18,340 72.29% 12.47% 15.24%

Backward 262 18,316 72.20% 12.63% 15.18%
Step-wise 44 17,123 67.49% 13.75% 18.75%  
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 Two problems arise from models similar to those evaluated in this analysis with a 

large number of input parameters.  First, such models are prone to over-fitting the data.  

Over-fitting will occur when a model creates relationships that are not actually factors 

that lead to failure but instead happen to fit the current set of data more accurately.  To 

evaluate the robustness of the models produced in these analyses, the models must be 

tested against validation data, or “unseen” cases and this is examined in the following 

sections. 

 The second problem that arises from large models is the fact that they may be 

unreasonable to explain, define, and therefore implement in practice.  For example, the 

most accurate model in this analysis was two-term interaction with forward selection; this 

technique had an accuracy of 72.3% with 336 input parameters.  However, the step-wise 

simple logistic regression model shown in Equation 5.4 had an accuracy of 66.3% but 

only included 23 input parameters.  In many cases it may be more practical to use a 

simpler classification model despite it being less powerful.  The optimal solution will be 

a model that combines sufficiently high accuracy with a limited number of variables. 

 

5.4.4 Development of a Practical Statistical Classification Model 

 The purpose of this analysis was to create a prediction model for service failures 

that was both understandable and useable with the intention of implementing it as a 

maintenance planning tool.  As described in the previous sections, many of the logistic 

regression models included a large number of parameters and therefore are not conducive 

for understanding and use by a railroad.  A practical model is thus needed that limits the 

number of input parameters but still has a sufficiently high level of accuracy.  Such a 

model was developed by examining which input parameters of the dataset were most 

significant in predicting service failures. 

 To determine a simplified model, the logistic regression method was used with 

the “score” variable technique.  This technique calculated the most important variables 

for accurate prediction of the logistic regression model.  Due to limitations in 

computational power, the score program does not allow consideration of multiple-term 

interaction or the use of discrete variable transformation.  For example, the score 

technique was used to determine the most powerful model if the input terms were limited 



  

 73 

to only the best five.  In this case the five input parameters for the best model were: type 

of rail, annual gross tons, average tons per car, presence of an ultrasonic defect, and 

presence of a geometric defect.  This five term model had an accuracy level of 64.0%.  

As compared to the previous simple step-wise regression model which had an accuracy 

level of 66.3%, but used 23 different parameters.  A similar analysis was completed to 

calculate the best model for a varying number of parameters.  The results of this analysis 

for inclusion of one to 23 parameters are shown in Table 5.9.  This table shows what 

variables were removed and added at each iteration from the previous model.  The base 

model of 23 parameters is the same as shown in Equation 5.4.  

 Table 5.9 shows that, in most cases, as the number of parameters decrease the 

classification accuracy of the model also decreases.  Figure 5.3 is a graphical 

representation of the change of accuracy versus the number of model parameters.  In 

some cases, the addition of another variable did not improve the model, most notably the 

six-variable model.  This is because the model is being forced to create a model based on 

the best six variables, which has a lower level of accuracy then the five-variable model in 

this case. For example, if the step-wise regression technique were used, instead of forcing 

the model to be created with six terms, the sixth term would have been removed and the 

five-term model would be selected.  In situations like this, the larger model is undesirable 

and would not be selected as an optimal model. 

 As shown in Table 5.9, generally the best model at each step is the same as the 

previous model with the least significant term removed.  However, this is not true for the 

variable rail age.  The rail age term was not present in models of sizes 20 through 10, but 

then added back in for model size 9.  This means that rail age may not be significant 

when a number of other factors are included, but as the factors become limited, rail age is 

relatively more important.  Another generality that can be drawn from Table 5.9 is that 

the presence of infrastructure features, except for bridges and grade crossings, are not 

significant factors.  From this analysis, I determined that a “practical” model, that 

balanced both the number of input variables and the accuracy of classification, was the 

eight-parameter model.  The calculated logistic regression equation presented a 

reasonably simple model that can be understood and used, but also has an accuracy level 

of 64.7%.   
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Table 5.9 Practical Service Failure Classification Models of Simple Step-wise  
Logistic Regression Technique by Number of Allowed Parameters 

Parameters 
in Model Parameters Removed

Parameters Added        
(if any)

Number of 
Cases Correctly 

Classification
Accuracy of 

Classification
False 

Positives
False 

Negatives

23 -- -- 16,822 66.31% 12.83% 20.86%

22 Turnout -- 16,811 66.26% 12.86% 20.88%

21 Age of Rail -- 16,830 66.34% 12.95% 20.71%

20 Length of Grade -- 16,825 66.32% 12.92% 20.76%

19 Degree of Curve -- 16,856 66.44% 12.80% 20.76%

18 Average Tons per Car -- 16,854 66.43% 12.83% 20.74%

17 Culvert -- 16,816 66.28% 12.95% 20.77%

16 Tie Work Completed -- 16,835 66.36% 12.83% 20.81%

15 Superelevation -- 16,825 66.32% 12.95% 20.73%

14 Diamond -- 16,826 66.32% 12.98% 20.70%

13 Grade Crossing -- 16,727 65.93% 13.18% 20.88%

12

Speed, Annual Trains, 
Average Dynamic 

Tons, & Annual Wheel 
Passes

Average Tons per Car, 
Degree of Curve, & 

Grade Crossing
16,564 65.29% 13.52% 21.19%

11 Grade Crossing -- 16,571 65.32% 14.05% 20.63%

10
Out-of-Face Rail 

Grinding
-- 16,560 65.27% 13.12% 21.60%

9
Accumulated MGTs & 

Degree of Curve
Age of Rail 16,429 64.76% 13.05% 22.20%

8 Curve Rail Grinding -- 16,407 64.67% 12.84% 22.49%

7 Age of Rail -- 16,303 64.26% 12.10% 23.64%

6 Bridge -- 16,064 63.32% 12.93% 23.75%

5 Rail Weight -- 16,235 63.99% 11.15% 24.86%

4 Geometric Defect -- 15,841 62.44% 10.89% 26.67%

3 Average Tons per Car -- 15,935 62.81% 10.74% 26.45%

2 Annual MGTs -- 15,213 59.96% 4.44% 35.60%

1 Rail Type -- 14,265 56.23% 1.65% 42.12%

0 Ultrasonic Defect -- -- -- -- --  

  

 

 



  

 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3 Accuracy of Classifications based on Number of Allowable Parameters  

for Simple Step-wise Logistic Regression Models 

 

This is a decrease of only 1.6% from the basic step-wise regression model with 23 

parameters, but is obviously much simpler to use and evaluate.  The “practical” eight-

term regression model was: 
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where, 

 

PSF2 = probability that a service failure occurred during a four-year period 

Z = 4.94, model specific constant 

S = rail weight (in pounds per yard) 

R = rail type (1 if welded, 0 if bolted) 

A = rail age (in years) 
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T = annual traffic (in million gross tons) 

L = weight of car (in tons) 

I = presence of an ultrasonic defect in the last three years (1 if present, 0 otherwise) 

G = presence of a geometric defect in the last three years (1 if present, 0 otherwise) 

B = presence of a bridge within 200 feet of segment (1 if present, 0 otherwise) 

 

 I next examined the applicability of this model as a tool for railway engineering 

professionals.  The eight terms in this model can be ranked by how significant they are to 

the prediction power of the model (Table 5.10).  The most important prediction term is 

the presence of an ultrasonic defect (I).  The coefficient of this term in Equation 5.6 is 

positive, indicating that the presence of an ultrasonic defect in a 0.01 mile track segment 

increases the likelihood of a service failure occurring at a later point on the same track 

segment.  This correlation between detected defects and the likelihood of a service failure 

is similar to the conclusions presented by Zarembski & Palese (2005). The model 

Zarembski & Palese developed showed that the risk of broken rail derailments is directly 

related to the rate of rail defect development.   

 

Table 5.10 Ranking of Top Eight Input Parameters for Service Failure Regression  
Model 

Ranking Input Parameter
1 Ultrasonic Defect Present
2 Rail Type
3 Annual MGTs
4 Average Tons per Car
5 Geometric Defect Present
6 Rail Weight
7 Bridge Present
8 Age of Rail  

 

 The next most important parameter is the type of rail; if the rail segment is in 

bolted-rail territory the likelihood of a service failure is increased.  The next two most 

significant parameters correspond to loading on the rail.  As annual tonnage and average 

car weight increase, so does the probability of a service failure.  The fifth most important 

factor is the occurrence of a geometric defect.  Similar to ultrasonic defects, the presence 

of a geometric defect increases the likelihood that a service failure will occur in the same 
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track segment.  The next term in the model is rail weight (as a continuous variable).  Rail 

weight is inversely related to service failure probability.  The seventh most important 

term in the model is the presence of a bridge within 200 feet of the track segment 

location.  The presence of this term in the model is consistent with conventional thinking 

that the change in track modulus often associated with the transition between track and 

bridges increases the dynamic load on the track and thereby increasing the likelihood of 

crack growth.  The final term in the practical model is rail age.  The regression equation 

indicated that rail age is inversely related to service failure occurrence.  This relationship 

is counterintuitive but may be explained by the fact that rail life is relatively short in high 

density track but low density track may have very old rail.  This simple eight-term model 

produced a classification accuracy of 64.7%. 

 

5.4.5 Evaluation of Statistical Classification Models 

 The final step to determine the best statistical prediction model was to test the 

robustness of each of the regression equations developed.  This was completed by testing 

each model against validation data, or “unseen” cases.  Models that include a significant 

number of parameters are prone to over-fitting and are therefore poor prediction models 

for events that have not yet occurred.  All of the service failures were separated into two 

groups.  Of the 25,370 total cases, 15,222 cases (60%) were included in a training 

sample.  The remaining 10,148 cases (40%) were retained in a testing sample, or 

validation group.  The cases that were included in each dataset were selected at random 

over the four-year study period.  The best model from each particular logistic regression 

technique was selected to test against the testing sample.  Each of the five specific model 

techniques were used to create logistic regression equations based only on the training 

sample in the same procedure as previously described.  The regression equations were 

then used to calculate the probability of failure for each case in the testing sample.  

Again, a probability threshold level of 0.5 was used to classify cases as either failure or 

non-failure.  The predicted classification was then compared to the actual event that 

occurred in each case and overall model accuracy was determined.   

 The results from this analysis showed that the three logistic regression models that 

did not allow for variable interaction performed well against the testing sample and 
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therefore are robust for service failure prediction (Table 5.11).  Each of the three simple 

regression models had less than a 1% difference in accuracy between the training sample 

and the testing sample.  The two models that allowed variable interaction over-fit the data 

and therefore had a large decrease in accuracy for the testing sample (Table 5.11).  The 

most accurately constructed model, the two term interaction model with variable 

transformation, over-fit the training sample by almost 20%.  Therefore, the variable 

interaction models are not useful prediction tools for calculating the probability of service 

failures. 

 

Table 5.11 Evaluation of Statistical Service Failure Prediction Models by Testing  
Against Validation Data 

Logistic Regression 
Model

Regression 
Technique

Accuracy of Initial 
Classification Model

Accuracy for 
Training Sample

Accuracy for 
Testing Sample

Change

Simple Logit Step-wise 66.31% 66.73% 66.34% -0.39%

Simple Logit w/ 
Transformation

Step-wise 68.47% 67.80% 67.69% -0.11%

Two Term Interaction 
Logit

Backward 71.05% 71.17% 57.07% -14.10%

Two Term Interaction 
Logit w/ Transformation

Forward 72.29% 86.74% 67.33% -19.41%

Eight-term Logit Model Step-wise 64.67% 65.05% 64.12% -0.93%

 

 

5.5 Development of Artificial Neural Network Models 

 The next classification models developed used artificial neural networks (ANN).  

ANNs have been used in various studies of event prediction, in particular classifying 

future events into either failure or non-failure.  The use of ANNs has been shown to be a 

more powerful alternative to logistic regression models in certain applications.  In one 

previous study, a neural network model was developed for predicting bankruptcy failure 

of firms using limited financial data (Odom & Sharda 1990).  The authors concluded that 

the neural network developed showed a higher level of prediction accuracy and 

robustness compared to previous statistical modeling techniques.   
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 As described in the previous chapter, an ANN is a computational tool that has the 

ability to “learn” mathematical relationships between a series of input variables and their 

respective output value.  The internal structure of an ANN is an interconnected group of 

neurons that have the ability to change its structure and connection weights based on 

information that flows through the network.  With the development of ANNs as an 

alternative to logistic regression for prediction studies, research has been conducted to 

explore the differences in the two techniques (Tu 1996).  As described by Tu, ANNs have 

two distinct advantages over traditional neural network models.  One advantage is that 

ANNs have the ability to detect complex non-linear relationships between input and 

output variables that statistical analysis does not.  The second advantage is that ANNs 

inherently detect all possible interactions between input variables as part of the learning 

process, unlike the statistical analysis which only evaluated two-term interactions. 

 

5.5.1 Simple ANN Classification Model 

 An artificial neural network model was developed for classifying track segment 

locations as either failure or non-failure.  The same service failure data, as well as non-

failure locations, that were used to develop the logistic regression models were used 

again for construction of the neural networks.  However, only 15,999 randomly selected 

cases could be analyzed due to limitations of the neural network software.  The software 

used for construction of the artificial neural network was “NeuroShell Classifier” 

developed by Ward Systems Group, Inc (Ward Systems Group, Inc. 2006).  Using the 

data from the four-year period, a neural network was developed using back-propagation.  

The ANN classified 67.7% of the cases correctly, an improvement of 1.4% over the 

previous simple step-wise logistic regression model (Table 5.12).  The ANN model 

classified 12.7% false positives and 19.6% false negatives.  The number of hidden 

neurons constructed for this neural network was 76.  An ANN is constructed by 

algorithms that add hidden neurons one by one until the optimal network is determined.  

An optimal network and the optimal number of neurons represent a balance of model 

accuracy and robustness.  A network that generalizes well is one that is not over-fit and 

therefore is able to provide good results for validation data.  In other words, the software 
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attempts to learn and produce a neural network that is both accurate and robust for unseen 

cases. 

 

Table 5.12 Results of Developed Artificial Neural Network and Hybrid Service  
Failure Classification Models 

ANN Model Type
Accuracy of 

Classification
False 

Positives
False 

Negatives
Number of 

Hidden Neurons
ANN 67.72% 12.64% 19.64% 76

Logit-ANN 67.52% 13.03% 19.45% 71
PLogit-ANN 67.93% 12.83% 19.24% 77  

 

5.5.2 Hybrid Logit-ANN Classification Models 

 The final two classification models developed were ANN/Logistic Regression 

(ANN/LR) hybrid models.  One of the disadvantages of ANNs when compared to logistic 

regression models is that ANNs frequently have difficulty analyzing systems that have a 

large number of parameters due to the amount of time required to learn the system, as 

well as possibly over-fitting the model during the initial learning phase. Hybrid ANN/LR 

models have been shown to improve classification performance when compared to 

traditional logistic regression techniques (Spackman 1992, Yim & Mitchell 2003). 

 Two types of ANN/LR models that have been developed in previous work (Yim 

& Mitchell 2003) were examined for this study.  The first type of hybrid model is 

constructed using logistic regression to pre-select variables based on their significance in 

the prediction model (Logit-ANN).  Only the factors included in the initial logistic 

regression model are then considered in the development of the ANN.  The second type 

of hybrid model type is constructed using the logistic regression model to calculate the 

probability of failure and then adding that value as an additional input variable into the 

ANN (PLogit-ANN).  The two hybrid models offer advantages over the logistic 

regression techniques.  The hybrid models decrease initial learning cases for the ANN, 

meaning that more cases can be devoted to optimizing the network instead of learning the 

network.  Additionally, the hybrid models condense information for very large problems 

thereby reducing learning time, which can be a significant factor for very large datasets. 

 In this study, both hybrid models were developed using the previously determined 

simple step-wise logistic regression model (Equation 5.4).  This selection model was 
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chosen because it produced both a high level of classification accuracy and was robust for 

unseen cases.  The first hybrid, Logit-ANN, is constructed by first pre-selecting the input 

variables.  The logistic regression model determined that 23 of the 28 input factors were 

significant for service failure prediction.  Only these 23 factors were then used to 

construct the new ANN.  The Logit-ANN hybrid model was 67.5% accurate (Table 5.12).   

 The second hybrid model, PLogit-ANN, was constructed using the logistic 

regression model to calculate the probability of failure for each case using Equations 5.3 

and 5.4.  This value was then added as an additional input variable for construction of the 

ANN.  The PLogit-ANN hybrid model was found to be the most accurate model with a 

67.9% correct classification rate (Table 5.12). 

 The PLogit-ANN hybrid model performed only modestly better than any of the 

other models, including the simple step-wise logistic regression technique.  Additionally, 

Table 5.12 shows that the accuracy of the Logit-ANN hybrid model was slightly less than 

the stand-alone ANN; meaning the simple ANN model considered additional variables 

significant that the previous step-wise statistical model did not.  Overall, the three 

artificial neural network models performed only about 1% to 2% more accurately than 

the simple step-wise logistic regression model.  As with the statistical models, a better 

evaluation of the ANN models performance is to test them with unseen data. 

 

5.5.3 Evaluation of Artificial Neural Network Classification Models 

 The various ANN models were evaluated using a similar procedure as the 

statistical models.  The 15,999 cases used to construct the ANN were randomly divided 

into two groups, a training sample and a testing sample.  9,600 cases (~60%) were 

selected for the training set and 6,399 cases (~40%) were selected for the testing set.  The 

results showed that all three models performed well against the testing sample as 

compared to the training sample (Table 5.13).  Each model’s accuracy decreased by only 

1% to 2% and therefore could be considered robust. 

 

5.6 Final Prospective Service Failure Prediction Model 

 As stated previously, the objective of this analysis was to develop an accurate, 

understandable tool that railroads could easily implement to assist with maintenance 
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Table 5.13 Evaluation of ANN Service Failure Prediction Models by Testing Against  
Validation Data 

ANN Model Type
Accuracy of Initial 

Classification Model
Accuracy for 

Training Sample
Accuracy for 

Testing Sample
Change

ANN 67.72% 67.75% 66.56% -1.19%
Logit-ANN 67.52% 67.79% 66.28% -1.51%
Plogit-ANN 67.93% 67.65% 66.43% -1.22%  

 

planning.  Multiple models using both statistical and artificial neural network methods 

were developed to predict service failure locations.  Each technique produced models 

with varying degrees of accuracy, robustness, and simplicity.  Comparing ANNs to 

statistical methods revealed some shortcomings of neural networks.  One disadvantage is 

that ANNs do not give a value for the probability of an outcome; the ANN only produces 

an output of either failure or non-failure.  This is a significant disadvantage compared to 

the logistic regression method that can estimate the probability of failure for each case 

using the regression equation.  Another disadvantage of neural networks is that they are 

“black box” models, meaning that the relationships between variables in a neural network 

cannot be easily understood.  The ability to explain what the model is doing and why is 

thus limited.  Overall the neural network models evaluated did not greatly increase the 

classification accuracy of service failure prediction.  Therefore, the final prospective 

service failure model is based on the logistic regression methods. 

 The different logistic regression techniques used in this study produced 16 

different classification models.  Each of these models was evaluated based on unseen 

data, and it was determined that the single variable models were more robust for 

predicting service failures than the two-variable models.  Of the eight single-variable 

logistic regression models evaluated, all contained more than 20 input parameters.  

However, the simplified eight-term model combined high accuracy and a low number of 

input parameters.  This “practical” model was accurate and robust as well as easy to 

understand and implement.  Therefore, the eight-term model was selected as the version 

to be adapted for predictive purposes.  The SAS software’s output of this model, detailing 

the process used to develop the logistic regression equation, is shown in Appendix A.  

However, to use this practical model in the field, it must first be transformed to a 

prospective prediction model. 
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 Each of the classification models described in study were retrospective models 

created using a dataset in which half the records had a service failure and half did not.  A 

transformation is needed to develop the statistical model into a prospective model that 

can be used to predict the location of service failures.  Previous work has shown how the 

transformation can be done using a logistic regression model (McCullagh & Nelder 1989, 

Dick et al. 2003).  The transformation was completed with adjustment of the model 

specific constant, Z, to reflect the average service failure probability across the entire 

system.  During the four-year period, there were 12,685 service failures on the railroad 

that were classified according to which of the 0.01-mile segments they occurred on.  In 

2006, BNSF maintained 23,358 miles of mainline track (STB 2006).  This corresponds to 

a total of approximately 2.34 million 0.01-mile-long segments.  The average probability 

that a service failure will occur on any particular segment during a similar four-year 

period is thus 0.00543.  This probability was converted into a new model-specific 

constant using the log-odds operator: 
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where, 

 

Z*  = -0.270, adjusted model constant 

Z = 4.94, model specific constant 

PSF2 = probability that a service failure occurred during a four-year period 

S = rail weight (in pounds per yard) 

R = rail type (1 if welded, 0 if bolted) 

A = rail age (in years) 

T = annual traffic (in million gross tons) 

L = weight of car (in tons) 

I = presence of an ultrasonic defect in the last three years (1 if present, 0 otherwise) 
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G = presence of a geometric defect in the last three years (1 if present, 0 otherwise) 

B = presence of a bridge within 200 feet of segment (1 if present, 0 otherwise) 

 

 The previous model specific constant, Z, is replaced in the logistic regression 

equation by the adjusted constant, Z*, as shown in Equation 5.9.  Therefore, Equation 5.7 

represents the prospective service failure model, with updated value for U, for the 

prediction of service failures during a four-year period.  This equation can be used to 

determine specific locations with a high likelihood of a service failure, and the overall 

service failure rate for a specific line. 

 

5.7 Service Failure Prediction Case Study 

 The prospective prediction model can be used to calculate annual service failure 

rates for specific track segments and estimate the number of service failures on a 

particular line.  This information may enable more efficient railroad maintenance 

planning to reduce the likelihood of broken rails.  A summation of the probabilities for 

100 consecutive 0.01 mile segments will yield the expected number of service failures 

per mile.  However, the equation also calculates the probability of a service failure 

occurring over a four-year time frame.  Therefore, assuming that service failures are 

distributed linearly over time, the number of expected service failures is divided by four 

to determine the annual rate of service failures.  The transformed rate equation to 

calculate service failures per mile per year is: 
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where, 

 

ESF = expected number of service failures per mile per year on a specific segment 

Z* = -0.270, adjusted model constant 

S = rail weight (in pounds per yard) 
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R = rail type (1 if welded, 0 if bolted) 

A = rail age (in years) 

T = annual traffic (in million gross tons) 

L = weight of car (in tons) 

I = presence of an ultrasonic defect in the last three years (1 if present, 0 otherwise) 

G = presence of a geometric defect in the last three years (1 if present, 0 otherwise) 

B = presence of a bridge within 200 feet of segment (1 if present, 0 otherwise) 

 

 Use of the prospective model to calculate expected service failure rate is 

illustrated using the following hypothetical case study (Figure 5.4, Table 5.13).  The 

constants for this case study are that it is 3.5 miles in length, has continuously welded 

rail, and carries 55 million gross tons per year with an average weight of 75 tons per car.  

The rail weight and rail age vary along the segment.  Ultrasonic defects were previously 

detected at mile posts 0.875 and 1.245.  Geometric defects were detected at mile posts 

0.485, 2.125, 2.635, and 3.335.  Additionally, a 400 foot bridge is present from mile post 

1.44 to 1.52. 

 

 

 

 

 

 

Figure 5.4 Graphical Representation of Hypothetical Case Study 

  

 The probability of a service failure for each particular 0.01 mile segment was 

calculated using Equation 5.8.  Segments of similar characteristics were grouped together 

and the calculated U values are shown in Table 5.14.  The number of service failures per 

mile per year for each segment was determined using Equation 5.10 based on each 

segment’s U value.  The expected number of service failures for each segment was then 

calculated by multiplying the service failure rate by the length of that particular segment.  

Finally, the total expected number of service failures for this 3.5-mile line was calculated  
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Table 5.14 Input Parameters by Mile Post for Hypothetical Cased Study 

Mile Post 
Start

Mile Post 
End Z* S R A T L I G B U

0.00 0.48 -0.27 141 1 2 55 75 0 0 0 -5.81
0.48 0.49 -0.27 141 1 2 55 75 0 1 0 -4.99
0.49 0.87 -0.27 141 1 2 55 75 0 0 0 -5.81
0.87 0.88 -0.27 141 1 2 55 75 1 0 0 -4.20
0.88 1.11 -0.27 141 1 2 55 75 0 0 0 -5.81
1.11 1.24 -0.27 136 1 6 55 75 0 0 0 -5.62
1.24 1.25 -0.27 136 1 6 55 75 1 0 0 -4.01
1.25 1.40 -0.27 136 1 6 55 75 0 0 0 -5.62
1.40 1.56 -0.27 136 1 6 55 75 0 0 1 -3.99
1.56 2.00 -0.27 136 1 6 55 75 0 0 0 -5.62
2.00 2.12 -0.27 115 1 20 55 75 0 0 0 -4.82
2.12 2.13 -0.27 115 1 20 55 75 0 1 0 -4.00
2.13 2.63 -0.27 115 1 20 55 75 0 0 0 -4.82
2.63 2.64 -0.27 115 1 20 55 75 0 1 0 -4.00
2.64 3.02 -0.27 115 1 20 55 75 0 0 0 -4.82
3.02 3.33 -0.27 115 1 16 55 75 0 0 0 -4.78
3.33 3.34 -0.27 115 1 16 55 75 0 1 0 -3.95
3.34 3.50 -0.27 115 1 16 55 75 0 0 0 -4.78  

 

by summing over all of the segments.  This segment of track is expected to have 0.54 

service failures in the next year (Table 5.15).  The changes in service failure rates due to 

various factors across the line segment are shown in Figure 5.5. 

 

5.8 Conclusions 

 20 different prediction models were developed to predict service failures; 

including several different logistic regression and ANN models.  Service failure data 

from BNSF’s network were used for a four-year time period.  A previous service failure 

classification model using logistic regression, that incorporated only track and traffic 

characteristics, was evaluated and determined to have limited predictive ability for 

current service failure data.  New logistic regression models were developed that 

included additional factors such as infrastructure data, maintenance activities, and rail 

testing results.  The logistic regression models were constructed using various techniques 

and each model was tested against validation data.  A practical logistic regression model 

was also developed that reduced the complexity of the model and maintained a high level 

of accuracy.  This practical model was determined to be 64.7% accurate for classifying 

track segments.  An ANN model was also developed to classify cases as either failure or  
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Table 5.15 Calculation of Service Failures per Year and Total Expected Service  
Failures for Hypothetical Case Study 

Mile Post 
Start

Mile Post 
End Length U

Service Failures per 
mile per year

Expected Service 
Failures

0.00 0.48 0.48 -5.81 0.075 0.036
0.48 0.49 0.01 -4.99 0.170 0.002
0.49 0.87 0.38 -5.81 0.075 0.028
0.87 0.88 0.01 -4.20 0.370 0.004
0.88 1.11 0.23 -5.81 0.075 0.017
1.11 1.24 0.13 -5.62 0.090 0.012
1.24 1.25 0.01 -4.01 0.444 0.004
1.25 1.40 0.15 -5.62 0.090 0.013
1.40 1.56 0.16 -3.99 0.453 0.072
1.56 2.00 0.44 -5.62 0.090 0.040
2.00 2.12 0.12 -4.82 0.200 0.024
2.12 2.13 0.01 -4.00 0.452 0.005
2.13 2.63 0.5 -4.82 0.200 0.100
2.63 2.64 0.01 -4.00 0.452 0.005
2.64 3.02 0.38 -4.82 0.200 0.076
3.02 3.33 0.31 -4.78 0.209 0.065
3.33 3.34 0.01 -3.95 0.471 0.005
3.34 3.50 0.16 -4.78 0.209 0.033

TOTAL EXPECTED 0.541  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Service Failure Rate vs. Mile Post for Hypothetical Case Study 
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non-failure.  Additionally, two ANN/LR hybrid classification models were developed.  

Each of the three advanced models performed only slightly better than the traditional 

logistic regression techniques.  Finally, the practical logistic regression model was 

transformed into a prospective prediction model based on the overall probability of 

service failures on the BNSF network.  This prospective prediction model was then used 

in a hypothetical case study to examine how this prediction tool can be used to evaluate 

specific track segments. 

 This analysis revealed that service failures can only be predicted with accuracy 

levels ranging from about 65% to 70% using the data available for this study and the 

methods presented.  The different methods and techniques used to find the best prediction 

model had only slightly different classification accuracies, indicating that 30% or more of 

the cases presented here were not able to be correctly classified from the available data.  

This indicates that the models developed were not accounting for about 30% to 35% of 

the variance.  Examples of these sources of variance may include the occurrence of 

thermally-induced stress in the rail, the frequency and magnitude of dynamic loading 

events from out-of-round wheels, and other characteristics of rail steel and fatigue-crack 

growth. 

 The models developed in this study are intended to assist railroads to more 

effectively allocate resources to prevent the occurrence of broken rails.  The models can 

be implemented in two different ways involving maintenance planning.  They can be 

used tactically for short-term maintenance assistance, such as determining specific track 

segments to monitor closely or repair.  They can also be used strategically for long-term 

maintenance planning and renewal activities.  The two most common prevention 

techniques for broken rails are rail grinding and rail replacement.  Both of these activities 

require long lead times for planning and have high associated costs. 

 

5.8.1 Future Work on Service Failure Prediction 

 This analysis included many of the available variables that potentially affect the 

growth of defects and the occurrence of broken rails.  However, as discussed above, some 

additional factors that could be considered include climatic data for track locations, track 

inspection frequency, and density of service failures and defects.  Climate effects, 



  

 89 

especially in areas of continuously welded rail experience high tensile stress that may 

affect the growth of rail defects and the occurrence of broken rails.  Also, more frequent 

track inspection probably reduces service failure occurrence because cracks are more 

likely to be detected and repaired (Zarembski & Palese 2005).  Additionally, it may be 

possible to determine the overall density of service failures and detected defects for each 

particular piece of rail, thereby increasing the accuracy of the prediction model. 

 Future work might also include determination of an optimized statistical model 

that considers the trade-off between the number of parameters and the accuracy of 

prediction.  This is based on the idea that as additional parameters are added to the model 

there may be an incremental cost.  The incremental cost to add each parameter may or 

may not be linear.  However, as the level of accuracy is increased there should be a 

savings due to the reduced occurrence of broken rails.  With this information a “utopia 

point” solution balancing cost versus benefit could be developed to find the optimal 

model (Marler & Arora 2004).   

 Another area of possible future work would be to evaluate different artificial 

neural network models.  This includes different learning techniques and objective 

functions to determine the optimal neural network.  Experimenting with different 

numbers of neurons in the hidden layer may also lead to a more accurate ANN, but care 

must be taken to not over-fit the data with additional factors.  Finally, the use of neuro-

fuzzy networks might be possible to apply to this topic.  Fuzzy Neural Networks (FNN) 

may be able to classify each case as well as produce an output value regarding how 

strongly each case is in its respective classification.  This output value may be a close 

approximation to determine the probability of failure; a value a simple ANN cannot 

produce.
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CHAPTER 6: ECONOMIC IMPACT OF BROKEN RAILS 

 

 The purpose of this study was to understand the economic impact of service 

failures, broken rail derailments, and their respective prevention techniques.  In Chapter 5 

I considered factors and various analytical techniques to predict locations that have a high 

probability of broken rail occurrence. The most important factors were rail weight, rail 

type, rail age, annual traffic, average weight of cars, presence of an ultrasonic defect, 

presence of a geometric defect, and the presence of a bridge.  However, understanding 

where broken rails are most likely to occur is necessary, but not sufficient for cost-

effective management of the problem.  Additional information on the economic impact of 

broken rails as well as the cost and effectiveness of various preventive strategies is also 

needed.  In this chapter I quantify the cost of broken rails.  In particular, costs associated 

with broken rail derailments, service failures, train delay, and typical prevention 

measures are examined.  The results of this study are intended to assist railroads to make 

better informed decisions regarding maintenance and prevention of broken rails. 

 

6.1 Introduction to Economic Study of Broken Rails 

 Broken rails are generally caused by either internal or surface defects in the rail 

(Sperry Rail Service 1999).  Internal defects are generally present due to the growth of 

minute flaws introduced during rail manufacture.  These flaws grow due to cyclic vertical 

and horizontal loading of the rail and consequent fatigue crack growth.  Surface defects 

are generally caused by wheel-rail contact stresses at the running surface of the rail from 

passing trains.  In either case, if a flaw is allowed to grow large enough, at some point the 

rail may be subject to a load that it does not have sufficient strength to withstand and it 

fractures.  Broken rails are separated into two categories, those that result in a derailment 

and those that are detected by some other means and are typically called “service 

failures”.  The consequences of these two events are quite different, but understanding 

their economic impact is important to making better informed decisions regarding their 

prevention.  Overall, broken rails were responsible for 335 mainline derailments on Class 

I freight railroads from 2003 through 2006 (FRA 2007a).  These derailments resulted in 
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over $176 million of equipment and track damage.  However, the economic impact of 

broken rails includes many other costs besides track and equipment damage. 

 Economic analysis of railroad engineering and operations is a topic that has been 

the subject of extensive study for over a century and a half.  Among the most well-known 

early treatises on railway economics was by Wellington (1887).  More recent research 

has focused on specific topics of railway economics; some that is applicable to this 

analysis, includes the expected life of rail and rail renewal (Zhao et al. 2006, Ling 2006).  

However, the economic costs specifically associated with broken rails have not 

previously been quantified.  The potential costs associated with broken rails have been 

explored as part of an overall analysis of rail defects (Cannon et al. 2003).  Cannon et al. 

stated that the cost of broken rails includes inspection of track, train delay, remedial 

treatments, pre-emptive treatments, derailments, and loss of business. 

 The cost of a specific broken rail event will vary based on many factors, but the 

intention of this analysis was to calculate typical expected costs based on past averages of 

similar events.  However, some costs, such as loss of business, were difficult to quantify, 

while others could not be obtained because of the sensitivity of the information.  The 

objectives of this analysis were to: 

• Quantify the costs associated with broken rail derailments and service failures, 

• Determine costs associated with train delay, 

• Develop a train delay cost calculator based on the density of a line, and 

• Quantify the costs associated with preventive measures. 

 

6.2 Costs Associated with Broken Rail Derailments 

 The economic impact of a broken rail derailment can be severe.  Such accidents 

are also a major disruption to railroad operations.  Railroads spend a great deal of time 

and money in their efforts to prevent broken rails.  The costs associated with broken rail 

derailments include track damage, equipment damage, accident clean-up, labor and 

materials for repair, train delay, lading damage, and loss of future business.  Railroads are 

generally apprehensive about sharing complete information on derailment related costs; 

but some information is publicly available (FRA 2007a).  This information was 
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supplemented by interviews with railroad industry experts and other research to further 

understand the associated costs. 

 

6.2.1 Track and Equipment Damage of Broken Rail Derailments  

 The Federal Railroad Administration (FRA) requires that railroads report 

equipment and track damage for railway accidents that exceed a specified monetary 

threshold ($7,700 in 2006).  The cost of equipment damage includes any repair or 

replacement of on-track equipment such as cars, locomotives, and maintenance 

equipment.  This also includes any necessary labor or materials needed for equipment 

repair or replacement.   Track damage reported to the FRA is a broad category, as it 

includes the costs associated with repair or replacement of any track, signals, or track 

structures, such as bridges and grade crossings, including any labor and materials needed 

for repair or replacement.  Track damage also includes the costs of accident clean-up, 

such as clearing the right of way of damaged cars, spilled lading, and the cost of third-

parties contracted to assist with accident clean-up.  The financial impact associated with 

environmental and hazardous material clean-up due to an accident is not included in the 

FRA reportable costs. 

 FRA accident data are publicly available at the FRA Office of Safety website.  

Train accident data were downloaded and analyzed from 2003 through 2006 (FRA 

2007a).  The FRA defines 14 unique accident cause codes related to broken rails (FRA 

2007b).  During the four-year study period, U.S. Class I freight railroads experienced 335 

mainline broken rail derailments (Table 6.1).  The total costs of these derailments 

exceeded $176 million in equipment and track damage, for an average cost of $525,400 

per incident.  By contrast, an examination of siding derailments revealed that there had 

been 40 derailments during the same interval with an average cost of $76,490 per 

incident (Table 6.2). 

  

6.2.2 Other Related Broken Rail Derailment Costs 

 Besides reportable equipment and track damage, another important cost 

associated with broken rail derailments is train delay.  Train delay cost is based on the 

time of track-outage as well as the number of trains delayed.  A train delay cost calculator  
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Table 6.1 Equipment and Track Damage for Class I U.S. Freight Railroad Mainline  
Broken Rail Derailments, 2003-2006 

FRA Code Cause Description Frequency Total Cost Cost Per Incident

T201 Bolt hole crack or break 14 $12,854,596 $918,185

T202 Broken Base 26 5,804,332 223,244

T203 Broken Weld (plant) 3 1,026,794 342,265

T204 Broken Weld (field) 25 17,338,957 693,558

T207 Detail fracture from shelling or head check 82 52,792,131 643,806

T210 Head and web separation (outside joint bar) 23 5,380,144 233,919

T211 Head and web separation (within joint bar) 7 2,042,042 291,720

T212 Horizontal split head 5 1,967,657 393,531

T213 Joint bar broken (compromise) 6 3,111,204 518,534

T214 Joint bar broken (insulated) 9 8,152,304 905,812

T215 Joint bar broken (noninsulated) 15 14,225,856 948,390

T219 Rail defect with joint bar repair 1 664,622 664,622

T220 Transverse/compound fissure  90 42,315,036 470,167

T221 Vertical split head  29 8,333,190 287,351

335 $176,008,865 $525,400  

 
 

Table 6.2 Equipment and Track Damage for Class I U.S. Freight Railroad Siding  
Broken Rail Derailments, 2003-2006 

FRA Code Cause Description Frequency Total Cost Cost Per Incident

T201 Bolt hole crack or break 1 $14,688 $14,688

T202 Broken Base 4 211,636 52,909

T203 Broken Weld (plant) 0

T204 Broken Weld (field) 0

T207 Detail fracture from shelling or head check 11 1,303,978 118,543

T210 Head and web separation (outside joint bar) 0

T211 Head and web separation (within joint bar) 0

T212 Horizontal split head 0

T213 Joint bar broken (compromise) 1 15,237 15,237

T214 Joint bar broken (insulated) 0

T215 Joint bar broken (noninsulated) 1 128,879 128,879

T219 Rail defect with joint bar repair 0

T220 Transverse/compound fissure  16 975,877 60,992

T221 Vertical split head  6 409,321 68,220

40 $3,059,616 $76,490  
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was developed as part of this study and is described in a later section.  Discussions with 

industry experts indicated that the time of track-outage from a broken rail derailment 

depends on the situation.  Some of the factors that affect track-outage time are the 

severity of the accident, access to the site, if hazardous materials were involved, or if the 

accident is near a metropolitan area.  Track damage due to broken rail derailments is 

typically restricted to about 500 to 1,500 feet as a result of the cars piling up.  A moderate 

to large scale broken rail derailment will take approximately 24 hours to return the track 

to service.  One expert stated that if the expected outage is several days or more, then 

arrangements to reroute trains will be made if possible. 

 Other costs associated with broken rail derailments include lading damage and 

loss of business or customers.  The cost of lading damage is not required to be reported to 

the FRA and therefore is not publicly available.  The cost of lading damage was 

unavailable and is highly variable.  Depending on what is lost or damaged, it can vary 

from a few thousands to millions of dollars per incident.  The loss of future business due 

to broken rail derailments is difficult to quantify. 

 

6.3 Costs Associated with Service Failures 

 The next step was to examine the costs associated with service failures.  Service 

failures have a much lower economic impact than broken rail derailments, but occur 

much more frequently.  One major Class I railroad experienced 3,171 service failures and 

19 broken rail derailments per year from 2003 through 2006 (167:1 ratio).  Generally, 

service failures are detected by the signal system, a track inspector, or a train crew.  Once 

detected, trains typically do not proceed over that section of track until the rail has been 

repaired.  Although, FRA regulations allow trains to be “walked” over a broken rail while 

the break is monitored by a qualified railroad employee, this practice is not generally 

used by the major U.S. railroads.  Instead, trains are halted and a repair crew is 

dispatched to remove and replace the broken rail. 

 The costs associated with service failures include material, labor, and train delay 

costs.  One railroad industry expert stated that the average material and labor cost for a 

service failure is $1,500, which includes mobilization of the crew and materials.  Another 

railroad provided further details based on their estimates for average labor and materials 
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for rail repair.  The estimated material cost of a 15 foot section of 136 pound rail and two 

welds is $373.60 (Table 6.3).  The estimated labor cost for removing the old rail, 

unloading and placing new rail, installation of the requisite other track material (OTM), 

and installing field welds totals $370.00 (Table 6.3).  The combined total cost, not 

including mobilization, is $743.60.  The difference between this value and the $1,500 

estimate is the cost of mobilizing the labor and materials needed for the repair. A number 

of factors must be considered to evaluate the cost of mobilization, such as the time of 

day, time of year, location of service failure, and availability of materials. 

   

Table 6.3 Estimated Labor and Material Repair Cost for a Service Failure 

Item Cost per Unit Cost
136 lb. CWR rail $17.84 per foot $267.60
Welding kit 53.00 each 106.00

373.60

Remove & load old rail 3.12 per foot 46.80
Unload new rail and OTM 0.49 per foot 7.35
Place new rail and OTM 2.19 per foot 32.85
Install field welds 141.50 each 283.00

370.00

$743.60

Total Material Cost

Total Labor Cost

TOTAL REPAIR COST  

 

 The final cost associated with service failures is the cost of train delay.  The 

length of the delay will be affected by a number of factors.  Railroad industry experts 

indicated that a typical service failure will result in approximately a four-hour track-

outage, from initial notification of the failure until the line is reopened for normal 

operation.  Again, the delay cost will also depend on the number of trains delayed and 

can be estimated using the train delay calculator described in the next section. 

 

6.4 Train Delay Cost Calculator 

 Train delay cost is affected by both broken rail derailments and service failures.  

The total cost due to train delay is based on the cost of delay per train-hour, the number 

of trains delayed, and the total length of the delay.  Industry experts estimated that the 

cost due to delay of a single train is in the range of $200 to $300 per train-hour.  The 

purpose of this analysis was to calculate an updated value based on operating averages 
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for all U.S. Class I railroads.  Additionally, a formula was developed to determine the 

cost of delay based on the number of trains delayed and their length of delay based on 

any given line density. 

  

6.4.1 Calculation of Train Delay Cost per Train-hour 

 Interviews with industry experts led to the conclusion that single-train delay cost 

per train-hour includes four components: car cost, locomotive cost, fuel cost, and crew 

labor cost.  Car delay cost refers to the cost of railroad-owned cars that are delayed and 

therefore cannot be used elsewhere.  Privately owned cars are excluded from this analysis 

because, in many cases, they are charged by the mile and do not have a direct cost to 

railroads if delayed.  The average number of cars per train in 2006 was 69.2 cars (AAR 

2006) and 39.8% were railroad owned (AAR 2007).  To determine the cost per car, an 

average car-hire rate was used.  Industry experts indicated that a reasonable estimate for 

this was $0.75 per car-hour in 2006.  The total average car delay cost per train was 

computed to be about $20.67 per hour in 2006 (Table 6.4). 

 The second component of train delay cost is that associated with delay of 

locomotives.  Similar to car delay, locomotive delay was determined by estimating the 

opportunity cost due to unavailability of locomotives for other applications.  This value 

can be estimated based on the locomotive depreciation that occurs during the time of 

delay.  The average numbers of locomotives per train in 2006 was 2.7 (AAR 2006).  A 

2008 survey of Class I railroad data revealed that the average cost of a new road 

locomotive, which varies greatly based on type, was approximately $1,877,500 and the 

salvage value after 25 years of road life was approximately $250,000 (Murray 2008).  

Assuming a discount rate of 10%, the annual locomotive depreciation per locomotive for 

2006 was $209,383.  Therefore, the locomotive cost per locomotive-hour was $23.90 or 

$64.54 per train-hour (Table 6.4). 

 The third component of train delay is the cost of fuel consumed during the delay.  

The cost of diesel fuel purchased by Class I railroads in 2006 was $1.93 per gallon (AAR 

2006).  The average fuel consumed per locomotive-hour in idle was approximately 3.5 

gallons based on information provided for different locomotive types from a major U.S.  

 



  

 97 

Table 6.4 Breakdown of Train Delay Cost per Train-hour 

Car Cost
Average number of Cars per train 69.2

Car Hire per hour $0.75
Percent of cars owned by railroad 39.8%

Total per Train-hour $20.67

Locomotive Cost
Average number of Locomotives per train 2.7

Average cost of new locomotive $1,877,500
Average Life of locomotive 25

Average salvage value $250,000
Discount Rate 10%

Average cost per locomotive year $209,382.57
Total per Train-hour $64.54

Fuel Cost
Average number of Locomotives per train 2.7

Gallons per Hour In idle 3.5
Cost per Gallon $1.93

Total per Train-hour $18.24

Crew Cost
Number of employees per train 2

Average Hourly Pay $21.40
Average Overtime Pay $31.45

Percent of wage for fringe benefits 75%
Total per Train-hour $110.08

TOTAL COST PER TRAIN HOUR $213.52  

 

freight railroad.  Based on an average of 2.7 locomotives per train, the total fuel cost was 

$18.24 per train-hour in 2006 (Table 6.4). 

 The fourth component of train delay is labor cost.  Average hourly wages for train 

and engine crews for Class I U.S. freight railroads in 2006 was $21.40 for straight time 

and $31.45 for overtime pay (STB 2008).  For the calculation of labor cost, only the 

overtime rate was used based on the assumption that a train delay of more than a few 

hours will generally result in overtime pay for the train crew.  Additionally, the labor cost 

includes fringe benefits, such as vacation pay, holiday pay, railroad retirement, 

unemployment, health welfare, and group life insurance.  Fringe benefits are estimated to 

be approximately 75% of wages in 2006.  Therefore, based on a two-person train crew, 

the labor cost of delay was $110.08 per train-hour (Table 6.4). 
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 A summation of the four components of train delay yields a total cost of $213.52 

per train-hour in 2006.  However, this estimate is still only a partial estimate because 

additional costs due to train delay are not considered.  For example, in some delay 

situations crews must be replaced due to federal hours-of-service regulations that limit 

crews to a maximum period on duty of 12 hours.  There may also be some extra stopping 

and starting of the train resulting in extra fuel consumption and wear and tear on brakes 

and other components. 

 

6.4.2 Cost of Multiple Train Delay 

 The number of trains delayed and the duration of their delay during a track-outage 

must be considered in the calculation of train delay cost.  These values can be 

approximated based on the density of the line and the number of mainline tracks.  To 

determine the number of trains delayed, I assumed that trains will arrive in constant time 

intervals from both directions.  The average train operated for Class I U.S. railroads was 

6,312 gross tons, including cars and locomotives, in 2006 (AAR 2006).  The number of 

trains per year for a particular line is the annual gross tonnage (in millions) (ANMGT) of 

that line divided by 0.006312 million-tons per train.  The interval between trains, t, was 

determined by dividing the number of hours per year, 8,766, by the number of trains per 

year: 

 

006312.0(millions)per train  tons

MGTs Annual
yearper   trainsofNumber 

ANMGT
n ===       (6.1) 

 

ANMGTn
t

33.55766,8

yearper  trains

yearper  hours
arrivalper train  hours ====                   (6.2) 

 

 The total cost of train delay can then be calculated by the cost of delay per train-

hour and the hours per train arrival of the particular line.  The total number of trains 

delayed is determined by dividing the total delay time by the hours per train arrival.  The 

length of delay for each train is based on the time of their respective arrival.  The total 
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cost due to train delay from a service interruption can be calculated using the following 

formula: 

 

∑
=

−+=
m

n

xntTTxC
1

)(              (6.3) 

where, 

 

C = total train delay cost for multiple trains 

T = total delay time for service interruption 

x = cost of delay per train-hour ($213.52) 

m = number of following trains delayed = T / t (rounded to the nearest integer) 

t = hours per train arrival = 55.33 / ANMGT 

 

 The total train delay cost presented in Equation 6.3 is valid for broken rail 

scenarios in which no trains can proceed due to the event.  This would include service 

failures on single track territory or broken rail derailments on multiple track or single 

track territory because no trains would be able to proceed.  However, Equation 6.3 must 

be adjusted for situations in which a service failure occurs on one track in multiple track 

territory.  In these situations trains will be able to proceed on the other mainline track and 

there will not be complete (100%) delay.  It can be assumed that a service interruption on 

a single track may cause up to half the trains (50%) to be delayed (i.e. traffic in one 

direction stops).  However, in most cases, less than 50% of trains would be delayed, and 

the actual amount of delay is dependent on the density of the line. 

 A sensitivity analysis was conducted on a hypothetical case study to evaluate how 

Equation 6.3 can be used to evaluate train delay cost of broken rail events on various 

density lines (Table 6.5).  The case study assumed a single track mainline with either a 

service failure with a track outage of 4 hours or a broken rail derailment with a track 

outage of 24 hours.  Using Equation 6.3, the train delay cost on a 60 MGT line was 

calculated to be $2,235 for a service failure or $69,244 for a broken rail derailment. 
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Table 6.5 Sensitivity Analysis of Train Delay Costs 

Service Failure Derailment
15 $854 $19,332
30 1,314 35,902
45 1,775 52,472
60 2,235 69,244
75 2,695 85,853

Broken Rail EventAnnual Gross 
Tons (Million's)

 

 

6.5 Costs Associated with Broken Rail Preventive Measures 

 To determine the economic impact of broken rails, the costs associated with 

preventive measures must also be examined.  Typical, preventive measures include rail 

inspection for defects, rail grinding, and rail replacement and renewal.  These preventive 

measures decrease the likelihood of a broken rail; however, they are also used to extend 

the life of the overall track structure.  For example, rail grinding improves the overall 

wheel-rail interface and the allocation of the cost related to broken rail prevention cannot 

be determined.  Therefore, the cost of broken rail preventive measures is an indirect cost 

related to broken rails (Table 6.6). 

 

 Table 6.6 Estimated Indirect Costs of Broken Rails 

Broken Rail Prevention Technique Annual Cost per Track Mile ($)
Ultrasonic and Geometric Track Inspection 900
Rail Grinding 1,900
Rail Surfacing 700
Rail Renewal and Replacement 2,500

TOTAL INDIRECT COST 6,000  

 

 One of the most effective broken rail prevention measures is the use of ultrasonic 

and geometric inspection of track (Zarembski & Palese 2005).  Its cost is dependent on 

the frequency of inspections.  The BNSF Railway uses a risk-based approach for 

inspection frequency (Palese & Zarembski 2001).  As defined by BNSF, the calculated 

risk factor of any particular line depends on many variables, including the number of 

previously detected defects, if the line carries passengers and/or hazardous materials, and 

the railroad-determined “importance” of the line.  Ultrasonic and geometric inspections 

are estimated to cost approximately $900 per track mile in 2007 (Table 6.6). 



  

 101 

 Class I U.S. freight railroads also use rail grinding to prolong the life of rail and to 

eliminate surface defects.  Grinding locations are typically based on the life of the rail, 

the density of the line, and the number of previously detected surface defects.  Rail 

grinding is estimated to cost approximately $1,900 per track-mile (Table 6.6).  

Additionally, railroads complete rail surfacing projects to maintain stable and properly 

aligned track structure for many reasons, including slowing potential crack growth.  

These costs are estimated to be approximately $700 per track-mile for capital surfacing 

projects (Table 6.6).  Finally, rail renewal and replacement projects are crucial for large 

railroads to prevent broken rails and other track-related accident causes.  However, rail 

replacement occurs due to both wear and fatigue crack growth, so allocation of this 

expense is not possible without knowing the percentage of rail replaced due to these 

different causes.  The average amount of rail replaced by Class I U.S. railroads in 2006 

was 3.25 tons per track-mile (AAR 2006).  One railroad reported that the cost of 141-lb. 

rail in 2006 was approximately $760 per ton.  Therefore, the cost of rail renewal is 

approximately $2,500 per track-mile (Table 6.6).  Additional information on preventive 

measures, such as the cost of local rail surfacing projects, was difficult to determine and 

are not included in this analysis. 

 

6.6 Conclusions 

 The costs associated with broken rails are a substantial concern to all major U.S. 

railroads.  Based on this analysis, an average broken rail derailment will have a direct 

economic impact to the railroad of $550,000 or higher depending on the density of the 

line, plus indirect costs associated with preventive measures.  A service failure on a 

medium density line will incur a direct cost of at least $2,500, plus the indirect costs of 

prevention.  Broken rail derailments from 2003 through 2006 resulted in a total FRA 

reportable damage to equipment and track of $176 million, or approximately $44 million 

per year; however, the economic impact of broken rails is greater when the additional 

costs considered in this analysis are included.  Assuming that service failure rates are 

similar for all Class I U.S. railroads and that the average line traffic density is 30 MGTs, 

the annual direct cost of broken rails for all U.S. Class 1 railroads was approximately $83 

million (Table 6.7).  The annual indirect cost from broken rail preventive activities was 
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approximately $855 million, based on a reported 142,428 track-miles operated by U.S. 

Class I freight railroads (AAR 2006) (Table 6.7). 

 

Table 6.7 Estimated Annual Broken Rail Costs for U.S. Class I Railroads 

Broken Rail Associated Cost Cost ($)
Derailment Damage 44,002,216
Derailment Delay Cost 3,006,793
Service Failure Repair Cost 19,141,747
Service Failure Delay Cost 16,768,170

TOTAL DIRECT COST 82,918,926

Track Inspection 128,185,200
Rail Grinding 270,613,200
Rail Surfacing 99,699,600
Rail Renewal and Replacement 356,070,000

TOTAL INDIRECT COST 854,568,000  

 

 The values presented in this analysis are overall averages for Class I U.S. freight 

railroads and will vary based on the circumstances of each broken rail event.  Pertinent 

factors include the severity, location, density of line, and availability of labor and 

materials.  The methodologies developed here could be used by railroads to estimate the 

costs associated with broken rails based on their own line and operating characteristics. 

 

6.6.1 Future Work on Economic Impact of Broken Rails 

 Additional work on this topic could include research on hard-to-quantify values 

associated with broken rails.  Some of these factors include the average cost of lading 

loss in a broken rail derailment, the financial impact of loss of business from accidents 

and train delays, and the costs associated with rail surfacing at the local level.  Additional 

future research might also be useful to further understand and refine the costs associated 

with train delay.  A better estimate for the cost of locomotive delay may be based on 

leasing rates for locomotives or number of additional locomotives purchased to 

compensate for delays.  It also may be possible to refine the car delay cost to include 

privately owned cars. 
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CHAPTER 7: CONCLUSIONS & FUTURE RESEARCH 

 

 Understanding the factors affecting the likelihood of train accidents is essential 

for identifying and implementing the most effective and efficient accident reduction 

measures.  In Chapter 3 I presented an analysis of the effect of train length on accident 

rates.  Train accident likelihood is dependent on both car-mile and train-mile-related 

causes and FRA train accident causes were classified into these two categories using a 

new quantitative metric.  Updated mainline car-mile and train-mile-related accident rates 

were calculated for U.S. Class I freight railroads using the reclassified accident causes.  

In 2005 the accident rate for car-mile-related causes was 1.05x10-8 or about 0.011 

accidents per million car-miles, and the train-mile-related accident rate was 8.62x10-7 or 

about 0.86 accidents per million train-miles.  The model developed here enables 

quantification of the effect of operational changes in train length on accident rate at both 

the individual train, and system-wide levels. 

 In Chapter 4 I presented an analysis of recent train accident data and found that 

broken rails are the leading cause of major derailments on U.S. railroads.  A previous 

study by Dick (2001) used logistic regression and data on 11 possible track and traffic 

characteristics to develop a statistical model to predict service failures.  I conducted 

further evaluation of Dick’s model using unseen data and found it to be robust for the 

time period and dataset used in his study.  Additionally, artificial neural networks 

(ANNs) and hybrid ANN/Logistic Regression (ANN/LR) models were used in an attempt 

to improve the accuracy of the logistic regression model.  Although neither ANNs nor 

ANN/LR models improved the predictive performance, all the models had a similar level 

of accuracy and were robust for unseen cases. 

 In Chapter 5 I extended Dick’s (2001) study, by conducting an analysis using a 

new, more recent dataset that included an expanded number of factors with the potential 

to affect rail crack growth rate and service failure occurrence.  The new dataset included 

28 factors on track and rail characteristics, infrastructure features, maintenance activities, 

and on-track testing results.  The predictive accuracy of Dick’s (2001) model was 

reduced when applied to the new data.  Consequently several types and variations of 

modeling techniques were tried, including logistic regression, ANNs, and hybrid 
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ANN/LRs.  Each was evaluated for accuracy and robustness to determine the best 

prediction model.  A “practical” logistic regression model was ultimately selected 

because it was accurate, understandable, and useable.  This model included only eight 

parameters and had a predictive accuracy of 64.7%.  The most important factors related 

to service failures were rail weight, rail type, rail age, annual traffic, weight of car, 

presence of an ultrasonic defect, presence of a geometric defect, and the presence of a 

bridge.  A prospective prediction model was developed based on service failure rates for 

the BNSF Railway.  The objective of the models developed in this analysis was to 

provide railroads with tools to help them identify locations with a high likelihood of 

service failure occurrence and more effectively allocate resources to prevent them. 

 In Chapter 6 I presented an analysis of the economic impact of broken rails.  From 

2003 through 2006 broken rails were responsible for 335 FRA-reportable mainline 

derailments on Class I freight railroads, or about 84 per year.  The average cost of 

damage to track and equipment from these accidents was $525,000 per incident and the 

average annual cost was $44 million.  In addition to the FRA-reportable costs, expenses 

due to broken-rail-accident-caused train delay are estimated to be about $3 million per 

year.  Railroads also incur about $19 million per year for repair of service failures, and an 

additional expense of $17 million due to the train delay that results from their occurrence.  

The costs of preventive measures, such as rail inspection, rail grinding, track surfacing, 

and rail replacement were estimated to be approximately $855 million per year, but 

because these activities provide multiple benefits to railroads it was not possible to 

determine what share of this amount should be allocated to broken rail prevention. 

 

7.1 Future Research 

 Future research specific to the topics presented in this thesis is described at the 

end of each chapter.  However, some of the most important topics are summarized here.   

 The analysis presented in Chapter 3 was based on a binary classification of 

accident causes that assumed that they could be classified as either car-mile or train-mile-

related.  Future work regarding train accident causes may reveal that some accidents are a 

function of both car and train-miles.  Therefore, it may be possible to develop a function 
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for each cause group that accounts for the effect of both.  This work might further refine 

the understanding of train accidents and train accident rates. 

It may also be possible to improve the accuracy of the service failure prediction 

models.  The models presented in this analysis had an accuracy ranging from about 65% 

to 70% for prediction of service failures leaving about 30% to 35% of the variance 

unexplained.  Examination of additional factors that affect crack growth may help to 

understand this variance.  Some of the factors that could be considered include location-

specific climatic data, flat wheel incidence, and track inspection data. 

Incorporation of climatic data may enable quantification of cyclic longitudinal 

loading due to fluctuations in thermal stress.  It may also be possible to determine the 

extent of cyclic vertical loading that rail at specific locations experiences under various 

degrees of tensile stress. 

Out-of-round (flat) wheels are known to affect crack growth in rails.  Therefore, 

incorporation of wheel impact load detector (WILD) data might enable the occurrence 

and magnitude of these loads to be included as a parameter in a prediction model.   

More sophisticated use of ultrasonic and geometric inspection data might also 

improve the predictive ability of the model in two ways.  First, the incidence of broken 

rails is commonly believed to be related to the rate of both rail defect and service failure 

occurrence, but neither of these was accounted for in the models that were developed.  

Second, inspection frequency was also not accounted for.  This parameter might be 

inversely related to service failures because problems are more likely to be detected and 

corrected before a broken rail occurs. 

 Finally, it may also be possible to apply the modeling techniques explored in this 

thesis to other accident causes.  For example, the likelihood of track buckling, also 

known as “sun kinks”, is affected by a variety of factors.  The same multivariate 

modeling techniques that were applied to service failure prediction in this thesis might be 

able to be adapted to determine the factors related to the occurrence of track buckles. 
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APPENDIX A: SAS OUTPUT FOR PRACTICAL SERVICE FAILUR E 

PREDICTION MODEL 

 

Model Information 

Data Set WORK.TRIAL_1 

Response Variable BROKEN_RAIL 

Number of Response Levels 2 

Model binary logit 

Optimization Technique Fisher's scoring 

 
 

Number of Observations Read 25370 

Number of Observations Used 25370 

 
 

Response Profile 

Ordered 
Value BROKEN_RAIL  

Total 
Frequency 

1 1 12685 

2 0 12685 

 
Probability modeled is BROKEN_RAIL=1. 

 
 

Step-wise Selection 
Procedure 

 
 
Step  0. Intercept entered: 
 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 

-2 Log L = 35170.288 
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Residual Chi-Square Test 

Chi-Square DF Pr > ChiSq 

3595.0046 8 <.0001 

 
 
Step  1. Effect ULTRASONIC_DEFECT entered: 
 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 
 

Model Fit Statistics 

Criterion  
Intercept 

Only 

Intercept 
and 

Covariates 

AIC 35172.288 33941.932 

SC 35180.429 33958.215 

-2 Log L 35170.288 33937.932 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 1232.3557 1 <.0001 

Score 1142.0348 1 <.0001 

Wald 944.4974 1 <.0001 

 
 

Residual Chi-Square Test 

Chi-Square DF Pr > ChiSq 

2565.4889 7 <.0001 

 
 
Note: No effects for the model in Step 1 are removed. 
 
 
Step  2. Effect RAIL_TYPE entered: 
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Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 
 

Model Fit Statistics 

Criterion  
Intercept 

Only 

Intercept 
and 

Covariates 

AIC 35172.288 33323.061 

SC 35180.429 33347.485 

-2 Log L 35170.288 33317.061 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 1853.2271 2 <.0001 

Score 1715.0878 2 <.0001 

Wald 1471.8881 2 <.0001 

 
 

Residual Chi-Square Test 

Chi-Square DF Pr > ChiSq 

2023.9459 6 <.0001 

 
 
Note: No effects for the model in Step 2 are removed. 
 
 
Step  3. Effect ANNUAL_MGT entered: 
 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 
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Model Fit Statistics 

Criterion  
Intercept 

Only 

Intercept 
and 

Covariates 

AIC 35172.288 32728.646 

SC 35180.429 32761.211 

-2 Log L 35170.288 32720.646 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 2449.6421 3 <.0001 

Score 2273.7011 3 <.0001 

Wald 1980.8580 3 <.0001 

 
 

Residual Chi-Square Test 

Chi-Square DF Pr > ChiSq 

1471.8589 5 <.0001 

 
 
Note: No effects for the model in Step 3 are removed. 
 
 
Step  4. Effect AVE_TONS entered: 
 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 
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Model Fit Statistics 

Criterion  
Intercept 

Only 

Intercept 
and 

Covariates 

AIC 35172.288 32241.567 

SC 35180.429 32282.273 

-2 Log L 35170.288 32231.567 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 2938.7214 4 <.0001 

Score 2701.5118 4 <.0001 

Wald 2313.8615 4 <.0001 

 
 

Residual Chi-Square Test 

Chi-Square DF Pr > ChiSq 

1005.8357 4 <.0001 

 
 
Note: No effects for the model in Step 4 are removed. 
 
 
Step  5. Effect GEOMETRIC_DEFECT entered: 
 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 
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Model Fit Statistics 

Criterion  
Intercept 

Only 

Intercept 
and 

Covariates 

AIC 35172.288 31931.386 

SC 35180.429 31980.234 

-2 Log L 35170.288 31919.386 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 3250.9021 5 <.0001 

Score 2973.5499 5 <.0001 

Wald 2540.4068 5 <.0001 

 
 

Residual Chi-Square Test 

Chi-Square DF Pr > ChiSq 

705.7051 3 <.0001 

 
 
Note: No effects for the model in Step 5 are removed. 
 
 
Step  6. Effect RAIL_WGT entered: 
 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 
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Model Fit Statistics 

Criterion  
Intercept 

Only 

Intercept 
and 

Covariates 

AIC 35172.288 31595.359 

SC 35180.429 31652.348 

-2 Log L 35170.288 31581.359 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 3588.9288 6 <.0001 

Score 3268.5913 6 <.0001 

Wald 2777.7570 6 <.0001 

 
 

Residual Chi-Square Test 

Chi-Square DF Pr > ChiSq 

370.3985 2 <.0001 

 
 
Note: No effects for the model in Step 6 are removed. 
 
 
Step  7. Effect BRD_PRESENT entered: 
 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 
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Model Fit Statistics 

Criterion  
Intercept 

Only 

Intercept 
and 

Covariates 

AIC 35172.288 31328.628 

SC 35180.429 31393.759 

-2 Log L 35170.288 31312.628 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 3857.6599 7 <.0001 

Score 3492.4723 7 <.0001 

Wald 2945.4859 7 <.0001 

 
 

Residual Chi-Square Test 

Chi-Square DF Pr > ChiSq 

118.3244 1 <.0001 

 
 
Note: No effects for the model in Step 7 are removed. 
 
 
Step  8. Effect AGE_OF_RAIL entered: 
 
 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 
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Model Fit Statistics 

Criterion  
Intercept 

Only 

Intercept 
and 

Covariates 

AIC 35172.288 31211.125 

SC 35180.429 31284.397 

-2 Log L 35170.288 31193.125 

 
 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 3977.1626 8 <.0001 

Score 3595.0046 8 <.0001 

Wald 3025.2001 8 <.0001 

 
 
Note: No effects for the model in Step 8 are removed. 
 
Note: All effects have been entered into the model. 
 
 

Summary of Step-wise Selection 

Effect 

Step Entered Removed DF 
Number 

In  
Score 

Chi-Square 
Wald 

Chi-Square Pr > ChiSq 

1 ULTRASONIC_DEFECT  1 1 1142.0348  <.0001 

2 RAIL_TYPE  1 2 605.0523  <.0001 

3 ANNUAL_MGT  1 3 586.6958  <.0001 

4 AVE_TONS  1 4 474.1906  <.0001 

5 GEOMETRIC_DEFECT  1 5 308.3612  <.0001 

6 RAIL_WGT  1 6 337.4356  <.0001 

7 BRD_PRESENT  1 7 253.0159  <.0001 

8 AGE_OF_RAIL  1 8 118.3244  <.0001 
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Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 
Standard 

Error  
Wald 

Chi-Square Pr > ChiSq 

Intercept 1 4.9373 0.3219 235.3116 <.0001 

RAIL_WGT 1 -0.0454 0.00218 435.8151 <.0001 

RAIL_TYPE 1 -1.3464 0.0551 598.0631 <.0001 

AGE_OF_RAIL 1 -0.0106 0.000978 117.4865 <.0001 

ANNUAL_MGT 1 0.00899 0.000356 638.1390 <.0001 

AVE_TONS 1 0.0232 0.00133 306.7840 <.0001 

ULTRASONIC_DEFECT 1 1.6130 0.0571 796.7727 <.0001 

GEOMETRIC_DEFECT 1 0.8227 0.0455 327.0920 <.0001 

BRD_PRESENT 1 1.6294 0.1119 212.0442 <.0001 

 
 

Odds Ratio Estimates 

Effect 
Point 

Estimate 
95% Wald 

Confidence Limits 

RAIL_WGT 0.956 0.952 0.960 

RAIL_TYPE 0.260 0.234 0.290 

AGE_OF_RAIL 0.989 0.988 0.991 

ANNUAL_MGT 1.009 1.008 1.010 

AVE_TONS 1.023 1.021 1.026 

ULTRASONIC_DEFECT 5.018 4.486 5.613 

GEOMETRIC_DEFECT 2.277 2.083 2.489 

BRD_PRESENT 5.101 4.096 6.351 
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Association of Predicted Probabilities and 
Observed Responses 

Percent Concordant 71.7 Somers' D 0.43
7 

Percent Discordant 28.0 Gamma 0.43
9 

Percent Tied 0.3 Tau-a 0.21
9 

Pairs 1609092
25 

c 0.71
9 

 
 

Wald Confidence Interval for Adjusted Odds Ratios 

Effect Unit  Estimate 95% Confidence Limits 

RAIL_WGT 1.0000 0.956 0.952 0.960 

RAIL_TYPE 1.0000 0.260 0.234 0.290 

AGE_OF_RAIL 1.0000 0.989 0.988 0.991 

ANNUAL_MGT 1.0000 1.009 1.008 1.010 

AVE_TONS 1.0000 1.023 1.021 1.026 

ULTRASONIC_DEFECT 1.0000 5.018 4.486 5.613 

GEOMETRIC_DEFECT 1.0000 2.277 2.083 2.489 

BRD_PRESENT 1.0000 5.101 4.096 6.351 

 
 

Partition for the Hosmer and Lemeshow Test 

BROKEN_RAIL = 1 BROKEN_RAIL = 0 

Group Total Observed Expected Observed Expected 

1 2537 502 611.85 2035 1925.15 

2 2537 750 814.76 1787 1722.24 

3 2537 832 910.77 1705 1626.23 

4 2542 1065 995.19 1477 1546.81 

5 2540 1364 1086.92 1176 1453.08 

6 2537 1249 1202.03 1288 1334.97 

7 2537 1273 1353.28 1264 1183.72 

8 2543 1591 1624.56 952 918.44 



  

 123 

Partition for the Hosmer and Lemeshow Test 

BROKEN_RAIL = 1 BROKEN_RAIL = 0 

Group Total Observed Expected Observed Expected 

9 2537 1900 1888.49 637 648.51 

10 2523 2159 2196.91 364 326.09 

 
 

Hosmer and Lemeshow 
Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 

196.6711 8 <.0001 

 
 

Classification Table 

Correct Incorrect Percentages 

Prob 
Level Event 

Non- 
Event Event 

Non- 
Event 

Cor-
rect 

Sensi- 
tivity  

Speci- 
ficity  

False 
POS 

False 
NEG 

0.000 12685 0 12685 0 50.0 100.0 0.0 50.0 . 

0.100 12685 31 12654 0 50.1 100.0 0.2 49.9 0.0 

0.200 12601 448 12237 84 51.4 99.3 3.5 49.3 15.8 

0.300 12105 2179 10506 580 56.3 95.4 17.2 46.5 21.0 

0.400 9828 6628 6057 2857 64.9 77.5 52.3 38.1 30.1 

0.500 6979 9428 3257 5706 64.7 55.0 74.3 31.8 37.7 

0.600 5258 11087 1598 7427 64.4 41.5 87.4 23.3 40.1 

0.700 4227 11540 1145 8458 62.1 33.3 91.0 21.3 42.3 

0.800 2076 12334 351 10609 56.8 16.4 97.2 14.5 46.2 

0.900 674 12604 81 12011 52.3 5.3 99.4 10.7 48.8 

1.000 0 12685 0 12685 50.0 0.0 100.0 . 50.0 

 
 


