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ABSTRACT

Continuous improvement in safety is an ongoing gb¢he railroad industry and
a critically important element of this is reducitg number of train accidents.
Accomplishing this efficiently requires understamglpf the factors that contribute to
accident occurrence. Train accident rates arengoitant metric of railroad
transportation safety and risk. These rates haea khe subject of a number of analyses
but they have generally not considered the effettam length. In this thesis, Federal
Railroad Administration (FRA) accident data werediso develop a new quantitative
metric to classify FRA accident causes as eittz@nimile or car-mile-related and the
results were used to revise a previous classifinaif these causes. These reclassified
causes were then incorporated into a model to lzd&enew train-length dependent
accident rates. A sensitivity analysis was condltdanvestigate the effects of changes
in train length on an individual train’s accideikielihood and on the system-wide
accident rate.

The second major focus of this thesis was an arsadf factors related to the
occurrence of broken rails. Broken rails are #dallng cause of major derailments and
hazardous material release accidents on U.S. Ctagads. From 2003 through 2006
there was an average of 84 mainline broken-raditteents per year with an average
track and equipment damage cost of $525,000 p&tent In the last ten years their
annual frequency has increased 18%; consequefftiytseto reduce their occurrence are
increasingly important. The purpose of this studg to examine the factors that
influence the occurrence of broken rails and dgvelpredictive tool that will enable
railroads to identify locations that have a highlgability of broken rail occurrence. The
factors that were considered included rail charesties, infrastructure features,
maintenance activity, operational information, aaiditesting results. To analyze the
factors related to broken rails two modeling teges were applied, one using statistical
regression and the other employing artificial neneaworks (ANN). Several variations
of the logistic regression (LR) and ANN techniquese developed, including hybrid
LR/ANN models. The accuracy and practicality af thodels were evaluated and

compared. A “practical” logistic regression models developed that used only the top



eight related factors and was able to identify brokail locations with approximately
65% accuracy.

Finally, to assist with decisions regarding brokaihprevention, the economic
impact of broken rails was also studied. Thisudeld the associated costs of broken ralil
service failures and derailments, as well as tis¢ @abtypical prevention measures. A
train delay calculator was developed based oroadlindustry operating averages. The
results and methodologies presented in this tla@sistended to help railroads better
understand the factors contributing to the occuweeand severity of railroad accidents
and more effectively allocate resources to imprineg safety and risk management

efforts.
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CHAPTER 1: INTRODUCTION

The purpose of the research described in thisghvess to improve our
understanding of factors related to railroad acuisleparticularly broken rail derailments,
and provide modeling tools to assist in risk analgsd accident prevention. Improving
the safety of rail transportation is an ongoingeahiye of the railroad industry. This
research examines two topics that are particutarigly with regard to railroad operating
practices. The first topic is an evaluation oirtraccident rates and accident causes
based on train length. Understanding the effettaif length on accident likelihood is
important because as railroad freight traffic ilses railroads must either run more
trains or longer trains, or both. This researd@viales insight into the safety implications
of both of these practices. The second topicasded on accident reduction by
preventing broken rails. Broken rails are the iegdause of major train accidents and
the frequency of broken rail derailments has inee€al8% in the last ten years (FRA
2007a). This thesis presents several modelingitqeabs for the prediction of broken rail
locations and an evaluation of costs associateul bvaken rails.

1.1 Objective and Scope

The first topic considered is the relationship eswtrain length and train
accident causes. Accident data and causes froffettheral Railroad Administration
(FRA) Office of Safety accident database were arelyfor a 16 year period from 1990
through 2005. During this period, U.S. Class igin¢ railroads experienced 13,181
reportable mainline and siding accidents (FRA 200 Eyvaluating the average length of
trains involved in specific causes provided thditgitio develop conclusions in regards to
the relationship between a train’s length and iiled of an accident. The results of this
study were used to calculate new train-length déeehaccident rates.

The second topic, and primary focus, of this thissestudy to understand the
factors related to broken rail service failures dadhilments. Broken rails are an
increasing concern to the railroad industry duledth their frequency and severity. A
service failure in this thesis is defined as a brokail that does not result in a derailment.

Better understanding the factors that contributertdken rails is necessary for efficient



prevention of their occurrence. The analysis okbn rails was divided into three main
areas. The first section is an evaluation of mmesiwork as well as a presentation of new
predictive modeling techniques. The second segiesents a predictive model based on
recent service failure data. Finally, the thirdtsm summarizes the economic impact to
railroads from broken rail service failures, derahts, and prevention measures.

| used data on broken rail service failures anaitteents for a four-year period
from 2003 through 2006. Class | railroads in th8.l&xperienced an average of 84
mainline broken rail derailments per year. Therage equipment and track damage cost
of a broken rail derailment during the study pemas approximately $525,000 (FRA
2007a).

1.2 Organization

This thesis is divided into seven chapters, améhiction, a literature review, four
chapters describing the research, and a concludiba.majority of the research chapters
have been presented, published, or are being @epar publication in various
engineering conference proceedings and journalssaassed below. Also included in
this thesis is an appendix with further informatregarding the prediction models

presented. Following is a summary of each of W rhain chapters.

Chapter 2:

In this chapter | present a review of previousréture on the topics presented in
this thesis. This literature includes work botredily and indirectly related to this
research. Some of the references in this sect®alao cited elsewhere in this thesis;
however, this chapter provides a more detailecerewaf previously published work. The
topics surveyed include accident causes, acciddes rfracture defect growth, factors
influencing broken rails, statistical modeling teiues, neural network modeling

applications, and railroad economic research.



Chapter 3:
Accepted for publication in the Transportation Resh Record

This chapter presents an analysis of train actickmses and rates based on train
length. Train accident causes were separatedwaalistinct categories, those related to
the train’s length (car-mile-related) and thoseepehdent of train length (train-mile-
related). The decision to dispatch the same numib&rtipments in fewer longer trains
versus more, shorter trains will affect the ovenaftwork accident rate. Since some
accident causes are correlated with car-miles #mef®with train-miles, accurate
classification of the causes is important to cdlyetetermine the effect of changes on
accident rates. In a previous study, all FRA aagiccauses were combined into 51
unique accident cause groups and classified asreai#ir or train-mile-related. |
developed a new metric to quantitatively evaluaiehecause group based on accident
data. Use of the metric led to a reclassificatibfil cause groups. The new
classification was found to be more representaifw@ar and train-mile expectations.
Mainline car-mile and train-mile-related accidegiess were calculated for Class | freight
railroads. These rates were used in a sensiawvigyysis to illustrate the effect of changes

in train length on accident rate.

Chapter 4.
Presented in part at INFORMS 2007 annual conferemme SRA 2007 annual meeting
This chapter is an introduction to the analysibraken rail service failures and
derailments. Broken rail derailments are the sédeading cause of train accidents; only
grade crossing collisions occur more frequentlpisTThapter presents initial work
evaluating factors leading to broken rails in oridedevelop a prediction model. A
previous study by Dick (2001) used service faildata from the BNSF Railway to
develop a logistic regression prediction modetvdluated the robustness of Dick’s
model using unseen service failure data. | alseldped three new prediction models
using artificial neural networks (ANN). The modédmlsveloped were a stand-alone ANN
and two hybrid ANN-logistic regression (ANN/LR) meld. | determined that all four

models have similar predictive abilities and ateusi for unseen data.



Chapter 5:
Presented in part at the Joint Rail Conference@0@and the 8 World Congress on
Railway Research in 2008
Currently being prepared for submission to the jalrAccident Analysis & Prevention
This chapter extends the work presented in theique chapter using a more
recent and comprehensive dataset to attempt terhettlerstand and quantify the factors
affecting broken rails. Chapter 4 used serviceifaidata and information on train
movement and track information for a two-year perién this new study | used a four-
year period of recent data as well as an expandedet to include more possible factors
that lead to service failures. The factors thatenmnsidered included rail
characteristics, infrastructure features, mainteaactivity, train operation data, and on-
track testing results. Multiple predictive modelsing both logistic regression and
artificial neural network techniques, were evalddtedetermine the factors related to
service failures. A “practical” prediction modeitkva limited number of input
parameters was constructed that was both undeedibndnd useable. The models were
also tested against unseen data and found to lstrobinally, the practical prediction
model was applied to a hypothetical case studijustiate the potential use of the model

as a maintenance planning tool.

Chapter 6:
Currently being prepared to be presented in pathat AREMA 2008 Annual Conference
This chapter examines the economic impact of brokés. The purpose is to
guantify the cost of broken rails to assist witleideon making regarding their prevention.
Average track and equipment damages for brokemeadiiments for U.S. Class I freight
railroads were examined using available FRA acdidata. Additionally, average
service failure repair cost and broken rail acciddean-up time and cost were
determined from data provided by railroad industxperts. Train delay cost was
evaluated based on car cost, locomotive costchel labor cost, and traffic density of
the line. Based on this information, combined VWA data, a new, more complete

estimate of the cost of broken rails was develogédally, the cost of preventive



maintenance techniques, such as rail grindingreplacement, and track surfacing, were

summarized.



CHAPTER 2: LITERATURE REVIEW

In this chapter | present a survey of literatugeatibing previous work completed
on the topics presented in this thesis. Many efrdierences presented here are also
cited elsewhere in this thesis; however, this atrgptesents a more in-depth description
of the most important previous work pertinent to mgearch. This chapter is divided
into four specific sections: accident causes atesrdactors related to broken rails,
statistical and neural network modeling technigaes, railroad economic research.

The literature reviewed regarding accident caaselsrates is the framework for
the analysis conducted in Chapter 3. The previessarch conducted on the factors
leading to broken rails revealed that crack grostimked to a number of variables but is
also somewhat unpredictable. The literature ssureaewed regarding modeling
techniques are the basis for the advanced logagiession and artificial neural network
models presented in Chapters 4 and 5. Finallypteeious work examined on railroad
economic research is used as background informédrahe methodology used to
calculate the cost of broken rails in Chapter 6e Titerature reviewed in each section is
presented starting with the most significant cdmttion to the work completed in this

thesis.

2.1 Accident Causes and Rates

The literature presented in this section was ugelkvelop the premise that the
likelihood of a train accident is dependent onntlangth. ADL (1996) introduced the
concept that train accident causes can be sepanabetivo groups, those related to the
train length and those independent of train lengthderson (2005) and Anderson &
Barkan (2005a) considered some of the implicatairihis. | conducted a similar
analysis in Chapter 3 of this thesis to analyze hoeident causes are affected by train
length.

Anderson & Barkat§2005a) conducted an in-depth examination of taairident
rates on U.S. freight railroads. With regard @ortrmile and car-mile-related causes,

they stated,



“The likelihood that a train will be involved imaccident is a function of both
train-miles (TM) and car-miles (CM) operated. @ate related causes are those
for which the likelihood of an accident is proponial to the number of car-miles
operated. These include most equipment failloes/hich accident likelihood is
directly proportional to the number of compondjetg. bearing failure) and also
include most track component failures for whichident likelihood is
proportional to the number of load cycles imposedhe track (e.g. broken rails
or welds). Train-mile related causes are thos&foch accident likelihood is
proportional to the number of train miles operat&tiese include most human
error failures for which accident likelihood idependent of train length and
depends only on exposure (e.g. grade crossinigiool$)... The probability that

an accident will occur is then a summation ofrthenber of train-miles multiplied
by the train-mile accident rate and the numbearanfmiles multiplied by the car-
mile accident rate. Thus, it follows that longr@ins have an increased likelihood

of having an accident due to a larger number chuées of exposure.”

Anderson & Barkan (2005a) grouped accidents gktcdass, which they used as
a proxy for train speed. The frequency of accigdamid the average number of cars
derailed were examined for each group. They fahatthe likelihood of a train accident
varies by track class. The effects of train lergtld the position of derailed cars were
also examined. The authors concluded that theipogif a car within a train’s consist
affects its probability of derailment. They alswfd that the number of cars derailed, or
the severity of an accident, is dependent on teaigth. Therefore, the probability that a
particular car will be derailed in a derailmentasgely a function of train length, train
speed, and position within the consist.

Anderson & Barkar§2004) examined railroad accident rates for U.&gfrt
railroads based on different FRA track classesiniMee accident rates were calculated
for each FRA track class and reported in termsott laccidents per train-mile and per
car-mile. They found a difference of two ordersragnitude between accident rates for

the lowest and highest track classes. They coeditigiat incorporating a track class term



in the calculation of derailment probabilities argk increases the accuracy and
usefulness of the results.

Arthur D. Little, Inc (ADL) (1996) examined the risk involved with transpodati
of hazardous materials by rail. ADL examined eBBRA\ accident cause and grouped
similar accident causes together. Each cause gvasplassified as either car-mile-
related or train-mile-related based on industryegppinion. The number of accidents
for each cause group and track class was determmmeédccident rates per car-mile and
per train-mile were calculated for each FRA traless.

Saccomanno & El-Hagd 989 & 1991) completed studies evaluating how the
placement of dangerous commodity cars within atcansist affect the probability of
their derailment. The authors determined thahtimaber of cars derailing is a function
of the cause of derailment, train speed, and thiduel train length. It was also found
that the point of derailment (POD) was stronglyeaféd by the cause of derailment and
train length. The authors demonstrated that tinaildeent probability of each car in a
train can be calculated based on train length. alitleors concluded that effective
marshalling strategies may reduce the number @fildegnts in which hazardous
materials are released.

Transport Canad@006) conducted an evaluation of risk associatiéa w
stationary dangerous goods (DG) railway cars. Tdagulated the probability of a
derailment of trains moving on tracks adjacenttédienary DG cars. The expected
number of freight train derailments per millionifjiet train miles was calculated based
only on factors for traffic density and track clagshe work concluded,

“Derailments due to certain types of causes wawed to be more influenced by

these factors [traffic density and track clasbhe relationship of higher

derailment rates on low-density lines was antteigdor track-related causes.

The track quality of low density lines often refie a lower capital investment and

there are less stringent tolerances in the maninstandards for these lines, as

they would often be uneconomical to keep operatthgrwise.”

Barkan et al(2003) examined railroad derailment factors indbetext of

hazardous materials transportation risk. Thisystietermined that the speed of a train



and the number of cars derailed was significarglgted to hazardous materials release
probability. Certain accident causes were founietanore likely than others to create
accident conditions in which hazardous materialg bereleased. In particular, these
causes were broken rails or welds, buckled trangroper train handling, and broken
wheels. The authors determined that differentibieest causes resulted in different
accident severities and distributions of cars dedai

Dennis(2002) performed an analysis on the decline ofdeetirates for railroads
since deregulation in 1980. Dennis developed aeinib@t evaluated changes in the rail
industry from 1983 to 1994 to understand the efééthese changes on accident rates.
He concluded that federal regulation, whether meaishly defect rates, violation rates,
or inspection rates, had a statistically insigmificeffect on the rate of track accidents
during the period. However, Dennis determined thatinvestment in railroad track by

railways did have a statistically significant effen the decline in track accidents.

2.2 Factors Related to Broken Rails

The literature reviewed in this section was used ramework for the analyses
presented on service failure prediction in Chapteasd 5. The logistic regression
service failure prediction model presented in Datlal. (2003) was examined and
evaluated for recent service failure data. In mgigsis | expanded on the logistic
regression technique examined in their study. mbdel developed to predict broken rail
locations by Sourget & Riollg2006) led to the conclusion that inclusion of iddial
factors such as maintenance activities, could bd tscreate a more accurate service
failure prediction model. Additional literaturewsces reviewed here focused on the
mechanistic analysis of broken rails. Kim & KinD(2), da Silva et a(2003),
Skyttebol et al(2005), and Aglan & Gan (2001) all conducted stsidieamining fatigue
crack growth in rail. Their analyses were usedrtderstand the factors and some of the

unexplained variance in the service failure predictmodels that | developed.

2.2.1 Statistical Prediction of Broken Rails
Dick et al.(2003) developed a service failure prediction mdxdeded on factors

related to broken rails. They determined that brokails were the most frequent cause



of severe train accidents on U.S. freight railroadgrediction model was developed
that evaluated track and traffic characteristithe factors examined included rail age,
rail weight, degree of curvature, speed, average per car, average dynamic tons per
car, percent grade, annual gross tonnage, annuedlywhsses, presence of insulated
joints, and presence of mainline turnouts. Thelipteon model was developed using the
step-wise logistic regression technique. The tletwere used in this analysis were
service failures for a two-year period from the BNSailway. The retrospective model
they developed was found to be 87.4% accurateréaligting service failures. The
model terms found to be significant for servicéduia prediction were rail age, degree of
curvature, annual traffic, rail weight, annual nianbf wheel passes, average dynamic
wheel load, presence of a turnout, tons per caltrack speed. They concluded that the
model could be used to provide probabilistic esten@f the likelihood of service failure
occurrence on the basis of engineering and opeadtioput parameters.

Dick (2001) completed research focused on evaigdtie factors affecting
broken rail service failures and derailments. fitst objective of the study was to
examine the importance of broken rail derailmeatdreight railroads. He determined
that broken rail derailments were far above theayein terms of frequency and
consequence. The second objective was to detepossble predictive factors for
service failures. Each possible predictive faetas evaluated by the means of a single
variable statistical analysis. The final objectwas to complete a multivariate analysis
of predictor variables, as described in Dick €2&8l03) and to show how the model can
be used to reduce broken rail derailments.

Sourget & Riollet(2006) developed a statistical tool, called PROBARA0
assist railroads with decision making regardingdpemal trade-off between
maintenance cost and the damage cost of broken ripredictive model using logistic
regression, based on Dick et al. (2003), was deeeldo identify the probability of
broken rail failure at specific locations and comgptinat to an acceptable threshold level
for failure. The model also allowed for differemeights to be associated with certain
portions of the rail network according to the sesioess of the consequences inherent to a

failure in that particular location. The logistegression model that was developed takes
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into account the rail age, rail weight, rail preficurve locations, track cant, gradient,
track speed, traffic levels, and maintenance atii

Sourget & Riollet (2006) developed two modelsgogdiction of broken rails:
logistic regression and decision trees. The modele developed by creating a
“learning” sample of data and comparing that t@bdation sample. The authors first
experimented with developing the models for a 2&yeeriod; however, they found that
changes in railway operations resulted in an in@teunodel. The authors state, “The
analyses carried out have showed that the qudlipysaliction is decreasing with the
length of the history.” Therefore, the models werereated using only five years of
data. It was determined that the use of a logisticession equation for data from 1999
through 2003 led to an accuracy level of approxatyat5%. The authors concluded that
there was a positive correlation between the faiprobability and the traffic tonnage,
rail weight, and maximum allowable track speed.

Sourget & Riollet (2006) also developed a seyeribdel of a broken rail failure
to assist with maintenance decisions. Segmenbtshwgh probability of rail failure were
examined in the context of two impact classes. firgeclass was the impact on the
railroad’s guaranteed level of safety. The seadasis is the financial impact for the
railroad, such as maintenance costs, train delstgcand derailment costs. Based on a
number of factors, including sleeper charactessti@ck circuit type, bridges, speed, and
the closest maintenance center, the model detesrtiedevel of severity for the broken
rail. The user of this model has access to battahure prediction model information as
well as the failure severity model information. dscan also examine an
occurrence/severity matrix to compare differentkraections on the network. The
authors concluded that these tools allow for betéeisions regarding maintenance work
for preventing broken rails.

Shry & Ben-Akiva (1996) developed a model thaabkshed a relationship
between fatigue failures of rail and factors affegfatigue. The research examined
discrete usage periods for multiple types of rafedts. A Weibull distribution was used
to include variables for the dynamic operationhaf tail line and changing maintenance

conditions. The authors developed both a surfivadtion and a hazard function for the
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condition of the rail. They concluded that theedtfrate for a specific rail only depends
on current conditions and not historical data.

Zarembski & Pales@005) completed a study regarding rail transpiomatisk
due to broken rails. The authors stated, “Theoidbroken rail derailments is directly
related to the rate of rail defect development tiiedassociated relationship between
service defects and detected defects.” The autlsad a statistical analysis to evaluate
the relationship between service defects and deeails. They found a correlation
between broken rail derailments and service defedtls approximately 1 derailment per
125 service defects for main line track under autrexle loading. Additionally, they
determined that if a greater number of detectedalefwere found then the risk from
broken rail derailments would decrease. Theretbeeauthors examined the effect of
improved inspection techniques. The research fobatthe use of risk-based ultrasonic
inspection scheduling techniques will reduce tBk af broken rail derailments, due to
the increase in detected defects. The authorsdstiaat the use of risk based scheduling
reduced the rate of broken rails and service detegB80% or more.

Palese & ZarembskR001) described the risk-based ultrasonic inspecti
program currently implemented by the BNSF railwdey considered a risk-based
approach to scheduling inspections based on taers, defect initiation, defect
growth, and detection reliability. The authordetdCombining the knowledge that not
every defect will be found during a given test vitlle understanding of how defects
initiate and propagate allows for a better undediteg of how often ultrasonic tests must
be conducted to increase the chance of findingethatdefects.” Some of the risk
factors developed for specific BNSF track segmemtie passenger-carrying-miles, dark
territory, single-track territory, and BNSF-definkely routes. The authors determined
that both the service failure rate and the serfadere-to-detected-defect ratio have
decreased significantly with use of the risk-bassgection scheduling. The authors
concluded that more defects were being found bylétector cars as opposed to being
found as service failures, thereby reducing thHeassociated with broken rails.

Zhao et al. (2007) studied the risk of derailm&ntailway vehicles due to rail
defects and broken rails. The risk of a derailnvess measured by the expected number

of broken rails multiplied by the severity of theoken rail event. Four models were
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developed and combined to predict the number dédsrmails over a particular segment.
The four models that were developed were breakgalubermit weld defects, imperfect
inspections, fatigue defects, and the impact afding on reducing defects. The
combination of the models was used to calculateisikeof broken rails.

2.2.2 Mechanistic Analysis of Broken Rails

In Hay’s(1982) textbook on railroad engineering he revigévestypes of rail
defects that lead to broken rail service failuned derailments. Defects are divided into
four groups: longitudinal defects, transverse dsfdrase defects, and other defects. He
stated that the most dangerous type of rail detgetsransverse fissures that initiate
inside the rail head due to minute shatter craokistaen expand across the rail head due
to cyclic loading until the rail breaks, often witttle or no prior indication of the
weakened condition. He also discussed differefgtatieletection techniques used, such
as induction systems, residual magnetic systenasybirasonic inspection systems. He
also examined surface defects that arise from cobatad shearing stresses. These
include head checks, spalling, flaking, and shedfects.

Sperry Rail Servic€l999) published a guide to assist railroads wathdefect
management and identification. The manual is @iohto sections explaining each type
of possible rail defect. The categories of rafedes that the authors defined are
transverse defects, longitudinal defects, web deféase defects, damaged rail, nicked
rail, surface defects, and miscellaneous defett® guide stated,

“The growth of a rail defect depends on a greatynariables. The chemical

composition of the rail and the amount of raikifey are factors which must be

considered. The type of rolling stock (freighdspenger, or motive power), its
weight, and its condition of repair are importaas,well as the frequency of these
loads. The conditions of the roadbed and weathanges which result in track
movement also affect growth. With so many vagaldontributing to
development, it is impossible to predict accusatbé growth of any defect.”

Smith (2005) completed an overview of railway whe®d rail fatigue failures.

Smith stated that the quality of steel manufactuhas improved over the last 30 years,
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thus eliminating many fatigue failures from intdrdefects in the rail head; instead a
large proportion of rail failures are now occurriaigweld locations. Smith also found
that the life of a rail is principally determineg Wwear at the railhead. The wear can lead
to shape change along the length of the rail, windhrn produces greater stresses in the
wheel-rail contact. The author stated that raildjng can be used to remove
corrugations and to restore the accurate rail peafiles that are essential for controlling
these stresses.

Zarembski et al. (2005) and Zaremb&@05) examined the effectiveness and use
of rail grinding. Traditional rail grinding objaees and uses are explored, as well as
applications of profile rail grinding. The auth@samined how to monitor the
effectiveness of rail grinding by developing gringliquality indices. These indices can
be used to determine if rail grinding is improvimhg quality of the track from pre-grind
to post-grind. Additionally, the authors determiribat for high rail in curves, rail
grinding was 76% effective for improving rail prefi while rail grinding on the low ralil
in curves was only 46% effective and 61% effectiveangent track sections. The
authors also conducted an economic study of raatlgrg and found that the savings due
to extended rail life alone pays for the cost dfgending. In addition there are a
number of other benefits from rail grinding, sushraduced fuel consumption, reduced
track geometry degradation, reduced tie-fastengradiation, reduced damage to rolling
stock, and reduced noise and vibration.

da Silva et al(2003) performed tests on newly manufactured caildtermine
fatigue crack growth rate. Four different Europeasihmanufacturers’ steels were each
tested under stress with temperature and humididiytained at a laboratory level. To
determine fatigue crack growth, manual measurenwrgsrface cracks were recorded at
regular intervals. The tests showed that regrassmalysis could be used to model the
crack growth in each of the specimens. Additionddly examining the regression, three
different states (stage I, stage Il, and stageofljrack growth can be identified in steel.
The authors found that crack growth is difficulfpe@dict, because in stage lll, crack
growth can accelerate, remain steady, or slow dolre authors concluded there was no
significant difference in the crack growth rateshie samples from the four different

manufactures.

14



Skyttebol et al(2005) studied the effect of residual stressesatigue crack
growth in rail welds. The authors used finite edmtnanalysis and fracture mechanics to
calculate residual stresses in a flash-butt wetd#d The authors varied a number of
parameters in this test, including axle load, cilaclktion, crack size, and rail
temperature. The authors concluded that, “theyaralshow that typical crack sizes that
can be found in a weld may grow to failure in angnort time if the residual stress fields
interact with the axle load.” The authors alsonduhat, fatigue is strongly dependent on
ambient temperature, time to failure depends oe kéd, and that surface cracks are
more dangerous than an embedded crack in the rail.

Kim & Kim (2002) completed a study examining tlaidgue behavior of rail steel
under mixed loading levels, such as what is expeed by typical railway steel. To
simulate the affect of mixed loadings in the lalorng the fatigue crack growth behavior
was evaluated using various comparative stressdityeranges. The results of this
analysis were compared to the testing completeénrmhstant stress. Specifically, the
authors examined the transition from shelling tcaasverse crack under mixed mode
loadings. Finite element modeling was used toyaedahe effects from the wheel/rail
interface. The authors determined that interratks first grew in the longitudinal plane
and turned into a transverse crack. The authessalncluded that fatigue crack growth
rate under mixed loading conditions was slower tinan under constant load.

Aglan & Gan(2001) examined the fatigue crack growth behavidread
hardened premium rail steel under load. The aathsed the modified crack layer
theory to model fatigue crack growth behavior. yhecorded the crack length and
number of cycles of loading to determine the crgéed and the energy release rate of
the steel. Three distinct stages of crack gronghevobserved, crack initiation, stable
crack growth, and unstable crack growth. The tesflthis study showed that a
microscopic examination of the crack reveals mi@oks, inter-granular separation, and
plastic deformation of the material which lead teaeleration of crack growth in the
second stage. The authors also found that cledaagts initiated from the grain
boundaries led to unstable growth in the third etaigcrack growth.

Fletcher et al(2004) completed an examination of rails in whiatgk rolling

contact fatigue cracks had developed. The studysked on the interaction between
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adjacent long cracks, at least 10mm in length,dhaiat the beginning of their bending-
stress-driven propagation phase. The authors ojgeela model based on the boundary
element technique for the growth of adjacent loragks. The results of the analysis
were shown in a series of plots of stress interfait{ors around crack fronts for both
single and multiple-crack situations. The condusireached in their study were that the
previous models of single-crack growth are mislegdvhen dealing with a rall

containing multiple adjacent cracks.

Fischer et al. (2006) studied the growth and biemaf surface cracks on railway
track under load. The research considered thatgituof a shallow angle surface crack
that may propagate either parallel or perpendidoléne surface of the rail. This
situation was tested for various strain and sts&g®s. The authors found that small
surface cracks are common but generally experisioge crack growth. However, some
surface cracks were found to grow up to a few méliers in length, and then change
their direction towards the rail surface. The aushconcluded that this deviation occurs
at a crack length where the stress intensity rarggesh a threshold where the tensile
residual stress are sufficiently large to changedihection of the crack.

Zumpano & Meo (2006) and Bouteiller et al. (20@&re studying the possibility
of new detection techniques for rail damage an#tdnaails. Currently, the majority of
rail inspection is completed externally with geontetneasurements and internally with
ultrasonic inspection. Zumpano & Meo (2006) werglging a new technique using
wave propagation phenomena to identify discrepanoiedamage, to the rail. Bouteiller
el al. (2006) were investigating the use of a \gdtapplication to project a high
frequency wave through the rail structure to devegken rails. Both new developments
work under the same principle: an improper retignuave indicates damage on or

within the rail.

2.3 Statistical and Artificial Neural Network Modeling Techniques

The literature reviewed in this section servesram#aoduction to the statistical
and artificial neural network models developed imafters 4 and 5. Hocking’s (1976)
work established the four main variable selectemhniques | used to determine the

factors related to service failures. The reseaatducted by Dougherty (1995) and Tu
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(1996) serve as background information on howieidifneural networks (ANN) are
formed as well as their advantages and disadvastagapared to logistic regression.
Finally, techniques developed by Yim & Mitchell &) on hybrid artificial neural
network / logistic regression (ANN/LR) models wersed to develop my ANN/LR

hybrid service failure prediction models.

2.3.1 Statistical Models

Hocking (1976) completed an analysis reviewingdifierent variable selection
techniques in linear regression models. The rebadescribed various computational
procedures for the inclusion or removal of varialdtem a logistic regression model.
The first computational technique described isni@hod to include all possible
predictors for regression and compute the besessgn model based on those
parameters. Some of the more advanced technigalesied forward selection,
backward elimination, and step-wise. The forwaléction technique starts with zero
variables in the model and adds one variable im@until a specified threshold level is
achieved. The backward selection technique peddim opposite procedure where all
variables are initially included in the model aratiables are removed until a given
threshold is reached. The hybrid of these two nsdéep-wise selection, begins as
forward selection, but after each variable is adtieel backward selection technique is
then performed. In conclusion the author statedither forward, backward, nor step-
wise selection will assure that the ‘best’ subsetvealed.” The author recommended
that all three techniques should be performederhtbpe of seeing agreement between
the developed models.

Lei & Jing-feng (2006) developed a logistic regiea model for determining
landslide susceptibility. The logistic regressinathod is used to analyze the
relationship between the binary response variabéelandslide occurrence and the
continuous or binary explanatory variables. Thgt fogistic regression equation
developed showed that elevation, proximity to alroaver, and residential area are main
factors triggering landslide occurrences in thelgtarea. The predicted accuracy of the
landslide susceptibility map was shown to be apipnaiely 80%. In order to improve

the accuracy, the authors developed a secondigggfression equation which was used
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only on areas with high susceptibility to landsfigend used only engineering and
geological condition data. The second logisticgesgion model yielded a higher level of
accuracy for these locations. The authors conditigat using the double logistic
regression modeling technique improved the pradicibility of the model.

2.3.2 Artificial Neural Network Models

Dougherty (1995) completed a review of the usarbficial neural networks
(ANN) for transportation applications. The autheviewed the different learning
techniques that can be used to form neural netwofke most traditional method,
supervised learning, is a network that is constédittased on the inputs, the computed
output, and the actual output value. A global efuaction is created that computes the
difference between the calculated output valuevamat actually occurred. The neural
network adds neurons and adjusts the connectioghigein order to minimize the global
error function. Some other types of learning ersgadidn the paper include, reinforcement
learning, self-organizing networks, and combinetivoeks. The author also explored
some of the possible applications in transportasiach as predicting driver behavior,
pavement maintenance, vehicle classification,itrgfittern analysis, etc. The author
concluded that many of the problems in transpamiasiystems are highly non-linear and
the use of ANNSs for these applications may provieeg@ useful tool.

Tu (1996) completed a study to evaluate the adwgestand disadvantages of
using ANNSs versus logistic regression. This stsiplgcifically looked at the application
of ANNs and logistic regression in the context tégicting medical outcomes. Tu
described multiple advantages of ANNs over tradaicstatistical methods: the neural
network models require less formal statisticalnirag to develop, ANN models can
implicitly detect complex nonlinear relationshipstWween independent and dependent
variables, ANNs have the ability to detect all pokesinteractions between predictor
variables, and ANNs can be developed using multgdening algorithms. Tu also
considered the disadvantages of ANNs comparedtistital methods: ANNs are
referred to as “black box” model due to their liegitability to explicitly identify variable
relationships, ANN models may be more difficultuge in field applications, ANN
modeling requires greater computational resousB$ models are prone to over-
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fitting, and ANN model development is empirical andny methodological issues
remain unsolved. Tu concluded that logistic regjiesremains the clear choice when the
primary goal of model development is to look fosgible causal relationships and when
the modeler wishes to understand the effect ofipt@dvariables on the outcome. Tu
also concluded that a hybrid version of both ANNd kbgistic regression may lead to

the best possible prediction model.

Yim & Mitchell (2003) completed a study that comgé ANNS, logistic
regression models, discriminant analysis (DA), laylorid models for the use of
predicting corporate firm failure in Australia. @lauthors applied traditional statistical
methods and neural network techniques, but alseldegd two hybrid models for
prediction. The first hybrid model, “Logit-ANN",aed logistic regression to preselect
the significant variables for prediction. Only $leesignificant variables were then used as
input variables for the ANN. The second hybrid mlodPLogit-ANN”, used the output
value (probability of failure) from the logisticgeession technique as a new input to the
neural network. ANNSs in this study were constrdatsing backpropagation. The
results of this analysis showed that stand-alon&gNutperformed the traditional
statistical techniques. Yim & Mitchell also foutttht of all the models examined in the
study, the PLogit-ANN hybrid model performed thestoeThey concluded that the use of
ANNs and hybrid models are a valuable tool for éyeadiction.

Odom & Sharda (1990) developed a neural networétehior the prediction of
firm bankruptcy occurrence by examining past finalhdata. The authors compared the
predictive power of ANNs to the predictions madeaayultivariate discriminant
analysis. The results for the training sample vilea¢ the neural networks classified
100% of the cases correctly and discriminant amabjiassified 96% correctly.

However, when the models were tested against “mrisealidation data, the neural
network only classified 59% correctly and the disémant analysis classified 81%
correctly, indicating that the neural networks loaér-fit the data in this study.

Fanning & Cogger (1994) and Towell & Sha\ik®94) conducted studies using
advanced neural network modeling techniques. Ran&iCogger (1994) examined the
use of a generalized adaptive neural network algor{(GANNA) processor in

comparison to traditional backpropagation neuréd aed logistic regression techniques.
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The advantages of a GANNA are that they do notiredbe size of the network to be
predefined, but instead layers are added by mewegtirée additional performance and
generalization of the model. Fanning & Cogger ¢athed that both ANN and GANNA
performance was similar to the traditional statatmethods. Towell & Shavlik (1994)
completed a study developing knowledge-based ANKBANN). KBANN is described
by the authors as a hybrid learning system builnlaypping specific “domain theories”
into neural networks and then refining the neuesvork using backpropagation. Towell
& Shavlik concluded that KBANN networks generalized bettantbther traditional

ANN models.

2.4 Railroad Economic Research

The literature reviewed in this section is usetdaskground information for my
economic impact study of broken rails presente@hapter 6. Cannon et al. (2003)
determined the different types of costs assocmiddbroken rails. Their breakdown of
broken rail costs is used as the framework for sgnemic impact analysis. The study
by Zhao et al. (2006) was used to understand hevet¢bnomic life of rail is affected by
frequency of detected rail defects. Finally, P@o(@962) study provided several tools to
assist with calculating costs associated withaadroperations. His methods were used
in the development of my train delay cost calculato

Cannon et al. (2003) completed an overview ofdafects in railway track. One
specific section of his analysis examined the obsail failures. The authors stated that
the costs of rail failures include the followinga¢k inspection, train delay, remedial
treatments, pre-emptive treatments, derailments)@ss of business. Track inspection
cost, referring to both visual and ultrasonic tegtihighly depends on the frequency of
inspection. Train delay cost includes a railroamign equipment as well as required
payouts as penalties to other railroads due toatipgragreements. Remedial treatment
costs include the cost for expenses such as @dcement and weld repair. Pre-emptive
treatment costs refer to rail grinding and trackesiing. The final two costs examined
by the author were the cost of derailments fronkénorails and the corresponding loss

of business due to loss of customer confidencesapgort. The authors concluded that
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some costs associated with rail failures can ledtaith certainty, while many others
cannot.

Zhao et al. (2006) conducted research assessrectimomic life of rail based on
the frequency of rail defects. The authors exaththe occurrence of rail defects and
broken rails as they relate to maintenance aawitiSpecifically, the research evaluated
the impact of rail grinding on the occurrence aof defects. Additionally, the authors
attempted to model the chance of imperfect traskections. The authors determined
that the life-cycle cost of rail is calculated lcaunting for the cost of track inspections,
rail repairs, train accidents, and rail renewahe Buthors developed a model to
determine the economically optimal amount of tirmiéshould remain in service based
on a given set of circumstances.

Poole (1962) examined and developed tools totas#ls calculating the costs
associated with railroad operations. For freiglms$portation costs, Poole examined the
costs of maintenance of way and structures, maantequipment, depreciation and
interest costs, cost of car repairs, and othespramation expenses. Poole also developed
a method to determine the number of meets and passkassociated costs from
diverting or rerouting traffic to another line. @t topics he explored in regards to track
operating costs were the economics of faster sp@®eds, abandonment of alternative

routes, and cost of transporting heavier cars mibhe capacity.
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CHAPTER 3: THE RELATIONSHIP BETWEEN TRAIN LENGTH AN D
ACCIDENT CAUSES AND RATES

Train accident rates are a critical metric ofrcall transportation safety and risk
performance. Understanding factors affecting actidates is also important for
evaluating the effectiveness of various accideav@ntion measures. Accident rates
have been the subject of a number of analysedbséthave generally not considered the
effect of train length on accident rate. Accideatises can be classified into two groups,
those dependent on train length and correlated twéimumber of cars in the train, and
those independent of train length, correspondirtpeanumber of train-miles operated.
These classifications have implications for thejuiative effect of various changes in
railroad operating practices on railroad safetygrerance. Whether an accident cause is
a function of car-miles or train miles affects heafety measures that might reduce the
likelihood of that cause will affect overall traéccident rate. Accident causes have been
classified as car or train-mile-related based greexopinion but these classifications
have not been quantitatively tested. FRA accidata were used to develop a metric to
objectively classify accident causes and 11 cawses reclassified from the previous
classification. Based on the results of the smdgnsitivity analysis was conducted to
evaluate how changes in train length affect indiaidrains' accident likelihood and
system-wide accident rate. The concept of car-uatsus train-mile accident causes
leads to the premise that, although longer traiasapected to experience more
accidents than shorter trains, operation of lotigeéns results in a lower system-level

accident rate.

3.1 Introduction to Railroad Accident Causes and Rees

Train accident rates are a critical measure otnansportation safety and risk and
understanding them is necessary to evaluate theteff accident prevention measures.
Accident rates have been calculated by variousnizgions and railroads and
aggregated statistics for all U.S. railroads afdiphed annually by the Federal Railroad
Administration (FRA) Office of Safety (FRA 2006, BR007c). Rates have been used

to assess various factors such as track classrayguog location, train speed, and track
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type (Treichel & Barkan 1993, Anderson & Barkan 200ransport Canada 2006).
However, these analyses have generally not corgldbe effect of train length on train
accident rate. Train length is thought to haveféeceon accident rate because more cars
in a train increase the likelihood that a car ackrcomponent in or under a train may
fail. Based on this premise, it has been suggdbtddaccident causes can be classified
into two types, those that are a function of themhar of train-miles operated and those
that are a function of car-miles operated (CCP$18®L 1996). The initial
classification into these two categories was depetddoy Arthur D. Little Inc. (ADL)
based on the opinions of railroad industry expeftisese classifications have
implications for the quantitative effect of variocisanges in practice on railroad safety
performance and have been used in subsequentstfdi@lroad safety (STB 2002,
Zhao et al. 2007, Kawprasert & Barkan 2008). Ttoeee statistical evaluation of the
classifications will enhance their utility and mago clarify our understanding of them.
Furthermore, this classification has implicatiooasdn accurate understanding of the
relationship between train length and accidentaatkconsequent policy implications for
railroad operating practices.

| undertook a study to investigate and evaluageADL accident cause
classifications with the goal of understanding heperating practices, such as train
length, affect the likelihood of a train accidefie objectives of this analysis were:

e Present the methodology for calculating train aecidates based on car-mile
and train-mile accident causes,

e Develop a metric to quantitatively evaluate thessification of accident
causes as car or train-mile-related,

e Use the metric to properly classify train accidesaiises,

e Develop new, up-to-date, train accident rates basettain length, and

e Conduct a sensitivity analysis on the model tcstlate how changes in train

length may affect train accident rate.

3.2 Train Length Based Accident Rates
Train accidents include derailments, collisiorighlvay-rail grade crossing

accidents, and other accident types. The likelinthat a train will be involved in an
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accident is a function of both car-miles and tnaiites operated (ADL 1996, Anderson
2005, Anderson & Barkan 2005b). The number ofrodes operated for a particular
train is affected by train length; longer trains@niulate more car-miles per train mile.
However, not all accident causes are directly eelad the length of the train; instead,
some are related only to the operation of a tiai@spective of its length. Train accident
causes that are a function of car and train-migeshe defined as follows:

"Car-mile-related causes are those for which tkedihood of an accident is
proportional to the number of car-miles operatétese include most equipment failures
for which accident likelihood is directly propontial to the number of components (e.g.
bearing failure) and also include most track congmbtiailures for which accident
likelihood is proportional to the number of loactt®s imposed on the track (e.g. broken
rails or welds).”

“Train-mile-related causes are those for whichabeident likelihood is
proportional to the number of train-miles operatdthese include most human error
failures for which accident likelihood is indepentlef train length and depends only on
exposure (e.g. grade crossing collisions).” (Ander& Barkan 2005a)

3.2.1 Car vs. Train-Mile Expectations

The car-mile cause and train-mile cause definsti@ad to the premise that longer
trains will experience more accidents than shdrgns. This is because longer trains are
more susceptible to car-mile-related accidents #iamter trains due to the additional
cars in the train. Conversely, a train should eepee accidents due to train-mile-related
causes regardless of train length. The lengthtia, referred to here and throughout
the paper, is the number of cars in the train astdhre linear measure of a train’s actual
length.

This premise leads to two expectations that shbeldvident when examining
accident data and can be used to evaluate diffei@ntaccident causes. The first
expectation is that the average length of a tramlved in an accident should be greater
for car-mile-related causes compared to train-mélated causes because longer trains

will experience a greater proportion of car-miléated accidents. Conversely, train-
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mile-related accidents are independent of traigtleand should not be biased towards
long or short trains.

The second expectation is that the percentagecadeats for car-mile-related
accidents should be an asymptotically increasingtfan of train length, whereas the
percentage of train-mile-related accidents shoeldiasymptotically decreasing
function of train length. Longer trains should espnce a higher percentage of accidents
from car-mile-related causes due to their highecgr@age of car-miles per train-mile
operated. Conversely, shorter trains are expeotegperience a greater percentage of

accidents from train-mile-related causes.

3.2.2 Accident Rate Equation

Under the premise that train accidents can beraggghinto two distinct groups,
car-mile-related causes and train-mile-related es\us new accident rate model that
takes into account the two types of classificaticas be developed. The new accident
rate equation must include a factor for train lérigtaccount for accidents that are
dependent on the number of car-miles operated.

To develop the new model, all FRA train accidemises were examined (FRA
2007a, FRA 2007b). A previous study by ADL classifeach accident cause as either
car-mile or train-mile-related (ADL 1996). The pose of this study was to quantify the
risk of hazardous material transportation by examgirll accident causes. The ADL
study showed that accident types should be cladsifs either car-mile or train-mile-
related to properly quantify the car-mile and traiile related risk. By determining the
number of accidents that have occurred due to eagbe, two independent and mutually
exclusive accident rates can be calculated, thendaraccident rate and the train-mile-
accident rate. The expected number of accideatsattrain will be involved in is the
sum of the car-mile-accident rate multiplied by to@mof car-miles and the train-mile-
accident rate multiplied by the number of trainesil The expected number of train
accidents that will occur can be calculated a®vedt
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Aexp = ReM¢ + Ry M, (3.2)

where,

Aexp = Accidents expected
Rc = Car-mile-accident rate (accidents per car mile)
Mc = Number of car miles
Rr = Train-mile-accident rate (accidents per traitejni

M+ = Number of train miles

Under this model it is expected that longer trauisexperience more train
accidents. As a train’s length increases, trailesnoperated remains constant, but the
number of car-miles increases with each additicaal Therefore, the number of
expected accidents for a single train increasegsaltlee additional car-miles (Figure
3.1a).

2] 12
c =
3 TOTAL ACCIDENTS 3
2 \ 2
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E Train-Mile-Related” Pt E
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Train Length Train Length
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Figure 3.1 Expected Accidents from Car-Mile and Tran-Mile-Related
Causes as a Function of Train Length for a Singler&in (a) and for a
Fixed Amount of Traffic (b)

If one extends this model to any given number of tlaat must be transported, it
suggests the general result that operating lomgerstshould result in fewer accidents.
As train length decreases, more trains are requiregove the same number of cars
thereby leading to more train-mile-related accidentinder this simple scenario,
accidents will be minimized by running the longiains feasible given infrastructure

and other constraints (Figure 3.1b).
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It should be noted that there are limits to thedityl of this result for very long
train lengths (>150). This is because the expectspresented, as well as the data used
in my analysis, apply to trains less than this tendn practice it is possible that accident
rates for certain train-mile-related accidents nmayease as train length becomes very
long due to causes such as train handling, trakibg, and other factors. The intention
of this analysis is not to suggest that longengavill necessarily improve safety; instead
the purpose is to develop a better quantitativeetstdnding of how changes that affect
various accident causes, such as number of trash&rain length, may affect overall

accident rates.

3.3 Classification of Accident Causes

To accurately determine the car-mile and traireraitcident rates, proper
classification of each FRA accident cause is needé® FRA accident cause
classification system is very detailed and oftariudes several variations of one related
group of causes. This is a useful attribute ofdatbase, but is more detailed than
necessary for the purpose of this analysis. Caresgty, ADL combined similar
accident causes into 51 unique groups, 34 of wihei classified as car-mile-related
(CM) and 17 as train-mile-related (TM) (Table 3APL 1996). The FRA accident
causes are separated into five main groups, mezdahuman, signal, track, and
miscellaneous causes. ADL defined most track aechanical failures as car-mile-
related, while most human and signal errors wefiaeld as train-mile-related. The
various miscellaneous causes were assigned ta edhenile or train-mile-related.

| used FRA accident data, “Rail Equipment Accidéfrism the FRA Office of
Safety, to evaluate the ADL classification of aegiticauses for the period 1990 to 2005
(FRA 2007a). These data included all accidentsiwizg on either mainline or siding
tracks for all classes of railroads. Accidentsyard and industry tracks were excluded
because the average train length for these typasoidents is comparatively shorter due
to yard operations. Mainline and siding accidevése combined because of similar
accident causes and train length. Car and trai@+mlationship predictions for each

cause group were compared with the corresponditagfatan the FRA database. Train
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Table 3.1 ADL/AAR Accident Cause Groups and Classitation of FRA Accident

Causes
Group CM/TM Cause Description Group CM/TM Cause Description
01E CM  Air Hose Defect (Car) 06H TM  Radio Communications Error
02E CM  Brake Rigging Defect (Car) 07H TM  Switching Rules
03E CM  Handbrake Defects (Car) 08H TM  Mainline Rules
04E CM  UDE (Car or Loco) 09H TM  Train Handling (excl. Brakes)
05E CM  Other Brake Defect (Car) 10H TM  Train Speed
06E CM Centerplate/Carbody Defects (Car) 11H TM  Use of Switches
07E CM  Coupler Defects (Car) 12H TM  Misc. Track and Structure Defects
08E CM  Truck Structure Defects (Car) 01M TM  Obstructions
09E CM  Sidebearing, Suspension Defects (Car) 02M TM  Grade Crossing Collisions
10E CM  Bearing Failure (Car) 03M CM  Lading Problems
11E CM  Other Axle/Journal Defects (Car) 04M CM  Track-Train Interaction
12E CM  Broken Wheels (Car) 05M TM  Other Miscellaneous
13E CM  Other Wheel Defects (Car) 01s TM  Signal Failures
14E CM TOFC/COFC Defects 01T CM  Roadbed Defects
15E CM  Loco Trucks/Bearings/Wheels 02T TM  Non-Traffic, Weather Causes
16E CM  Loco Electrical and Fires 03T CM  Wide Gauge
17E CM  All Other Locomotive Defects 04T CM  Track Geometry (excl. Wide Gauge)
18E CM  All Other Car Defects 05T CM  Buckled Track
19E CM  Stiff Truck (Car) 06T CM Rail Defects at Bolted Joint
20E CM  Track/Train Interaction (Hunting) (Car) 07T CM  Joint Bar Defects
21E CM  Current Collection Equipment (Loco) 08T CM  Broken Rails or Welds
01H TM  Brake Operation (Main Line) 09T CM  Other Rail and Joint Defects
02H TM  Handbrake Operations 10T CM  Turnout Defects-Switches
03H TM  Brake Operations (Other) 11T CM  Turnout Defects-Frogs
04H TM  Employee Physical Condition 12T CM  Misc. Track and Structure Defects

05H TM  Failure to Obey/Display Signals

lengths were grouped into 10-car bins and the pé&gsige of all car-mile-related and train-
mile-related accident causes was graphed verdnderayth (Figure 3.2).

A regression analysis was conducted in which a pdwection, of the form
y=axX’, was fitted to the data to evaluate how well tbegformed to an asymptotically
increasing or decreasing functional form. Theaaltterm regarding the curve form of
the power function, is the exponehbt, If b > 0, the data are more representative of an
asymptotically increasing function (Figure 3.3#)b < 0, the data are more
representative of an asymptotically decreasingtfangFigure 3.3b). Ab approaches
zero the power curve approaches linearity; whei@darger absolute values bf the
power function curves more sharply. In the case »f0, the function will be convex for
b > 1 or concave for b < 1. The residual erronfithe fitted power curves was also
calculated as a function of train length (Figur) 3.

The results were generally consistent with theacat train-mile premises

developed. The average length of trains involvean accident due to car-mile-related
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Figure 3.2 Percentage of Car and Train-Mile-RelatedAccidents versus Train
Length using the ADL Accident Cause Classification

Percent of Total Accidents (y)
Percent of Total Accidents (y)
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Figure 3.3 Characteristics of Exponential Termp, of Power Functiony = ax’,

where (a) Represents a Car-Mile-Related Cause antl)(Represents a
Train-Mile-Related Cause
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causes was 68.3 cars, whereas the average fontiignelated causes was 52.5 cars.
Also, the percentage of train-mile-related accidetgclined asymptotically as a function
of train length. However, although tR& values for the regression analysis were
significant, it was evident that there were sonse@ipancies between the observed data
and the predicted relationships, as indicated bydtge residual error for the extreme
train lengths (Figure 3.2).

These discrepancies suggested that the previossfatation of accident causes
should be re-evaluated to see if they could beawgnt based on newer data and analysis.
Therefore, a more detailed analysis of individuaident causes was conducted. The
relationships between number of accidents and ptxge of accidents as a function of
train length were graphed for each cause groughofgh there were not enough data for
accurate assessment of all the accident causeggnmamy of them conformed well to the
expectations for train-mile or car-mile-related 28, examples of which were grade
crossing collisions and air hose defects, respalgtifFigures 3.4a and 3.4b). However,
examination of the data also suggested that sortteeafause groups needed to be
reclassified because the results were inconsigtigéhthe car and train-mile expectations
(Figures 3.4c and 3.4d).

A possible explanation exists for the cause grdwgrt handling”, which is
caused by a locomotive engineer improperly handlegtrain and commonly attributed
to excessive horsepower use. This had been pyidafined as a train-mile-related
cause because it is due to human error. Howegeildents caused by the use of
excessive horsepower are in fact more common ig fiains than short trains and
therefore resemble a car-mile-related cause. Gealg the cause group “all other
locomotive defects” had been classified as a cé-oaiuse because it is a mechanical
failure. However, the number of locomotives, aneréfore the likelihood of a
locomotive defect, is not necessarily affected bhyrereased number of cars. Several
discrepancies were also observed in other accaderse groups. Therefore a
guantitative metric was developed to objectivebssify each accident cause group as

train-mile or car-mile-related.
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Figure 3.4 Percentage of Accidents versus Train Lgh for Four Example Cause
Groups; Correctly Classified (a) and (b), and Incorectly Classified (c) and (d)

3.3.1 Development of Classification Metric

| used the previously stated premise about catrantmile-related causes to
develop a quantitative metric to classify eachhef ADL accident cause groups. Car-
mile accidents should be more prevalent in longens$ and should be an asymptotically
increasing function of the percentage of accidastiain length increases, and the
reverse should be true for train-mile-related cause

Two parameters were calculated for each accidmrgecto characterize them as
either car-mile or train-mile-related. The firgtrameter is the average length of trains
involved in an accident for each cause group. sduend parameter is derived from the
power function curve and its goodness of fit todléa for the percentage of accidents for
each cause group as a function of train lengthe &tponent in the power function was
used to assess the asymptotical increase or dedredee data (Figure 3.3). The greater
the difference between the calculated valub ahd zero, the stronger the asymptotically

increasing or decreasing function, and therefoeantlication of either a car-mile or a
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train-mile-related cause. For example, cause gedymon-traffic/weather causes
(b =-0.8666), showed a much stronger indication wéim-mile-related cause than 1M,
obstructionslf = -0.3322).

In addition to characterizing the shape of the esrfor each accident cause
group, it was also important to quantify how walky fit the data. In some cases there
were insufficient data to fit a curve and in othirs data showed no trend. In order to
assess the goodness of fit, the coefficient ofrdetetion,R?, for each data set was
calculated.R? values range from 0 to 1 and quantify the goodnégis with higher
values indicating a better fit. Therefore the deat causes with a hid¥f value are
weighted more strongly in the metric than thosdnaifowR value. In summary, the
accident metric, which was term@d\};, incorporates three characteristics associated wit
each accident cause groupthe average length of traiisthe “shape” of the curve as a
function of train length as indicated by the expuie term,b, and the goodness of fit of

the data to the curve, as indicated byRhealue and is expressed as follows:

AM; :l_L"'(bi Rz) (3.2)

where,

AM; = Accident cause metric for cause group

li = Average train length for cause graup

L = Overall average length of trains involved inideats in dataset = 61.79

b = Value of exponential term in power curve equatje=ax’, for cause group

R = Coefficient of Determination for a power curvetd the data for cause groip

If the average length of trains in accidents dueatgse (1;) is greater thah, AM;
is increased and vice versa. The greater therdift® betweeh andL the moreAM, is
affected. The second term of the metric is thegrdwnction exponenh. If bj> 0O for
caussd it increase®\M;; and vice versa. Similarly, the greater the défee betweeh;
and 0 the greater the effect AW. Finally,b is multiplied byR? to account for how well
the function fits the data. R is close to 1, the second term will influence rihetric
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more strongly. If the function is a poor fit (Id%9), b will have little effect oPAM;.
Therefore, foiR? values close to 7AM; will be calculated based on both average train
length andb; whereas for low’? valuesAM; will be calculated primarily based on
average train length.

The metricAM;, was used to classify and rank the cause grougisl€13.2). Not
all cause groups included enough data to propéabsify them as either car-mile or
train-mile-related and these were excluded fromataysis. In particular, cause group
21E, current collection equipment, was excludedibse only short passenger trains
(<10 cars) were involved in this cause group withenof the accidents resulting in a
derailment. The cause groups in Table 3.2 arereddeom most car-mile-related at the
top, to most train-mile-related at the bottom. §&agroups with rankings in the middle
are not represented strongly by either car-milegan-mile classifications.

3.3.2 Reclassification of Accident Causes

AM, is used to classify accident causes as either nmr&istent with
characteristics of car-mile-related accidents @ntmile-related accidents. AM; > 1 the
cause group is classified as a car-mile accidemyersely, ifAM; < 1 the cause group is
classified as a train-mile-related accident (T&bB). If the classification based on the
metric is different from the previous ADL classdton this is indicated by a “YES” in
the column heading “Change”. Using the metricassified 11 cause groups. Cause
groups 1H, 9H, and 1S were changed from train-toilear-mile causes. Groups 16E,
17E, 18E, 19E, 1T, 3T, 4T, and 12T were changeuh frar-mile to train-mile causes.
Cause groups 3E, 4E, 14E, 21E, 4H, and 11T werevadtiated using the metric due to
the small number of accidents for each group. Aigkest ranked car-mile-related
accident cause is 1E, air hose defect, with a swloBe277; whereas the highest ranked
train-mile related-accident cause is 02H, handbogderations, with a score of -0.0275.

As discussed above, there were instances whesetheacy of the initial
classification based on the characteristics ottreand train-mile premise could be
improved. Using the calculated values A | reexamined the overall train-mile and
car-mile-related causes for comparison to the ARsgification. After reclassifying the

data, the values were now more clearly represestaficar-mile and train-mile-related
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Table 3.2 Classification, Score, and Rank of Acciae Cause Groups Using Metric

CAR-MILE-CAUSES Trendline y:axb Distribution Metric

Cause Description a b R? Cases Avg.Length Score Rank Change
01E Air Hose Defect (Car) 0.000 2.539 0.600 50 108.30 32770 1 -
12E Broken Wheels (Car) 0.001 1.631 0.942 372 96.90 3.1054 2 -
10E Bearing Failure (Car) 0.002 1.409 0.893 780 89.24 2.7025 3 -
11E Other Axle/Journal Defects (Car) 0.001 1.218 0.863 156 95.81 2.6022 4 -
09H Train Handling (excl. Brakes) 0.005 1.068 0.946 647 89.34 24561 5 YES
01H Brake Operation (Main Line) 0.002 1.047 0.822 209 90.43 23238 6 YES
07E Coupler Defects (Car) 0.002 0.998 0.859 274 89.39 2.3043 7 -
13E Other Wheel Defects (Car) 0.003 0.924 0.886 324 88.38 2.2486 8 -
06E Centerplate/Carbody Defects (Car) 0.003 0.838 0.896 281 85.99 21423 9 -
05T Buckled Track 0.006 0.697 0.726 438 78.95 1.7842 10 -
08E Truck Structure Defects (Car) 0.000 0.834 0.059 61 94.66 1.5807 11 -
09T Other Rail and Joint Defects 0.003 0.498 0.667 153 75.65 1.5562 12 -
04M Track-Train Interaction 0.008 0.616 0.536 483 74.36 15337 13 --
05E Other Brake Defect (Car) 0.002 0.517 0.320 109 77.73 1.4233 14 -
08T Broken Rails or Welds 0.046 0.391 0.369 1798 71.66 1.3040 15 -
02E Brake Rigging Defect (Car) 0.001 0.384 0.014 73 79.15 1.2863 16 -
20E Track/Train Interaction (Hunting) (Car) 0.002 0.369 0.233 80 73.79 1.2799 17 --
07T Joint Bar Defects 0.004 -0.180 0.004 115 78.44 1.2688 18 -
09E  Sidebearing, Suspension Defects (Car) 0.006 0.355 0.149 267 71.65 1.2125 19 -
06T Rail Defects at Bolted Joint 0.004 -0.018 0.000 110 72.82 1.1785 20 -
01s Signal Failures 0.000 0.724 0.053 64 69.27 11592 21 YES
10T Turnout Defects-Switches 0.026 0.034 0.009 528 65.37 1.0583 22 --
03M Lading Problems 0.020 0.131 0.082 469 64.60 1.0563 23 --
15E Loco Trucks/Bearings/Wheels 0.009 -0.415 0.038 127 64.59 1.0294 24 --

TRAIN-MILE-CAUSES Trendline y=ax" Distribution Metric

Cause Description a b R? Cases Avg. Length Score Rank Change
10H Train Speed 0.002 0.113 0.014 64 61.67 0.9996 21 -
19E Stiff Truck (Car) 0.021 -0.601 0.067 212 62.58 0.9728 20 YES
04T Track Geometry (excl. Wide Gauge) 0.040 -0.796 0.113 1064 63.69 0.9405 19 YES
03H Brake Operations (Other) 0.005 -0.122 0.060 80 58.05 0.9321 18 --
01T Roadbed Defects 0.040 -0.796 0.113 274 55.18 0.8028 17 YES
05H Failure to Obey/Display Signals 0.040 -1.134 0.138 213 56.79 0.7621 16 --
11H Use of Switches 0.098 -0.901 0.124 561 53.41 0.7526 15 -
02T Non-Traffic, Weather Causes 0.027 -0.867 0.159 155 53.28 0.7242 14 --
05M Other Miscellaneous 0.061 -0.255 0.294 814 48.16 0.7045 13 -
18E All Other Car Defects 0.017 -0.353 0.223 254 45.41 0.6562 12 YES
12H Misc. Track and Structure Defects 0.018 -0.308 0.347 248 45.14 0.6237 11 --
03T Wide Gauge 0.101 -0.480 0.407 933 49.68 0.6090 10 YES
06H Radio Communications Error 0.015 -1.196 0.214 67 52.39 0.5915 9 --
16E Locomotive Electrical and Fires 0.018 -0.799 0.139 161 43.12 0.5867 8 YES
01M Obstructions 0.057 -0.332 0.626 686 46.41 05430 7 -
02M Grade Crossing Collisions 0.233 -0.355 0.843 2546 50.27 0.5145 6 --
17E All Other Locomotive Defects 0.020 -0.908 0.168 169 38.56 0.4718 5 YES
07H Switching Rules 0.053 -0.601 0.678 411 44.72 0.3165 4 -
08H Mainline Rules 0.026 -0.473 0.475 349 31.64 0.2873 3 -
127 Misc. Track and Structure Defects 0.148 -1.379 0.303 569 30.30 0.0730 2 YES
02H Handbrake Operations 0.144 -1.475 0.349 442 30.13 -0.0275 1 -

NOT EVALUATED USING METRIC Trendline y:axb Distribution Metric

Cause Description a b R’ Cases Avg. Length Score Rank Change
04H Employee Physical Condition 27 59.56
11T Turnout Defects-Frogs 25 76.00
03E Handbrake Defects (Car) 25 32.80
04E UDE (Car or Loco) 39 103.72
14E TOFC/COFC Defects 19 54.26
21E Current Collection Equipment (Loco) 86 7.62
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causes (Figure 3.5). The average train lengthegdemile-related causes increased from
68.3 to 79.0 cars while the average train lengtiaoh-mile-related causes decreased
from 52.5 to 48.4 cars. Alsb,increased to 0.6175 aid= 0.9147 for car-mile-related
causes; whereals,decreased to -0.4063 aRt= 0.9201 for train-mile-related causes.
Overall, the new classification is more consisteitlh expectations from the stated car-

mile and train-mile premise.
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Figure 3.5 Percentage of Car and Train-Mile-RelatedAccidents versus Train
Length using the New Accident Cause Classification

3.4 Calculation of Accident Rates

As stated earlier, train accident rates can berohéhed by summing the car-mile
and train-mile-related rates. The two rates caoabeulated using known accident data,
the number of car and train-miles operated, anchéve classification of accident causes.
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Data on car-miles and train-miles operated ardaei from the AAR (AAR 2007). Car
and train-miles are defined as the movement of arckain the distance of one mile and
is based on the distance run between terminal&toiss. Accident information was
downloaded from the FRA Office of Safety for thaei period 1990-2005 (FRA 2007a).
Data for all accident types for Class | railroagemting on mainline and siding tracks
were used to ensure consistency with the AAR d@dimiof car and train-miles for this
portion of the analysis. The developed classificaimetric was used to classify each
accident cause.

The car and train-mile related accident rates fi®@®0 to 2005 were calculated
by dividing the number of accidents by the numldanites operated (Table 3.3). In 2005
the accident rate for car-mile-related causes weBx10° or about 0.011 accidents per
million car-miles and the train-mile-related accitieate was 8.62x10or about 0.86
accidents per million train-miles. The expectedber of train accidents, based on 2005

data, can be calculated as follows:

Ao = 105X10°M . + 862X107 M, (3.3)

where,

Aexp = Accidents expected
Mc = Number of car miles
Mt = Number of train miles

It is clear based on this equation that if the hanof cars per train is increased,
the consequent increase in car-miles operated teaasincrease in the accident rate for
each train so affected. Similarly, an increasténumber of trains operated on a system
will increase the number of train-miles operated thus increase the number of train-
mile-caused accidents. To understand the effethof length on accident likelihood,

the accident rate equation can be expanded todac¢he term for train length:
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Aco=105x10°nd T, + 862x10"nd =nd (105x10° T, + 862x10°") (3.4)

where,

Aexp = Accidents expected
n = Number of trains operated
d = Number of miles operated

T, = Average cars per train (train length)

This equation is useful for understanding how clearg operating procedures,
such as train length or number of trains operat@tiaffect the expected number of train

accidents.

Table 3.3 Car and Train Mainline Accident Rates usig the Reclassification of
Accident Causes, Class | Freight Railroads, 1990-26

Car-Mile- Car-Miles Car-Mile Accident Train-Mile- Train-Miles Train-Mile Accident

Caused Operated Rate (per million car Caused Operated Rate (per million train
Year Accidents (Millions) miles) Accidents (Millions) miles)
1990 510 26,159 0.0195 486 380 1.280
1991 479 25,628 0.0187 465 375 1.240
1992 360 26,128 0.0138 414 390 1.061
1993 370 26,883 0.0138 432 405 1.065
1994 315 28,485 0.0111 418 441 0.948
1995 362 30,383 0.0119 457 458 0.997
1996 379 31,715 0.0120 402 469 0.858
1997 343 31,660 0.0108 418 475 0.880
1998 378 32,657 0.0116 422 475 0.889
1999 367 33,851 0.0108 362 490 0.738
2000 420 34,590 0.0121 433 504 0.859
2001 400 34,243 0.0117 468 500 0.937
2002 374 34,680 0.0108 380 500 0.761
2003 392 35,555 0.0110 431 516 0.835
2004 424 37,071 0.0114 453 535 0.847
2005 395 37,712 0.0105 472 548 0.862
1990-2005 6,268 507,400 0.0124 6,913 7,460 0.927

3.5 Accident Rate Sensitivity Analysis

| conducted two simple sensitivity analyses tasitate the effect of changes in
train length on train accident rate. In the flrekamined an operational choice of train
length given a fixed number of car movements. dima@ysis parameters are intended to
represent a typical high density, long distances€l railroad mainline with 25,000 car

movements per week and a distance of 2,000 mildstrain length and number of trains
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as the variables. The estimated number of accdsased on 2005 data is 1.05%10
accidents per car-mile plus 8.62x18ccidents per train mile as calculated by the
previous reclassification of accident causes.riledstrain length from 10 cars to 150 cars
per train (Table 3.4).

Table 3.4 Sensitivity Analysis of the Effect of Tran Length on Accident Rate

Average Train Number of Probability of an Accident Total Expected Number
Length (T ) Trains (n) for each Individual Train of Accidents
10 2,500 0.00193 4.84
20 1,250 0.00214 2.68
30 833 0.00235 1.96
40 625 0.00256 1.60
50 500 0.00277 1.39
60 417 0.00298 1.24
70 357 0.00319 1.14
80 313 0.00340 1.06
90 278 0.00361 1.00
100 250 0.00382 0.96
110 227 0.00403 0.92
120 208 0.00424 0.88
130 192 0.00445 0.86
140 179 0.00466 0.83
150 167 0.00487 0.81

25,000 Carloads Shipped; 2,000 Miles; 150 Car Maximum Train Length

As train length increases, the likelihood thataantwill be involved in an accident
increases due to the increase in car-miles per, thawever, because of the reduction in
train miles, the net effect is a reduction in &k number of accidents. So all other
things being equal, train accidents will be miniedavhen train length is maximized or
the number of trains operated is minimized.

The second study examined how an increase incttaffels may affect train
accident rates. The analysis parameters are sitnithose from the previous study of a
2,000 mile Class I railroad freight mainline witietsame weekly traffic level of 25,000
car movements. The railroad is currently operatiams with an average length of 100
cars. The car movements are expected to incrga$@% to a new total of 27,500
movements. The operational choice in this studytiger to continue operating the same
number, but longer trains, or maintain the curteaih length and operate more trains.

The traffic increase will lead to an increase i@ accidents; however, this effect can
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be minimized by increasing the length of traingeasd of increasing the number of trains
operated (Table 3.5). Again, this study suggestshiis type of scenario that a railroad
may be able to reduce the overall number of actsdepnrunning fewer, longer trains as

opposed to a higher number of shorter trains.

Table 3.5 Sensitivity Analysis of the Effect of Tr#ic Increase on Accident Rate

Number of Average Train Probability of an Accident Total Expected
Trains (n) Length (T ) for each Individual Train ~ Number of Accidents
250 100 0.00382 0.96
250 110 0.00403 1.01
275 100 0.00382 1.05

27,500 Carloads Shipped; 2,000 Miles

3.6 Conclusions

Accident rates are affected by both car-mile aashimile-related accident
causes. A consequence of this is that the lerfgilaios affects accident likelihood.
Previous research combined the FRA accident cante51 unique cause groups based
on expert opinion. | developed a new quantitamnedric to classify the causes as either
car-mile or train-mile-related. Use of the new neelied to the reclassification of 11 of
the cause groups and was found to be more repatsendf car and train-mile
expectations. Therefore, using the new classifinand recent accident data, updated
mainline car-mile and train-mile-related accideates were calculated for Class | freight
railroads. These rates, as evaluated in a sahs#ivalysis, showed that the decision to
dispatch the same number of shipments in fewerdotrgins versus more, shorter trains
may affect the overall accident likelihood.

3.6.1 Future Work on Train Length Analysis

The analysis completed in this paper is basedlmnay classification of
accident causes as either train-mile or car-milated. However, many causes may not
be purely train or car-mile-related, but insteadetel on a combination of both. Future
work may be possible to define a function for eeaise group based on both car-miles
and train-miles. Additional information, such &e distribution of trains operated by

train length, would be useful in defining the linea non-linear accident cause functions.
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Future work may also be possible to evaluate arttidr refine the accident cause
classification metric. For example, it may be pploissto transform the current
summation metric into a product metric using thaesavaluation factors. The product
metric may strengthen the analysis because it wowiltiply the classification terms and
their effects on the metric instead of a simple swation. Further research into the
classification metric might also reveal a betteeginold for accident cause classification.
An adjustment to the classification metric to ird#ithe average length of trains operated
instead of average length of trains involved ind&cts may remove potential bias.

Finally, it may also be possible to determine ptinoal train length to minimize
the number of cars derailed. Longer trains manbelved in fewer total accidents, but
longer trains derail or damage more cars on avdtegeshorter trains (Barkan et al.
2003).
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CHAPTER 4: COMPARISON OF BROKEN RAIL PREDICTION MOD ELS

Broken rails are the second most frequent causeagiline accidents in the U.S.,
exceeded only by grade-crossing collisions (Figui®. More importantly, broken rails
are the leading cause of major derailments antharenost frequent cause of hazardous
materials releases. The average cost of damagactoand equipment due to mainline
broken rail derailments on Class | railroads is%820 (FRA 2007a). Mainline broken
rail derailments on U.S. Class | railroads havegased from 77 in 1997 to 91 in 2006,

consequently steps to understand and prevent brakederailments are important.
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Figure 4.1 Railroad Accidents by Cause Severity v&requency Graph, 1996 — 2005

One approach is to examine factors that potentiaflyence the occurrence of a
broken rail in order improve the quantitative ureanding of how they contribute to the
likelihood of such an event. The objective of tblisdy is to develop an accurate,
predictive tool that will enable railroads to idéntocations with high likelihood for

broken rail occurrence so they can better prigipeeventive and mitigation measures.
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Among the factors of interest are track and radlreloteristics, traffic, maintenance
activity, on-track testing results, and the presemitspecial infrastructure (i.e. bridges)

that affect track modulus.

4.1 Introduction to Service Failure Prediction Modé

Broken rail risk can be defined as the probabdity broken rail occurrence
multiplied by its consequence. The consequeneebobken rail depends on the type of
broken rail event that occurs. Broken rail everats be classified into two, broad
categories: “service failures” and broken rail demants. A service failure refers to the
occurrence of a broken rail that does not resudt derailment. This generally occurs in
situations where a broken rail is detected by ihead system or a track inspector. Under
these circumstances, trains generally do not poboaw the track section with the
broken rail. The economic impact of service fakiand broken rail derailments will be
considered in more detail in Chapter 6.

Broken rails are caused by the growth of inted®décts in the rail or surface
defects on the head of the rail. Internal defaotsgenerally caused by inherent flaws in
the rail that form when the rail is manufacturdthese internal defects are generally
minute in size and nearly impossible to detectl tinély begin to grow. The growth of
these rail defects is linked to a number of factd?sevious research as focused on both
mechanistic analyses (Aglan & Gan 2001, Kim & Kif02, da Silva et aR003,

Fletcher et al. 2004, Skyttebol et al. 2005, SrAQA5, Fischer et al. 2006) and statistical
analyses (Shry & Ben-Akiva 1996, Dick 2001, Dickaét2003, Zarembski & Palese
2005, Sourget & Riollet 2006) in order to underdtdme factors that cause crack growth
in rails and ultimately broken rails.

Among the previous studies was a multivariate ®tiaél analysis of various
factors affecting service failure occurrence (D2€)01, Dick et al. 2003). This work
used a discrete choice logistic regression modeétermine the probability of a service
failure occurrence for any given section of tra€kscrete choice models have been used
extensively for various classification applicatior{8en-Akiva & Lerman 1985,
McCullagh & Nelder 1989).
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The purpose of my analysis was to evaluate theiquie work and expand on it
using artificial neural networks (ANN). Differetytpes of ANNs have been developed
to predict events with promising results (Odom &&ta 1990, Fanning & Cogger
1994). Both logistic regression analysis and ANildge relative strengths and
weaknesses, and for that reason, a hybrid modsdtbftechniques was developed and
evaluated. Previous work has shown that hybrid Ablstical regression models
outperform purely statistical approaches in ecorsr{lYim & Mitchell 2003), but this
approach has not previously been applied to theigtfen of broken rails. The
objectives of this analysis were:

e Evaluate the previous statistical prediction model,

e Analyze the use of artificial neural networks adassification tool,

e Develop a hybrid logistic regression/neural netwoiddel,

e Test all models for prediction capability of “unkmo” cases, and

e Compare strengths and weaknesses for each model.

4.2 Statistical Prediction Model

The outcome of Dick et al.’s (2003) analysis wasalel that used multiple
parameters for specific locations in the railroativork and determined the probability
of a service failure occurrence at any locatioratelfor service failure locations were
provided by the BNSF Railway for the time perio®&30 2000. The service failure

prediction model was constructed using a logiggression analysis.

4.2.1 Data Set Description

In Dick’s (2001) study a “location” was definedasrack segment of length 0.01
miles, or approximately 53 feet. During the twayeeriod of May 1998 to May 2000,
there were data for 1,903 service failures forBNSF network. Of these, 1,861
segments contained sufficiently complete informato be included in the analysis.
When modeling rare events, a commonly used apprisadohsample all of the rare events
and compare these with a similar sized samplesthntes where the event did not occur
(McCullagh & Nelder 1989). Therefore 1,900 locasavere randomly selected from the
BNSF network. Of these, 1,814 locations contait@tplete information and did not
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have a service failure in the two-year study peridtierefore, the data used in this
analysis included 3,675 total locations from the\hetwork, approximately half of
which had experienced a service failure and apprately half that had not.

In addition to data on the occurrence or non-aecwge of a service failure, the
dataset that was developed included a large nuoflmher parameters believed to have

a possible effect on service failure occurrencke parameters that were considered

included:
e Rail age
e Rail weight

e Degree of curvature (if present)

e Track speed

e Average tons per freight car

e Average dynamic tons per freight car

e Percent grade (if present)

e Annual gross tonnage

e Annual wheel passes

e Presence of an insulated joint

e Presence of a turnout
Additionally, each case in the database containethar parameter for the occurrence of
a service failure during the two-year time peridthch of the input parameters were
entered as a numerical value, except for the poeseha service failure, insulated joint,
or turnout, which were binary entries of eitheraer one. The output, or dependent
variable, for these analyses of this dataset i®tisarrence of a service failure, while the

remaining 11 variables are the input or independanables.

4.2.2 Logistic Regression Model

The problem was defined as a discrete choiceifitzggon problem of either
failure or non-failure. A location with a failumas defined as the occurrence of a
service failure during the two-year study peridde input variables were the track,
traffic, and infrastructure data available, as désd previously. The service failure
probability model was developed using the Statsthnalysis Software (SAS) and the
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LOGISTIC procedure (SAS 2006). This proceduredittiscrete choice logistic
regression model to the input data. The outptihisfmodel is an index value between
zero and one corresponding to the probability sérvice failure. A probability
threshold value of 0.5 for classification of eadtk segment as either service failure or
non-service failure was determined to be optimal.

The SAS LOGISTIC software has various possibleaggjon analysis
techniques. The step-wise regression techniquedef@smined to be the optimal method
for classification. Step-wise regression is a-digstep method that selects the most
important factor influencing the output value atleatep until all factors are entered into
the model. The procedure stops when the thereaaglditional factors remaining that
will improve the model by at least a defined leoksignificance. At the beginning of
each step the procedure uses a “goodness ofdittdesee how the inclusion of each
factor influences the performance of the modele Tdttor that results in the greatest
increase in fit will be the next factor added te thodel. At the end of each step in the
step-wise procedure, the model examines the faateady included and eliminates any
that are no longer improving the model. The SASieay also has the benefit of
monitoring and alerting the user of the presentesltinear variables as well any
parameters that are functions of each other tli@ttathe results of the step-wise
regression.

Dick (2001) used the step-wise regression teclenigyproduce a retrospective
service failure model. The model was “retrospegtivecause it made predictions about
past events in the database that was developedpjiitoximately 50% failures.
Therefore a “prospective model” was developed hysiohg a constant term to more
appropriately represent the probability of a sexfailure. The prospective model was
used to calculate the number of expected serviteda per mile, and identify locations
that had a high likelihood of experiencing a ses\iilure.

The retrospective model was of interest in thislgsis for the purpose of further
evaluating its predictive ability. The predictiorodel that Dick developed using the

logistic regression procedure is:
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where,

Psr2= probability that a service failure occurred dgrantwo-year period
Z = -4.569, model specific constant

A =rail age (in years)

C = curvature of track (in degrees)

T = annual traffic (in million gross tons)

S=rail weight (in pounds per yard)

W = annual number of wheel passes (in millions)

P = dynamic wheel load (in tons)

N = presence of turnout (1 if present, 0 otherwise)

L = weight of car (in tons)

V = track speed (in miles per hour)

Dick’s model was limited to two-term interactionrizles and second order exponential
terms. More detailed interpretation of each maeéeh can be found in Dick (2001) and
Dick et al. (2003).

The fitted model was evaluated by testing the eyuof the prediction for each
case. This evaluation technique was conductedjubaprevious data set and did not
incorporate any unseen cases of service failudesoptimal threshold value of
probability was determined to be 0.5 for the greiaéecuracy. Table 4.1 shows the
results of the logistic regression model develogteithe probability threshold of 0.5. The
model accurately predicted 3,212 of the 3,675 cé&&4%) and had almost twice as
many false positives as false negatives (302 cosajpar161).
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Table 4.1 Classification Results of Logistic Regre®n Model

Model Type Outcome of Model Classification Cases Percent of Total
Logistic Correct Prediption 3,212 87.4%
Regression False Posmye 302 8.2%
False Negative 161 4.4%

4.2.3 Evaluation of Logistic Regression Model

To evaluate if a prediction model is accurate,caleh should be tested not only on
its original dataset but also an unknown dataBétk’s (2001) study did not evaluate the
accuracy of classification based on validation datainseen cases. To determine if the
previous model is robust for validation data, addil data near the time period of the
study are required. However, since all servickifaidata for the time period were used
in the construction of the model, an alternativprapch was needed to test the
robustness of the model. The approach used wdisitte the original data into two
groups. The first group was defined as the trginiataset and the second group was
defined as the testing dataset. Of the 3,675&dailcases in the original database, 2,205
cases (60%) were randomly selected for the traisample and the remaining 1,470
cases (40%) were placed in the testing samples droicess was replicated three times to
produce three random samples of both training aladietesting data for analysis.

The same step-wise logistic regression analysisrdeed above was repeated on
each of the three samples of training data anctthesv predictive equations were
developed. The equations were similar; each Useddme parameters with only the
coefficients changing slightly. As was previoudbyne, each prediction equation was
used with a threshold level of 0.5 to evaluateabeuracy of the training dataset. The
accuracies of the training samples after compldatiegogistic regression on each sample
were 87.03%, 87.21% and 87.89% (Figure 4.2).

The next step was to test each prediction equatiaiie respective sample’s
unseen testing dataset. The predictive equati@ns used to determine the probability
of a service failure for each case in the testiaigset. Again, a probability threshold
level of 0.5 was used to classify each case asrdilure or non-failure. The predicted

classification of either failure or non-failure wesmpared to the actual event that
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Figure 4.2 Accuracy of Training Data and Testing D#a to Test the Robustness of
the Logistic Regression Model

occurred in the testing dataset. The accuracwycdh @rediction model was found to be
87.35%, 86.80%, and 86.12% (Figure 4.2).

The prediction accuracy of each of the three modets similar for both the
training dataset and the testing dataset (Fig@ke 4 he difference in prediction
accuracies for each sample ranged from 1.8% t8%0.Bhe first sample actually had a
higher level of accuracy for the testing datasetrdle training dataset. Therefore, the
logistic regression technique and the predictionlet®that were developed are robust for
unseen data. These results affirmed and strengghtéve validity of Dick’s (2001)
service failure prediction model.

The next objective of this analysis was to evaudtferent prediction and
classification techniques for service failures.e inevious statistical methods were able
to accurately classify service failures in approxiety 87% of the cases in the original
dataset. The remaining analysis was conductedtrmine if different classification
techniques could increase the prediction accur&mrye of the limitations of Dick’s
original logistic regression model was that it ootnsidered linear mathematical
relationships. Additionally, the statistical moaeds only evaluated for two term and
second power interactions. In the next sectiofi@al neural networks are explored as a
possible prediction tool for service failures.
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4.3 Artificial Neural Network Classification Model

The use of artificial neural networks (ANNS) isaternative technique to
statistical methods for purposes of classificatiad prediction. Many different types of
neural network optimization procedures have beerldped and more are currently
being explored. Initial research into the useeainal networks as a classification
technique were driven by economic and medical ®pid have since been expanded to
include many other fields, including engineeriideural networks have both advantages
and disadvantages when compared to statisticaladethFor this reason, simple ANNs,
as well as hybrid models, that combine both ANNg lagistic regression techniques,

were developed and evaluated in this study.

4.3.1 Introduction to ANNs

Artificial neural networks have been used as ter@ative to logistic regression
in various applications. ANNs are a computatidoal that can “learn” mathematical
relationships between a series of input variabhektheir respective output values.
ANNSs are an interconnected group of “neurons” tieate the ability to change their
structure based on information that flows througietwork. The development of
ANNs was based on the idea of interconnected neetalorks in biological systems
such as animals. Artificial neural networks refethose developed by computer
systems.

The main parts of an ANN are the inputs, hiddgedaoutput, and node
connections (Figure 4.3). The input layer of tHéM shown on the far left, is comprised
of the various input parameters into the clasdifocceproblem. The inputs for this
analysis were the same input parameters as theasdéaiure model. The neurons in the
hidden layer, shown in the middle of the diagrare,rapresented by mathematical
eguations and relationships that are determinatidoglgorithm. The arrows on the
diagram represent a series of weighted connechietvgeen various nodes. The creation
of node connections and their weights are detemnyethe ANN algorithms. Finally,
the output node, shown on the far right, is coneetd the hidden layer; in this case the

only possible outputs are failure or non-failure.
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Figure 4.3 Diagram of an Atrtificial Neural Network

An artificial neural network is constructed by qmuer algorithms that add
hidden neurons one by one until the optimal netwedetermined. An optimal network
and the optimal number of hidden neurons represéalance of model accuracy versus
generalization. A network that generalizes webinig that is able to provide good results
for data not used to train the neural net. Inoth@ds, the algorithm attempts to
produce a neural network that is both accuraterabdst for unseen cases. The software
used for this analysis was “NeuroShell ClassifaeVeloped by Ward Systems Group,
Inc. (Ward Systems Group Inc., 2006).

Artificial neural networks have been used in vasigtudies of event prediction,
in particular classifying future events into eitfi@iture or non-failure. A previous study
conducted used neural networks for predicting bapticyy failure of firms based on
limited financial data (Odom & Sharda 1990). Tkeiral net developed by Odom &
Sharda showed a higher level of prediction accuaacyrobustness over previous
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statistical techniques. Another study used ANNwelt as a generalized adaptive neural
network algorithm (GANNA) for the study of failirgnd non-failing firms (Fanning &
Cogger 1994). Fanning & Cogger’s study, using ahtge input variables, showed that
ANNSs, GANNA, and logistic regression models werenparatively similar in their

prediction abilities.

4.3.2 Comparison of ANNs to Logistic Regression

With the development of ANNs as an alternativéotpstic regression for
prediction studies, research has been conductexjiore the differences in the two
techniques. One study specifically examined theathges and disadvantages of using
artificial neural networks compared to logistic mreggion techniques to predict medical
outcomes (Tu 1996). Tu noted that for predictirgpdtomous outcomes, logistic
regression has emerged as the statistical techoigeleice. However, he also
concluded that neural networks are not constraiyeal predefined mathematical
relationship between dependent and independergblas and therefore can have more
accurate prediction models.

There are advantages and disadvantages to thd¢ adéicial neural networks as
a classification tool. As noted, the most importavantage of neural networks is the
ability to detect complex non-linear relationshijggween input and output variables.
The hidden layers and neurons as well as the noalgections allow ANNSs to have non-
linear relationships between the input values, spded output value. Another
advantage is that ANNs can detect all possiblgactens between input variables. The
previous statistical model that was developed enBluated two term interactions as
well as only second power terms. The inherentgihesf a neural network evaluates and
considers every possible variable interaction anlgy. Finally, ANNs have the
advantage that they can be developed and evaluaiegl different learning techniques
and different objective functions. This allows tireator of the neural network the
ability to try different techniques to determine thptimal classification model.

The use of ANNSs also has some disadvantages cenhpastatistical techniques
such as logistic regression. One disadvantadgetscomputation time is longer for

ANNSs. This may be an important factor for largeljems. Also, ANNs do not give a
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value for the probability of an outcome; insteaejtlonly classify an outcome as a failure
or non-failure. If there is utility in having a gutitative sense of the likelihood of an
outcome, i.e. a probability, then the logistic exgion technique is better. Another
disadvantage of neural networks is that they al@ctbbox” models, meaning that the
logic and quantitative functional relationshipshirit a neural network are not easily
reproduced. This limits the ability to explain wiiae model is doing and why. It means
that a user cannot evaluate the possible relatipsigietween input variables for an ANN
model.

In Tu’s (1996) research on ANNSs, he concluded, “fdenetworks may be
particularly useful when the primary goal is out@prediction and important
interactions or complex nonlinearities exist inagadet...Logistic regression remains the
clear choice when the primary goal of model deveslept is to look for possible causal
relationships between independent and dependeables, and a modeler wishes to
understand the effect of predictor variables onailiieome... It is possible that some form
of hybrid technique that incorporates the bestufiesst of both logistic regression and
neural network modeling might lead to the best fids®utcome prediction model.”

An objective of my study was to use simple ANN%] #o0 evaluate the use of
hybrid ANN/Logistic Regression (ANN/LR) models fthre purposes of producing a

more accurate service failure prediction model.

4.3.3 ANN Classification Model

A stand-alone artificial neural network was deyeld for classification of
specific track locations as either failure or nairitre for a service failure. As described
earlier, the dataset used contained 3,675 cadesckfsegments in which approximately
50% experienced a service failure in the two yeae fperiod. The ANN learning
method used was backpropagation, which is a tygsupfervised learning”. Supervised
learning is when both the input and output valwestch case are entered into the
network and the objective of the learning functi®mo reduce the mismatch between the
neural network output and the actual output vallieis is the most common form of

computer learning for ANNSs.
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The input parameters used for development of tR&l Avere the same as those
used for the logistic regression model. The ANatslfied 3,223 of the 3,675 cases
(87.7%) correctly (Table 4.2), as compared to tggskic regression model which
classified 3,212 (87.4%) of the cases correctlge dptimal number of hidden neurons
used to ensure robustness of the model was 7hifonétwork. The computation time
for development of the ANN was eight seconds, aspared to two seconds for the
logistic regression model. The ANN also producexterfalse positives than false
negatives, similar to the logistic regression mddeble 4.2). The ANN was tested for
robustness against unseen data in the same whg B®jistic regression model. The
results were that the model predicted correct iflaggon of either failure or non-failure

in 86.8% of the cases in the testing sample.

Table 4.2 Classification Results of Artificial Neual Network Model

Model Type Outcome of Model Classification Cases Percent of Total
Artificial Neural Correct Preqli_ction 3,223 87.7%
Network False Posmye 283 7.7%
False Negative 169 4.6%

4.3.4 Hybrid ANN / Logistic Regression ClassifioatModel

As discussed, ANNs have some disadvantages cothfzastatistical modeling
techniques. However, previous work has investijtie possible benefits of using
hybrid ANNs and logistic regression techniquesweroome some of the disadvantages
of simple ANNs (Spackman 1992). One study comp#redise of ANNSs, statistical
models, and hybrid models for corporate firm fal{¥im & Mitchell 2003). The
authors studied two different forms of hybrid netksfor combining ANNs and
logistical regression techniques. They concludhed the best statistical model was the
logistic regression, but found that the resultsnfithe ANN were similar. However, they
also found that the performance of the ANN was oupd when hybrid models were
considered.

The two common types of hybrid ANN/Logistic Regries (ANN/LR) models
studied in previous research were the pre-seledtiomput variables and the addition of a

probability input value. The first hybrid ANN/LR adel form is for the pre-selection of
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variables (Logit-ANN). Logit-ANN uses logistic reggsion to determine the most
influential input factors and develops an ANN baeaty on these factors for predicting
failure or non-failure. The second ANN/LR modetrfois developed using the logistic
regression to calculate the probability of failiwe each case and adding that value as an
additional input parameter into the ANN (PLogit-ANNAgain, the ANN is used to
predict either failure or non-failure.

The two ANN/LR models produce advantages ovesiimple ANN classification
technique. First, the hybrid models will decreieenumber of cases used for learning
the ANN, meaning that more cases can be devotegtimizing the network instead of
learning the network. Secondly, the hybrid modeisdense information for very large
problems by pre-selection of variables. Finallyhid models may have a decreased
amount of learning time required due to the preeteld or condensed information. A
decrease in learning time can be a significanofafar very large datasets with a large
number of input variables, but this was not an irtgot factor in this study.

The first hybrid model (Logit-ANN) developed fdri$ analysis was the method
of pre-selection of input variables. The logisggression technique was used and the
following parameters were identified for inclusimnthe ANN: rail age, degree of curve,
annual traffic loads, rail weight, annual numbembieel passes, average dynamic wheel
load, and the presence of a turnout. The results the ANN model were that 3,218 of
the 3,675 cases (87.6%) were correctly classiflatble 4.3). The optimal number of

hidden neurons was 74.

Table 4.3 Classification Results of Logistic Regresn Artificial Neural Network
Hybrid Models

Model Type Outcome of Model Classification Cases Percent of Total
Correct Prediction 3,218 87.6%
Logit-ANN Hybrid False Positive 283 7.7%
False Negative 174 4.7%
. Correct Prediction 3,220 87.6%
PLE?/';'%NN False Positive 290 7.9%
False Negative 165 4.5%

The second hybrid model (PLogit-ANN) developeduded probability of failure

calculated using logistic regression in the ANNobbility of failure for each case was
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entered as a new input variable into the ANN amdntéural network was constructed
again. The PLogit-ANN model classified 3,320 a 81675 cases (87.6%) correctly
(Table 4.3). The optimal number of hidden neuronghis model was 78.

In both cases the hybrid ANNs took the same amoliiine to construct the
neural network. Also, both cases were testeddibustness against unseen data in a
similar fashion as the previous models. The Lé&giN hybrid model 86.4% accurate
for the testing samples, while the PLogit-ANN hybmodel was 87.1% accurate for the
testing data. Overall, these accuracy values wengsimilar to those produced by the

previous models (Table 4.4).

Table 4.4 Summary of Classification Results for alPrediction Models

Model Type C.or.rect .F.alse Fglse Cqmputation Testing Sample
Prediction (%) Positives (%) Negatives (%) Time (sec) Accuracy (%)
Logistic Regression 87.4% 8.2% 4.4% 2 86.8%
Artificial Neural Network 87.7% 7.7% 4.6% 8 86.8%
Logit - ANN Hybrid 87.6% 7.7% 4.7% 8 86.4%
Plogit - ANN Hybrid 87.6% 7.9% 4.5% 8 87.1%

4.4 Conclusions

In this study four different classification modelsre developed and analyzed for
the purpose of predicting service failure. Thsetftvo models used stand-alone logistic
regression and neural network techniques. Thenskiveo were constructed using
hybrid combinations of the two techniques.

Four conclusions can be determined from this arelyEhe first is that the
simple ANN model and the hybrid ANN/LR models peni@d as well as the logistic
regression model for classification purposes. Tesns that all models had a similar
predictive ability for determining track segmerttatthad a high likelihood of
experiencing a service failure. The second comaiuis that all the models were robust
against unseen data and were equivalently acclarapeedicting service failures for
unseen or unknown track segments. Additionallg,ANNs had a longer computation
time compared to simple logistic regression analysit because of the limited data and
input variables, computation time was short, eggdonds versus two seconds,

respectively. However, computation time could eea factor for very large datasets.
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Finally, all models had more false positives thalsd negatives. This means that all the
models were more conservative when predicting serfdilures. This outcome was not
intended, however, this is probably more desir#ide the reverse for service failure

prediction.

4.4.1 Next Steps in Service Failure Prediction Minde

The next step is to apply the insights gained fthenlogistic regression, ANN,
and hybrid ANN/LR models to a new, expanded data$hts analysis will use recent
data and include more input variables such as eraantce activities, rail testing results,
and additional track, infrastructure, and traffatal Also, the dataset will be expanded to

evaluate a longer time period of study.
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CHAPTER 5: STATISTICAL AND NEURAL NETWORK BROKEN RA IL
PREDICTION MODELS

The purpose of this study was to consider theofadhat influence the occurrence
of broken rails and improve our understanding efdhantitative effect of these factors.
In Chapter 4 | examined BNSF service failure datanfa two-year period from May
1998 to May 2000 for a limited number of factofihe factors previously evaluated
included only rail and traffic characteristics. tins chapter | expand on the previous
work by analyzing more recent, comprehensive serfadure data for a four-year period
from 2003 through 2006. | have also included aold#l factors believed to affect
service failures. The factors considered in thislgsis included rail characteristics,
infrastructure features, maintenance activity, apenal information, and rail testing
results. Two analytical approaches were used dierstand the factors that affect service
failures; statistical regression and artificial redunetworks (ANN). Both approaches
have relative strengths and weaknesses, and forethson, hybrid models were also
developed. The ultimate objective of this reseaval to develop a method that enables

railroads to more effectively allocate resourceprievent the occurrence of broken rails.

5.1 Introduction to Broken Rail Prediction

Understanding the factors causing service failaresbroken rail derailments is
an important topic for U.S. freight railroads asdecoming more so because of the
increase in their occurrence in recent years. iHoi®ase is due to several factors, but
the combination of increased traffic and heavide doads are probably the most
important. Broken rails are caused by the undetegtowth of either internal or surface
defects in the rail. The prediction of fracturewth within a rail once a defect is
detected has been examined previously (Kim & Kir@2@a Silva et al. 2003, Skyttebol
et al. 2005). However, the majority of brokensaktcur where a defect has not
previously been detected. This is due to bottrapéd growth of defects under load and
various impediments to detection of certain typlededects, allowing them to grow to
criticality without being detected. Previous resbaas focused on both mechanistic
analyses (Aglan & Gan 2001, Kim & Kim 2002, da Sikt al.2003, Fletcher et al. 2004,
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Skyttebol et al. 2005, Smith 2005, Fischer et @0&) and statistical analyses (Shry &
Ben-Akiva 1996, Dick 2001, Dick et al. 2003, Zareskib& Palese 2005, Sourget &
Riollet 2006) in order to understand the factoet tause crack growth in rails and
ultimately broken rails.

The primary objective of this analysis was to deped predictive tool that will
enable railroads to identify locations with a hglebability of broken rail occurrence
based on service failure data and other possilileeimce factors. All of the available
parameters that might affect service failure oaee, for which data were available,
were analyzed. These included rail characteristidsastructure data, maintenance
activity, operational information, and rail testiregults.

| developed several new predictive models usingouartechniques to attempt to
predict broken rail locations. These included stigiregression (LR), artificial neural
networks (ANN) and hybrid models that combined LRABIN techniques. Previous
work has shown that hybrid ANN/LR models outperfqrarely statistical approaches in
other fields (Yim & Mitchell 2003), but this apprdahas not previously been applied to
the prediction of broken rails. Each of these n®deas evaluated and a practical model
was determined. The practical model was useddatera prospective service failure
prediction model. The objectives of this analysese as follows:

e Evaluate the previous prediction model developeaagusurrent data,

e Develop a new prediction model using various meshertt techniques,

e Determine a practical prospective prediction moded

e Examine the use of the model based on a hypothetasa study.

5.2 BNSF Service Failure Data

In order to develop a predictive model, it is daisie to initially consider as many
factors as possible that might affect the occumesfdroken rails. Dick (2001)
conducted an in-depth analysis of possible trackteaffic factors based on data
available to him at the time. In my study | coms&ll these factors, as well as additional
variables. From the standpoint of rail maintengple@ning it is just as important to
determine which factors are correlated with brokals, as it is to determine which are
not. Therefore the analysis included a wide-ravfg@ossible variables for which data
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were available. This included track and rail cetedstics such as rail age, rail
curvature, track speed, grade, and rail weighsoAthanges in track modulus due to the
presence of infrastructure features such as bridgdsurnouts have a potential effect on
rail defect growth and were examined as well. Addally, maintenance activities are
included that can reduce the likelihood of a brokahoccurrence, such as rail grinding
and tie replacement. Finally, track geometry altidsonic testing for rail defects are
used by railroads to assess the condition of taacktherefore the results of these tests
are included as they may provide predictive infaioraabout broken rail occurrence.

The BNSF Railway provided relevant information netjag the location of
service failures. A “BNSF service failure” is dedd as any incident where track must be
taken out of service for repair or replacementr ths study | define a “service failure”
as an incident where a track was taken out of semue to a broken rail. Therefore, my
definition of a service failure does not includeigents where trains are halted due to a
rail found to be badly worn or damaged. Brokehewaénts in this analysis are then
categorized as either service failures or brokérdesiailments. Service failures may be
detected in a number of ways including signal systeack inspector, or train crews. A
broken rail derailment is defined as a brokenttait causes a train to derail.

A database was developed from approximately 230 of mainline track
maintained by the BNSF Railway covering the fouatyeeriod, 2003 through 2006. The
data available included specific locations for ggr\ailures occurring across the
network. BNSF experienced 12,685 service failaaing the four-year period (Table
5.1). Additionally, rail characteristics, infragtture data, maintenance activity,
operational information, and track testing resulgse linked to each of these service
failures, for an overall total of 28 variables (Tab.2).

Table 5.1 Summary of BNSF Network Data, 2003-2006

Event Frequency
Annual Number of Geometric Defects 93,684
Annual Number of Ultrasonic Defects 45,294
Annual Number of Service Failures 3,171
Annual Number of Broken Rail Derailments 19
Track-miles Operated in 2006 37,003
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Table 5.2 Variables Included in Service Failure Anbysis

Rail weight Degree of curvature

Rail type (bolted or welded) Length of curve

Age of rall Degree of superelevation
Maximum allowable track speed Percent rise of grade

Annual number of trains Length of grade

Annual number of tons Recent tie replacement or tie work
Accumulated tons on rail Presence of a bridge

Annual number of cars Presence of a culvert

Average tons per car Presence of a tunnel

Average dynamic tons per car Presence of a diamond

Annual number of wheel passes Presence of a turnout
Occurrence of a internal defect Presence of a grade crossing
Occurrence of a geometric defect Curve rail grinding activity
Severity of a geometric defect Out-of-face rail grinding activity

BNSF’s network was divided into 0.01-mile-long segits (approximately 53
feet each) and the location of each service failecerded. The initial dataset comprised
the 12,685 0.01-mile track segments that experaeacgervice failure during the study
period. For the case of modeling rare eventsabrmamon to sample all of the rare events
and compare these with a similar sized samplesthintes where the event did not occur
(McCullagh & Nelder 1989). Therefore an additiodd|685 0.01-mile segments that did
not experience a service failure during the fouarygeriod were randomly selected from
the same BNSF network of maintained track. Adddibty, the non-failure locations
were assigned a random date within the four-yeae period for use in evaluating
certain temporal variables that might be factanshsas the recent occurrence of an
internal defect. Therefore, the dataset useddndimainder of this analysis included

25,370 total segment locations, each with a pddialate, from the railroad's network.

5.3 Evaluation of Previous Service Failure Classiation Model

The most relevant previous work on this topic wasualy conducted by Dick
(2001) for the purpose of predicting service fakibased on relevant track and traffic
data. The outcome of this study was a multivaiséédistical model that was able to
guantify the probability of a service failure atygrarticular location based on a number

of track and traffic related variables. The moslelassification equation is as follows:
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where,

Psr2= probability that a service failure occurred dgrantwo-year period
Z = -4.569, model specific constant

A =rail age (in years)

C = curvature of track (in degrees)

T = annual traffic (in million gross tons)

S=rail weight (in pounds per yard)

W = annual number of wheel passes (in millions)
P = dynamic wheel load (in tons)

N = presence of turnout (1 if present, 0 otherwise)
L = weight of car (in tons)

V = track speed (in miles per hour)

Dick (2001) determined that an optimal probabitityeshold for Equation 5.1
was 0.5 to classify each location as either faituraon-failure. The data used included a
total of 1,903 service failures from a two-yearipeifrom May 1998 to May 2000. This
model was found to classify locations correctlyhn87.4% accuracy when using a
dataset that was composed of half failures andriwadffailures. This model was not
tested against any “unseen” cases, or validatiten dathe time it was developed.

The next step was to test Dick’s model against@ayear period of current
service failure data. During the time period 002@hrough 2006, the BNSF experienced
6,613 service failures. These service failuresy@sas 6,613 random non-failure
locations, were entered into the above model inaiqn 5.2. Again, using a probability
threshold of 0.5 it was determined that the previmodel classified 7,247 of the 13,226

cases correctly (54.8%). However, the new optipnabability threshold was found to be
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0.1 with an accuracy of 57.2% (Table 5.3). Ituglent that the previous model had less

predictive power for more recent service failurewcences.

Table 5.3 Results of Testing Previous Service FarkeiModel with Current Data

Probability Correct Accuracy False False

Threshold Predictions Positives Negatives
0.1 7,566 57.21% 29.79% 13.00%
0.2 7,500 56.70% 24.01% 19.29%
0.3 7,402 56.00% 19.69% 24.35%
0.4 7,338 55.48% 16.83% 27.69%
0.5 7,247 54.80% 13.96% 31.24%
0.6 7,070 53.50% 11.13% 35.42%
0.7 6,931 52.40% 7.96% 39.63%
0.8 6,807 51.50% 5.06% 43.47%
0.9 6,663 50.40% 2.10% 47.52%

These results raised the question as to why theehiad lower predictive power
than it previously had. During the two-year inedrthat the model was based on the rate
of service failures occurrences on the BNSF netwyak approximately 952 per year.
During the more recent four-year period, BNSF egmeed a total of 12,685 service
failures, or approximately 3,171 per year. Thigentan three-fold increase in service
failures was substantially higher than the increahae BNSF and other railroads had
actually experienced during this interval. It segigd some unknown difference between
the earlier and more recent databases.

A closer examination of the earlier service faldataset compare to the more
recent dataset revealed that there was a differi@rtbe acquisition criteria for the two.
The difference was due to a misinterpretation edlferent reporting techniques for
BNSF network locations that are on single track parad to those at multiple track
locations. The service failure data provided by3N\during the two-year study period
of May 1998 to May 2000 may have included only servailures occurring in locations
of multiple track lines. Whereas, the data prodgitte the more recent four-year study
period included data for both single track as \aslimultiple track locations. During the
recent four-year study period, BNSF experience@% gervice failures in areas of
multiple track, or approximately 1,172 per yeahislcorresponds to a 23% increase in
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service failures in areas with multiple tracks camggl to the previous study. This
increase is much closer to the increase reportedilvgads for this time period.

The distribution of BNSF service failures acrdssit network can be graphically
depicted using geographic information system (Gt8jware and rail network data.
Figure 5.1 shows the frequency of service failyp@strack mile on the BNSF network.
A few line segments on the BNSF network are nduhed in this figure due to missing
information. Overall, this figure shows that, apected, many service failures occur on
high density lines, such as the BNSF Transcon ftosiAngeles to Chicago and the line
extending east from the Powder River Basin in Wyarand Nebraska. However, the
figure also shows that there are service failuEsining elsewhere across the entire
network, including many areas that are single ti@cknsignaled (dark) territory. Due to
the inherent difference between the previous ancemexent dataset, a new classification

model was developed based only on the most cuiwarnyear study period.

5.4 Statistical Classification Model

The first new classification model that was depeldto predict service failure
locations used the same logistic regression tecdlesias Dick’s (2001) previous work.
However, unlike the previous work, more factord théght influence crack growth in
rails were included to develop the model, sucmaastructure data, maintenance
activities, and track testing results. The logiséigression technique was selected
because it is a discrete choice model that calesitifite probability of failure based on the
input variables. These probabilities are usedassify each case as either failure or non-
failure. A statistical regression equation wasaleped based on the significant input
parameters to determine the probability of failuf@ find the optimal classification
model, the input parameters were evaluated withvatitbut multiple term interactions
allowed. Multiple term interaction allows for matemplex relationships and
dependencies that may not have been previously knéaditionally, a number of
computational techniques for logistic regressian@ssible, and these were also

examined and evaluated in this analysis.
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5.4.1 Logistic Regression Methodology and Techniques

The logistic regression method (LR) uses a transformation that creates a
prediction equation that calculates a value between 0 and 1. LR predicts the natural log
of the odds for a case being in one category or the other. LR is widely used in
multivariate regression problems in which the dependent variable is binary, or has only
two levels, such as failure or non-failure (Cody & Smith 1997). Logistic regression
analysis has been widely used in fields, such as medicine, engineering, business, and
physiology (Carthey et al. 2003, Lei & Jing-feng 2006, Sagberg 2006, Mojsilovic et al.
2007).

Four possible computation techniques exist, and each technique was evaluated in
this analysis, for the development of a logistic regression model. The simplest method is
referred to as “full-model”, or variable selection type “none” in SAS. The full-model
method uses every available input variable to determine the best regression model. The
other three methods are models which use variable selection techniques.
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The next method examined in this analysis is sieletype “forward”. Forward
selection evaluates each input variable and ihjtedds the most significant variable to
the model. Next, the forward selection method d@tdsvariable that, when evaluated in
conjunction with the first variable, produces theajest improvement. This process
continues until no additional variables meet ardefisignificance level for inclusion in
the model. The entry and removal level used ig déimalysis was a 0.05 significance
threshold.

The next logistic regression technique that waslwgas the “backward”
selection. This selection method starts withrgilt variables included in the model. In
the first step, the model determines the leastfsignt effect that does not meet the
defined significance level and removes it fromtiedel. This process continues until
no other variables included in the model meet #fendd level of removal.

The final logistic regression selection technigged was “step-wise” selection.
The step-wise selection method is similar to thevéod selection method because the
model begins with the most significant terms andticmes adding terms step-by-step.
However, unlike the forward selection method, ttepavise process evaluates the
importance of all model terms after each stemanif term is determined to be
insignificant, based on the defined significanaeelethan that term is removed and the
process continues. The step-wise selection pregesswhen no further variables are
added or removed from the model based on the dbén#&y and exit thresholds. Each
of these four logistic regression models was usedtie following analysis for both single
and multiple term interaction.

Previous work has shown that use of the aboveritbesicvariable selection
techniques may not lead to the optimal logistiaesgion model (Hocking 1976).
Hocking stated that none of the variable seledgmhniques are superior to others, but
instead all methods should be used to find theeskel for the dataset. Hocking
concluded that the developed models from eacheofabhniques should be compared for
similarities and that these similarities may reveeakar-optimal model. For this study,

each of the four variable selection techniques evatuated.
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5.4.2 Simple Logistic Regression Model

The first logistic regression model constructed wasultivariate analysis that did
not allow for variable interaction. All four logis regression selection techniques were
implemented to determine the best model. SAS soéwas used (SAS 2006) for model
construction. All four models had a similar cléissition accuracy of 66.3% for 25,370
cases being classified (Table 5.4). Additionalhg three selection models used the same
23 variables and developed the exact same logejression equation. The developed
logistic regression equation was:

(]

e

P =—- 5.3
S22+ eY) 53)
U =7-0.04865- 132R—- 0.00362A - 0.044N + 0.0000520~ + 0.0313r
—0.00015H — 0.0542_ + 0.0487P — 0.48°AWV + 1601 + 0.689G + 0.0501C (5.4)

+0.0637E — 142x10°J — 0.107M + 162B+ 0.157K + 301D + 0.980N
+0.361X + 0.7780 + 0.58Q

where,

Psr2= probability that a service failure occurred dgranfour-year period
Z = 6.32, model specific constant

S=rail weight (in pounds per yard)

R =rail type (1 if welded, O if bolted)

A =rail age (in years)

V = track speed (in miles per hour)

F = annual number of trains (total, both directions)

T = annual traffic (in million gross tons)

H = accumulated tons on rail since rail was insti{la millions)

L = weight of car (in tons)

P = dynamic wheel load (in tons)

W = annual number of wheel passes (in millions)

| = presence of an ultrasonic defect in the lasktlyears (1 if present, 0O otherwise)

G = presence of a geometric defect in the last theaes (1 if present, 0 otherwise)
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C = curvature of track (in degrees)

E = superelevation of track (in inches)

J = length of grade (in feet)

M = recent tie replacement or tie work in last thyears (1 if present, O otherwise)

B = presence of a bridge within 200 feet of segni&rft present, 0 otherwise)

K = presence of a culvert 200 feet of segment ptagent, 0 otherwise)

D = presence of a diamond within 200 feet of segr{teiftpresent, 0O otherwise)

N = presence of a turnout within 200 feet of segni&ntt present, O otherwise)

X = presence of a grade crossing within 200 fesegment (1 if present, 0 otherwise)
O = out-of-face rail grinding activity performed iflpresent, O otherwise)

Q = curve rail grinding activity performed (1 if g@nt, O otherwise)

Table 5.4 Results of Simple Logistic Regression S&ce Failure Classification
Models using Four Regression Techniques

Regression Number of Number of Cases  Accuracy of False False
Techniqgue Parameters in Model Correctly Classified Classification Positives Negatives
Full-Model 28 16,820 66.30% 12.80% 20.90%
Forward 23 16,822 66.31% 12.83% 20.86%
Backward 23 16,822 66.31% 12.83% 20.86%
Step-wise 23 16,822 66.31% 12.83% 20.86%

This new statistical model contains more variali@s$ contribute to the
likelihood of a service failure as compared tophevious classification model developed
by Dick (2001). This is because the previous moaéf examined 11 of the possible
prediction factors; whereas the new model evalua8possible factors. The optimal
probability threshold for classification was detered to be 0.05. Altering the threshold
of probability will change the classifications bktmodel (Table 5.5).

The new step-wise model increased the accurachassification for the most
recent service failure data by 11.5% over the pevimodel developed by Dick (2001).
Therefore, the development of a new model, withinlckision of additional possible
factors leading to service failures, increasednloeel’s predictive ability. In particular
the first five terms, or most significant factoesitered into the new model were: presence
of an ultrasonic defect, rail type, annual MGTsrage tons per car, and presence of a
geometric defect. Of these five terms neithelagtinic nor geometric defects had been
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Table 5.5 Results of Step-wise Logistic RegressiModel for Varying Levels of
Probability Threshold Classification

Probability Correct Accuracy False False

Threshold Predictions Positives Negatives
0.1 12,721 50.14% 49.83% 0.02%
0.2 13,298 52.42% 47.04% 0.54%
0.3 14,711 57.99% 38.99% 3.03%
0.4 16,545 65.21% 23.33% 11.45%
0.5 16,822 66.31% 12.83% 20.86%
0.6 16,485 64.98% 7.16% 27.86%
0.7 15,825 62.38% 3.83% 33.80%
0.8 14,787 58.29% 1.54% 40.17%
0.9 13,402 52.83% 0.26% 46.92%

included in the previous model. Additionally, theesence of infrastructure features,
such as bridges, grade crossings, and diamonds,neépreviously evaluated, but also
have influence in the new statistical model.

The next step was to examine if the model’s acgucaald be improved with
changes to the logistic regression method. One ¢§yghange that was investigated was
transforming some of the input parameters fromiooous variables to discrete choice
variables. Many of the inputs, such as the raighieand the presence of infrastructure,
were evaluated in the previous model as continvatiables, and may be better
represented as discrete variables. For exampleyemht has 13 different entries: 89,
90, 100, 110, 112, 115, 119, 129, 131, 132, 136, 4dd 141 pounds per yard. In the
previous model, rail weight was a continuous vdeaimeaning that the change in ralil
weight was directly proportional to the changeikelihood of a service failure.

However, this practice is limiting because the gsafiom 110 to 119-Ib. rail may not be
proportional to a change from 132 to 141 Ib raierethough each of these cases show a
9-lb. rail increase. Additionally, different raileights have different cross sections, and
therefore a change in rail weight may not be diyemrrelated with a change in

likelihood of a service failure. Therefore, raigight can be transformed to a discrete
variable.

To transform a variable from continuous to disctageaddition of more input
parameters is needed. The SAS software that wastasconstruct the logistic
regression equations allows for the transformatioimput parameters. For example, the
rail weight variable has 13 unique entries; thamfa total of 12 new input variables
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were created to represent the different entrigguféi 5.2). By definition, binary choice
variables that have unique entries of only 1 aadelalready discrete variables.
Therefore, no transformation of binary variableslsas the presence of a bridge, was
needed. Additionally, other variables that areticmous in nature, such as
superelevation and annual tonnage, should notbsfsrmed or the model may become

over-fitted, or have a limited ability for predioti of future events.

Class L evel Information

Class Value Design Variables

RAIL, WGT 89 O N O o O O I VB
90 S S O O O 1 O
o (00 1|00 o|/0o0dloo o
110 |0 0 0|1t 0 0|0 0 0j0 0 D
112 |00 0|0 1 0|00 Oj0 0D
115 (o 0 ofo o 1lo o0 0|0 o @
11¢ |0 0 0|0 0 0|1 0 0j0 0 D
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Figure 5.2 Transformation Chart for Rail Weight Variable from Continuous to
Discrete Choice by Creation of New Inputs

Of the 28 variables, 13 were binary discrete arg one, rail weight, was a
discrete variable with multiple unique values. @étlher variables were continuous and
therefore could not be transformed to a discret@lke without arbitrary divisions, or
bins, being created. The four logistic regressemmniques were developed in a similar
manner with the transformed dataset. This moddbpaed better than the previous
model with an accuracy of 68.5%, showing an in@e@asccuracy of 2.2% (Table 5.6).
Additionally, the three variable selection techr@gquselected the same variables to

include in the model and developed the same reigresguation. None of the models in
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Tables 5.4 and 5.6 allowed for variable interactiberefore, the next step was to

consider models with interactive terms.

Table 5.6 Results of Simple Logistic Regression Mets using Variable
Transformation and Four Regression Techniques

Regression Number of Number of Cases  Accuracy of False False
Technique Parameters in Model Correctly Classified Classification Positives Negatives
Full-Model 40 17,351 68.39% 13.10% 18.51%
Forward 34 17,372 68.47% 13.01% 18.51%
Backward 34 17,372 68.47% 13.01% 18.51%
Step-wise 34 17,372 68.47% 13.01% 18.51%

5.4.3 Multiple Term Interaction Logistic RegressModel

The next logistic regression model consideredattovance of input variable
interaction. Variable interaction is importantcmnsider for prediction models due to the
fact that some of the input variables may not loependent and may have a combined
effect on the location of a service failure. Frample, rail age and degree of curve may
each have an independent effect on the likelihdalservice failure; however, the
combined effect of rail age multiplied by the degod curvature may produce an even
stronger correlation with service failure locatiori&he software package included with
SAS allows for a calculation of two and three-temeraction possibilities. However,
only two-term interaction is possible for this arsaé because of the large number of
input variables included in the dataset. Theahithiodel considered 28 independent
variables; the two-term interaction model therefooasiders 406 possible variables.
Three-term or higher interaction was limited by teenputational power available to
process the large number of possible variableastems.

Again, each of the four logistic regression tegles was used to develop service
failure classification models with two-term inteti@an. The procedures followed in this
part of the analysis were the same as in the sitoglstic regression model. Initially, all
input variables were considered to be continuousbkes. The most accurate model,
using two-term interaction, is the backward setattechnique. This model classified
71.1% of the cases correctly, or an increase inracy of 2.6% over the best previous
model (Table 5.7). In this case, the full-modeluded only 363 of the total possible 406
variables due to the fact that the interactionamhs of the variables produces the same
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value as another input parameter. For exampleyritauct of the variables rail age and
annual gross tons is the same value as the panafoeteEcumulated tons on the rail. In
each instance where the SAS software encounténsagien such as this, the variable is

removed to prevent redundancy.

Table 5.7 Results of Two Term Interaction LogistiRegression Service Failure
Classification Models using Four Regression Techniges

Regression Number of Number of Cases  Accuracy of False False
Techniqgue Parameters in Model Correctly Classified Classification Positives Negatives
Full-Model 363 17,921 70.64% 12.22% 17.14%
Forward 90 17,840 70.32% 12.23% 17.45%
Backward 145 18,025 71.05% 12.06% 16.89%
Step-wise 62 17,779 70.08% 12.20% 17.72%

As with the simple logistic regression models, tiegt step was to develop two-
term interaction models in which applicable inpatgmeters were transformed from
continuous to discrete variables. Thus, the ivauable for rail weight was split into 12
different input parameters to differentiate betw#en 13 unique rail weight values
(Figure 5.2). Therefore, the total number of poiesinput parameters increased to 820,
or more than double that of the model that didawaount for discrete variables. The
logistic regression equations were constructedgusisimilar procedure of evaluating all
four possible regression techniques. The modelpitesented the highest level
classification accuracy was the forward selectemhhique at 72.3% accuracy (Table
5.8), which was higher than any of the previous el&dOverall, the results of the two-
term interaction models produced higher levelscoligacy, but also included

substantially more input parameters than the singteable techniques.

Table 5.8 Results of Two Term Interaction LogistidRegression Models using
Variable Transformation and Four Regression Techniges

Regression Number of Number of Cases  Accuracy of False False
Techniqgue Parameters in Model Correctly Classified Classification Positives Negatives
Full-Model 565 18,333 72.26% 12.47% 15.27%
Forward 336 18,340 72.29% 12.47%  15.24%
Backward 262 18,316 72.20% 12.63% 15.18%
Step-wise 44 17,123 67.49% 13.75%  18.75%
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Two problems arise from models similar to thosaleated in this analysis with a
large number of input parameters. First, such risoale prone to over-fitting the data.
Over-fitting will occur when a model creates redaships that are not actually factors
that lead to failure but instead happen to fit¢berent set of data more accurately. To
evaluate the robustness of the models producduesetanalyses, the models must be
tested against validation data, or “unseen” casddlas is examined in the following
sections.

The second problem that arises from large moddilsai fact that they may be
unreasonable to explain, define, and thereforeampht in practice. For example, the
most accurate model in this analysis was two-temeraction with forward selection; this
technique had an accuracy of 72.3% with 336 inpuameters. However, the step-wise
simple logistic regression model shown in Equaiighhad an accuracy of 66.3% but
only included 23 input parameters. In many casegy be more practical to use a
simpler classification model despite it being Ipesverful. The optimal solution will be

a model that combines sufficiently high accuracthvai limited number of variables.

5.4.4 Development of a Practical Statistical Clésation Model

The purpose of this analysis was to create a giiedimodel for service failures
that was both understandable and useable witmthation of implementing it as a
maintenance planning tool. As described in theiptes sections, many of the logistic
regression models included a large number of parmand therefore are not conducive
for understanding and use by a railroad. A pratticodel is thus needed that limits the
number of input parameters but still has a suffitiehigh level of accuracy. Such a
model was developed by examining which input patamseof the dataset were most
significant in predicting service failures.

To determine a simplified model, the logistic reggion method was used with
the “score” variable technique. This techniquegkted the most important variables
for accurate prediction of the logistic regressioomdel. Due to limitations in
computational power, the score program does nowatbnsideration of multiple-term
interaction or the use of discrete variable tramsfdion. For example, the score

technique was used to determine the most powerddleinf the input terms were limited
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to only the best five. In this case the five inpatameters for the best model were: type
of rail, annual gross tons, average tons per casgnce of an ultrasonic defect, and
presence of a geometric defect. This five termehbdd an accuracy level of 64.0%.
As compared to the previous simple step-wise regyasnodel which had an accuracy
level of 66.3%, but used 23 different parametéssimilar analysis was completed to
calculate the best model for a varying number odpeeters. The results of this analysis
for inclusion of one to 23 parameters are showhahble 5.9. This table shows what
variables were removed and added at each iterbanthe previous model. The base
model of 23 parameters is the same as shown intiequa4.

Table 5.9 shows that, in most cases, as the nuofilparameters decrease the
classification accuracy of the model also decreaB@gure 5.3 is a graphical
representation of the change of accuracy versusuhdber of model parameters. In
some cases, the addition of another variable didnmorove the model, most notably the
six-variable model. This is because the modetiadforced to create a model based on
the best six variables, which has a lower levedaduracy then the five-variable model in
this case. For example, if the step-wise regregsicdmique were used, instead of forcing
the model to be created with six terms, the sigtmtwould have been removed and the
five-term model would be selected. In situatidks this, the larger model is undesirable
and would not be selected as an optimal model.

As shown in Table 5.9, generally the best modebah step is the same as the
previous model with the least significant term remah However, this is not true for the
variable rail age. The rail age term was not presemodels of sizes 20 through 10, but
then added back in for model size 9. This meaaisrthl age may not be significant
when a number of other factors are included, bah@g$actors become limited, rail age is
relatively more important. Another generality tbah be drawn from Table 5.9 is that
the presence of infrastructure features, excepbridges and grade crossings, are not
significant factors. From this analysis, | detered that a “practical’” model, that
balanced both the number of input variables ancdtoerracy of classification, was the
eight-parameter model. The calculated logisticegsgion equation presented a
reasonably simple model that can be understoodised, but also has an accuracy level
of 64.7%.
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Table 5.9 Practical Service Failure ClassificatioModels of Simple Step-wise
Logistic Regression Technique by Number of Allowe&arameters

Number of
Parameters Parameters Added Cases Correctly Accuracy of False False
in Model Parameters Removed (if any) Classification  Classification Positives Negatives
23 -- - 16,822 66.31% 12.83% 20.86%
22 Turnout - 16,811 66.26% 12.86% 20.88%
21 Age of Ralil - 16,830 66.34% 12.95% 20.71%
20 Length of Grade - 16,825 66.32% 12.92%  20.76%
19 Degree of Curve -- 16,856 66.44% 12.80% 20.76%
18 Average Tons per Car - 16,854 66.43% 12.83% 20.74%
17 Culvert - 16,816 66.28% 12.95% 20.77%
16 Tie Work Completed -- 16,835 66.36% 12.83% 20.81%
15 Superelevation -- 16,825 66.32% 12.95% 20.73%
14 Diamond - 16,826 66.32% 12.98%  20.70%
13 Grade Crossing - 16,727 65.93% 13.18%  20.88%

Speed, Annual Trains,

Average Dynamic Average Tons per Car,

0, 0, 0,
12 Tons, & Annual Wheel Degree of Curye, & 16,564 65.29% 13.52% 21.19%
Grade Crossing
Passes
11 Grade Crossing - 16,571 65.32% 14.05% 20.63%
10 Out-of-Face Ral - 16,560 65.27%  13.12%  21.60%

Grinding

9 Accumulated MGTs & Age of Rail 16,429 64.76%  13.05%  22.20%
Degree of Curve

8 Curve Rail Grinding - 16,407 64.67% 12.84% 22.49%
7 Age of Rail - 16,303 64.26% 12.10% 23.64%
6 Bridge - 16,064 63.32% 12.93% 23.75%
5 Rail Weight - 16,235 63.99% 11.15%  24.86%
4 Geometric Defect -- 15,841 62.44% 10.89% 26.67%
3 Average Tons per Car -- 15,935 62.81% 10.74%  26.45%
2 Annual MGTs - 15,213 59.96% 4.44% 35.60%
1 Rail Type - 14,265 56.23% 1.65% 42.12%
0 Ultrasonic Defect -- -- -- -- --
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Figure 5.3 Accuracy of Classifications based on Nuber of Allowable Parameters
for Simple Step-wise Logistic Regression Models

This is a decrease of only 1.6% from the basic-stisp regression model with 23
parameters, but is obviously much simpler to uskemaluate. The “practical” eight-

term regression model was:

U

e
p —-—-
SF2 1+€")

U =Z-0.04545- 135R - 0.0106A+ 0.00899
+0.0232 + 161 +0.8235 + 163B

(5.5)

(5.6)

where,

Pse2= probability that a service failure occurred dgranfour-year period
Z = 4.94, model specific constant

S=rail weight (in pounds per yard)

R =rail type (1 if welded, O if bolted)

A =rail age (in years)
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T = annual traffic (in million gross tons)

L = weight of car (in tons)

| = presence of an ultrasonic defect in the lasetlysars (1 if present, O otherwise)
G = presence of a geometric defect in the last theaes (1 if present, O otherwise)

B = presence of a bridge within 200 feet of segni&rft present, 0 otherwise)

| next examined the applicability of this modeleatol for railway engineering
professionals. The eight terms in this model canamked by how significant they are to
the prediction power of the model (Table 5.10).e fimost important prediction term is
the presence of an ultrasonic defégt The coefficient of this term in Equation 5.6 is
positive, indicating that the presence of an uitrés defect in a 0.01 mile track segment
increases the likelihood of a service failure odagyat a later point on the same track
segment. This correlation between detected defexighe likelihood of a service failure
is similar to the conclusions presented by Zarem&dRalese(2005). The model
Zarembski & Palese developed showed that the fiskaken rail derailments is directly
related to the rate of rail defect development.

Table 5.10 Ranking of Top Eight Input Parameters fo Service Failure Regression
Model

Ranking Input Parameter
1 Ultrasonic Defect Present
Rail Type
Annual MGTs
Average Tons per Car
Geometric Defect Present
Rail Weight
Bridge Present
Age of Rail

O ~NOoO Ok, WN

The next most important parameter is the typefif the rail segment is in
bolted-rail territory the likelihood of a servicailure is increased. The next two most
significant parameters correspond to loading orrdiie As annual tonnage and average
car weight increase, so does the probability adraise failure. The fifth most important
factor is the occurrence of a geometric defecmil@r to ultrasonic defects, the presence
of a geometric defect increases the likelihood ghservice failure will occur in the same

76



track segment. The next term in the model iswailght (as a continuous variable). Rail
weight is inversely related to service failure mblity. The seventh most important
term in the model is the presence of a bridge witfl0 feet of the track segment
location. The presence of this term in the moslelonsistent with conventional thinking
that the change in track modulus often associatddtie transition between track and
bridges increases the dynamic load on the tracklzareby increasing the likelihood of
crack growth. The final term in the practical mbideail age. The regression equation
indicated that rail age is inversely related tosmer failure occurrence. This relationship
is counterintuitive but may be explained by thd that rail life is relatively short in high
density track but low density track may have vdgyrail. This simple eight-term model

produced a classification accuracy of 64.7%.

5.4.5 Evaluation of Statistical Classification Mésle

The final step to determine the best statisticatligtion model was to test the
robustness of each of the regression equationdapeee This was completed by testing
each model against validation data, or “unseenéxad/odels that include a significant
number of parameters are prone to over-fitting amedtherefore poor prediction models
for events that have not yet occurred. All of sieevice failures were separated into two
groups. Of the 25,370 total cases, 15,222 cag¥s)(@ere included in a training
sample. The remaining 10,148 cases (40%) wermeetan a testing sample, or
validation group. The cases that were includeebich dataset were selected at random
over the four-year study period. The best modwhfeach particular logistic regression
technique was selected to test against the testingple. Each of the five specific model
techniques were used to create logistic regregsjoations based only on the training
sample in the same procedure as previously describke regression equations were
then used to calculate the probability of failuve éach case in the testing sample.
Again, a probability threshold level of 0.5 was dise classify cases as either failure or
non-failure. The predicted classification was tkempared to the actual event that
occurred in each case and overall model accurasydetermined.

The results from this analysis showed that theghogistic regression models that

did not allow for variable interaction performedlixagainst the testing sample and
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therefore are robust for service failure prediciidable 5.11). Each of the three simple
regression models had less than a 1% differenaedaracy between the training sample
and the testing sample. The two models that alliovegiable interaction over-fit the data
and therefore had a large decrease in accuratlhiddesting sample (Table 5.11). The
most accurately constructed model, the two tereraution model with variable
transformation, over-fit the training sample by abn20%. Therefore, the variable
interaction models are not useful prediction tdotscalculating the probability of service

failures.

Table 5.11 Evaluation of Statistical Service Failug Prediction Models by Testing
Against Validation Data

Logistic Regression  Regression  Accuracy of Initial Accuracy for Accuracy for Chanae
Model Technique Classification Model Training Sample Testing Sample 9
Simple Logit Step-wise 66.31% 66.73% 66.34% -0.39%
Simple Logit w/ Step-wise 68.47% 67.80% 67.69% -0.11%
Transformation

Two Terl_mog?tteram'o” Backward 71.05% 71.17% 57.07%  -14.10%

Two Term Interaction g 72.29% 86.74% 67.33%  -19.41%
Logit w/ Transformation

Eight-term Logit Model  Step-wise 64.67% 65.05% 64.12% -0.93%

5.5 Development of Artificial Neural Network Models

The next classification models developed usedi@eifneural networks (ANN).
ANNs have been used in various studies of evemligtien, in particular classifying
future events into either failure or non-failuréhe use of ANNs has been shown to be a
more powerful alternative to logistic regressiond®@ls in certain applications. In one
previous study, a neural network model was develdpepredicting bankruptcy failure
of firms using limited financial data (Odom & Shar#l990). The authors concluded that
the neural network developed showed a higher lefvptediction accuracy and

robustness compared to previous statistical moglédohniques.
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As described in the previous chapter, an ANN israputational tool that has the
ability to “learn” mathematical relationships betmea series of input variables and their
respective output value. The internal structuraroANN is an interconnected group of
neurons that have the ability to change its strecamd connection weights based on
information that flows through the network. Witietdevelopment of ANNs as an
alternative to logistic regression for predictiandies, research has been conducted to
explore the differences in the two techniques (986). As described by Tu, ANNs have
two distinct advantages over traditional neuralvoek models. One advantage is that
ANNSs have the ability to detect complex non-linegationships between input and
output variables that statistical analysis does bt second advantage is that ANNs
inherently detect all possible interactions betweuit variables as part of the learning
process, unlike the statistical analysis which augluated two-term interactions.

5.5.1 Simple ANN Classification Model

An artificial neural network model was developed ¢lassifying track segment
locations as either failure or non-failure. Thensaservice failure data, as well as non-
failure locations, that were used to develop thygskic regression models were used
again for construction of the neural networks. ldger, only 15,999 randomly selected
cases could be analyzed due to limitations of theal network software. The software
used for construction of the artificial neural netlvwas “NeuroShell Classifier”
developed by Ward Systems Group, Inc (Ward Systerogp, Inc. 2006). Using the
data from the four-year period, a neural network d@aveloped using back-propagation.
The ANN classified 67.7% of the cases correctlyinaprovement of 1.4% over the
previous simple step-wise logistic regression m@d@able 5.12). The ANN model
classified 12.7% false positives and 19.6% falggtiees. The number of hidden
neurons constructed for this neural network wasA®.ANN is constructed by
algorithms that add hidden neurons one by one th@ibptimal network is determined.
An optimal network and the optimal number of nesrogpresent a balance of model
accuracy and robustness. A network that genesalisl is one that is not over-fit and

therefore is able to provide good results for \atiiwh data. In other words, the software
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attempts to learn and produce a neural networkishadth accurate and robust for unseen

cases.

Table 5.12 Results of Developed Atrtificial Neural Btwork and Hybrid Service
Failure Classification Models

Accuracy of False False Number of
ANN Model Type Classification  Positives Negatives Hidden Neurons
ANN 67.72% 12.64% 19.64% 76
Logit-ANN 67.52% 13.03% 19.45% 71
PLogit-ANN 67.93% 12.83% 19.24% 77

5.5.2 Hybrid Logit-ANN Classification Models

The final two classification models developed w&MN/Logistic Regression
(ANN/LR) hybrid models. One of the disadvantagéaNNs when compared to logistic
regression models is that ANNSs frequently havadifty analyzing systems that have a
large number of parameters due to the amount @& tequired to learn the system, as
well as possibly over-fitting the model during ihéial learning phase. Hybrid ANN/LR
models have been shown to improve classificatiogfopaance when compared to
traditional logistic regression techniques (Spaakh@92, Yim & Mitchell 2003).

Two types of ANN/LR models that have been develapeprevious work (Yim
& Mitchell 2003) were examined for this study. Tirst type of hybrid model is
constructed using logistic regression to pre-selagables based on their significance in
the prediction model (Logit-ANN). Only the factareluded in the initial logistic
regression model are then considered in the denedopof the ANN. The second type
of hybrid model type is constructed using the logigegression model to calculate the
probability of failure and then adding that valiseaa additional input variable into the
ANN (PLogit-ANN). The two hybrid models offer advages over the logistic
regression techniques. The hybrid models deciied&# learning cases for the ANN,
meaning that more cases can be devoted to optignikanetwork instead of learning the
network. Additionally, the hybrid models condemsi®rmation for very large problems
thereby reducing learning time, which can be ai@ant factor for very large datasets.

In this study, both hybrid models were developsig the previously determined

simple step-wise logistic regression model (Equefiel). This selection model was

80



chosen because it produced both a high level séifleation accuracy and was robust for
unseen cases. The first hybrid, Logit-ANN, is damsted by first pre-selecting the input
variables. The logistic regression model deterohith@t 23 of the 28 input factors were
significant for service failure prediction. Onlyese 23 factors were then used to
construct the new ANN. The Logit-ANN hybrid modehs 67.5% accurate (Table 5.12).

The second hybrid model, PLogit-ANN, was consedatsing the logistic
regression model to calculate the probability diifa for each case using Equations 5.3
and 5.4. This value was then added as an additigmat variable for construction of the
ANN. The PLogit-ANN hybrid model was found to eetmost accurate model with a
67.9% correct classification rate (Table 5.12).

The PLogit-ANN hybrid model performed only modgdiktter than any of the
other models, including the simple step-wise lagistgression technique. Additionally,
Table 5.12 shows that the accuracy of the Logit-ANKrid model was slightly less than
the stand-alone ANN; meaning the simple ANN moaeisidered additional variables
significant that the previous step-wise statistioaldel did not. Overall, the three
artificial neural network models performed only ab&% to 2% more accurately than
the simple step-wise logistic regression model.with the statistical models, a better

evaluation of the ANN models performance is to teetn with unseen data.

5.5.3 Evaluation of Artificial Neural Network Classation Models

The various ANN models were evaluated using alaimprocedure as the
statistical models. The 15,999 cases used tormbshe ANN were randomly divided
into two groups, a training sample and a testimgda. 9,600 cases (~60%) were
selected for the training set and 6,399 cases (Y4@re selected for the testing set. The
results showed that all three models performed agdinst the testing sample as
compared to the training sample (Table 5.13). Eaobel’'s accuracy decreased by only

1% to 2% and therefore could be considered robust.

5.6 Final Prospective Service Failure Prediction Mdel
As stated previously, the objective of this analygas to develop an accurate,

understandable tool that railroads could easilyi@ment to assist with maintenance
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Table 5.13 Evaluation of ANN Service Failure Prediton Models by Testing Against
Validation Data

Accuracy of Initial Accuracy for Accuracy for
ANN Model Type Classifica)t/ion Model Training S)::lmple Testing S;/mple Change
ANN 67.72% 67.75% 66.56% -1.19%
Logit-ANN 67.52% 67.79% 66.28% -1.51%
Plogit-ANN 67.93% 67.65% 66.43% -1.22%

planning. Multiple models using both statisticatlartificial neural network methods
were developed to predict service failure locatiokach technique produced models
with varying degrees of accuracy, robustness, andlgity. Comparing ANNS to
statistical methods revealed some shortcomingewofah networks. One disadvantage is
that ANNs do not give a value for the probabilifyao outcome; the ANN only produces
an output of either failure or non-failure. Thssa significant disadvantage compared to
the logistic regression method that can estimaigtbbability of failure for each case
using the regression equation. Another disadvantdgeural networks is that they are
“black box” models, meaning that the relationstbpsnveen variables in a neural network
cannot be easily understood. The ability to explainat the model is doing and why is
thus limited. Overall the neural network modelaleated did not greatly increase the
classification accuracy of service failure predinti Therefore, the final prospective
service failure model is based on the logistic @sgion methods.

The different logistic regression techniques usdtiis study produced 16
different classification models. Each of these glsdvas evaluated based on unseen
data, and it was determined that the single variaiddels were more robust for
predicting service failures than the two-variabledels. Of the eight single-variable
logistic regression models evaluated, all contamede than 20 input parameters.
However, the simplified eight-term model combinéghhaccuracy and a low number of
input parameters. This “practical” model was aateiand robust as well as easy to
understand and implement. Therefore, the eight-tandel was selected as the version
to be adapted for predictive purposes. The SABvaoé’s output of this model, detailing
the process used to develop the logistic regressioation, is shown in Appendix A.
However, to use this practical model in the figianust first be transformed to a

prospective prediction model.
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Each of the classification models described idgtuere retrospective models
created using a dataset in which half the recoadisehservice failure and half did not. A
transformation is needed to develop the statistraadel into a prospective model that
can be used to predict the location of serviceifagd. Previous work has shown how the
transformation can be done using a logistic regrassodel (McCullagh & Nelder 1989,
Dick et al. 2003). The transformation was completéh adjustment of the model
specific constant, Z, to reflect the average serfadure probability across the entire
system. During the four-year period, there wer®82 service failures on the railroad
that were classified according to which of the &nfifle segments they occurred on. In
2006, BNSF maintained 23,358 miles of mainlinekrg&TB 2006). This corresponds to
a total of approximately 2.34 million 0.01-mile-psegments. The average probability
that a service failure will occur on any particisagment during a similar four-year
period is thus 0.00543. This probability was catea into a new model-specific

constant using the log-odds operator:

1-.0054:

Z' = Z+In(fe) = 494+In(:°%58) = -0.270 (5.7)

u

e

Psr2 = m (5.8)

U =Z" -0.0454S- 135R - 0.0106A + 0.00899
+0.023zL +1.61l +0.82:G +1.63B

(5.9)

where,

Z =-0.270, adjusted model constant

Z = 4.94, model specific constant

Pse2= probability that a service failure occurred dgranfour-year period
S=rail weight (in pounds per yard)

R = rail type (1 if welded, O if bolted)

A = rail age (in years)

T = annual traffic (in million gross tons)

L = weight of car (in tons)

| = presence of an ultrasonic defect in the lasktlygars (1 if present, O otherwise)
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G = presence of a geometric defect in the last theaes (1 if present, 0 otherwise)

B = presence of a bridge within 200 feet of segni&rft present, 0 otherwise)

The previous model specific constantjs replaced in the logistic regression
equation by the adjusted constafit, as shown in Equation 5.9. Therefore, Equati@n 5.
represents the prospective service failure modéh wpdated value for U, for the
prediction of service failures during a four-yearipd. This equation can be used to
determine specific locations with a high likelihooida service failure, and the overall

service failure rate for a specific line.

5.7 Service Failure Prediction Case Study

The prospective prediction model can be used tutate annual service failure
rates for specific track segments and estimataedineber of service failures on a
particular line. This information may enable mef&cient railroad maintenance
planning to reduce the likelihood of broken rails summation of the probabilities for
100 consecutive 0.01 mile segments will yield thpeeted number of service failures
per mile. However, the equation also calculatespitobability of a service failure
occurring over a four-year time frame. Therefagsuming that service failures are
distributed linearly over time, the number of exjeelcservice failures is divided by four
to determine the annual rate of service failurBlse transformed rate equation to

calculate service failures per mile per year is:

100"
_ 5.10
4+ eY) o
U=2Z -0.04545- 135R- 0.0106A+ 0.00899 (5.11)

+0.0232L +1.611 +0.825G +1.63B

where,

Esr= expected number of service failures per mileyear on a specific segment
Z' =-0.270, adjusted model constant

S=rail weight (in pounds per yard)
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R = rail type (1 if welded, O if bolted)

A =rail age (in years)

T = annual traffic (in million gross tons)

L = weight of car (in tons)

| = presence of an ultrasonic defect in the lasktlyears (1 if present, 0 otherwise)
G = presence of a geometric defect in the last theaes (1 if present, 0 otherwise)

B = presence of a bridge within 200 feet of segnfémit present, O otherwise)

Use of the prospective model to calculate expestedce failure rate is
illustrated using the following hypothetical casedy (Figure 5.4, Table 5.13). The
constants for this case study are that it is 3/Bgnn length, has continuously welded
rail, and carries 55 million gross tons per yeahwin average weight of 75 tons per car.
The rail weight and rail age vary along the segméHtrasonic defects were previously
detected at mile posts 0.875 and 1.245. Geonubfacts were detected at mile posts
0.485, 2.125, 2.635, and 3.335. Additionally, & 4dot bridge is present from mile post
1.44 to 1.52.

B i R l

l¢ »le »le >l
>

° . T . T . 115 b rail, |
141 Ib rail, 2 yrs. old 136 Ib rail, 6 yrs. old 115 Ib rail, 20 yrs. old 16 yrs. old
MP MP MP MP MP
0.00 1.11 2.00 3.02 3.50

Figure 5.4 Graphical Representation of HypotheticalCase Study

The probability of a service failure for each parar 0.01 mile segment was
calculated using Equation 5.8. Segments of sinchiaracteristics were grouped together
and the calculated values are shown in Table 5.14. The number oicefailures per
mile per year for each segment was determined WEgugtion 5.10 based on each
segment’dJ value. The expected number of service failuregémh segment was then
calculated by multiplying the service failure ratethe length of that particular segment.

Finally, the total expected number of service fatufor this 3.5-mile line was calculated
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Table 5.14 Input Parameters by Mile Post for Hypotletical Cased Study
Mile Post Mile Post

*

Start End Z S R A T L I G B U

0.00 0.48 -0.27 141 1 2 55 75 0 0 0 -5.81
0.48 0.49 -0.27 141 1 2 55 75 0 1 0 -4.99
0.49 0.87 -0.27 141 1 2 55 75 0 0 0 -5.81
0.87 0.88 -0.27 141 1 2 55 75 1 0 0 -4.20
0.88 111 -0.27 141 1 2 55 75 0 0 0 -5.81
111 1.24 -0.27 136 1 6 55 75 0 0 0 -5.62
1.24 1.25 -0.27 136 1 6 55 75 1 0 0 -4.01
1.25 1.40 -0.27 136 1 6 55 75 0 0 0 -5.62
1.40 1.56 -0.27 136 1 6 55 75 0 0 1 -3.99
1.56 2.00 -0.27 136 1 6 55 75 0 0 0 -5.62
2.00 2.12 -0.27 115 1 20 55 75 0 0 0 -4.82
2.12 2.13 -0.27 115 1 20 55 75 0 1 0 -4.00
2.13 2.63 -0.27 115 1 20 55 75 0 0 0 -4.82
2.63 2.64 -0.27 115 1 20 55 75 0 1 0 -4.00
2.64 3.02 -0.27 115 1 20 55 75 0 0 0 -4.82
3.02 3.33 -0.27 115 1 16 55 75 0 0 0 -4.78
3.33 3.34 -0.27 115 1 16 55 75 0 1 0 -3.95
3.34 3.50 -0.27 115 1 16 55 75 0 0 0 -4.78

by summing over all of the segments. This segroktrack is expected to have 0.54
service failures in the next year (Table 5.15).e Thanges in service failure rates due to

various factors across the line segment are showigure 5.5.

5.8 Conclusions

20 different prediction models were developed &djmt service failures;
including several different logistic regression aMN models. Service failure data
from BNSF’s network were used for a four-year tipggiod. A previous service failure
classification model using logistic regressiont thaorporated only track and traffic
characteristics, was evaluated and determinedve liraited predictive ability for
current service failure data. New logistic reg@ssnodels were developed that
included additional factors such as infrastructiaa, maintenance activities, and rail
testing results. The logistic regression modelseveenstructed using various techniques
and each model was tested against validation dafaractical logistic regression model
was also developed that reduced the complexitii@friodel and maintained a high level
of accuracy. This practical model was determirmele 64.7% accurate for classifying

track segments. An ANN model was also developeatiassify cases as either failure or
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Table 5.15 Calculation of Service Failures per Yeaand Total Expected Service
Failures for Hypothetical Case Study

Mile Post Mile Post Service Failures per Expected Service
Start End Length U mile per year Failures
0.00 0.48 0.48 -581 0.075 0.036
0.48 0.49 0.01 -4.99 0.170 0.002
0.49 0.87 0.38 -581 0.075 0.028
0.87 0.88 0.01 -4.20 0.370 0.004
0.88 111 0.23 -581 0.075 0.017
111 1.24 0.13 -5.62 0.090 0.012
1.24 1.25 0.01 -4.01 0.444 0.004
1.25 1.40 0.15 -5.62 0.090 0.013
1.40 1.56 0.16  -3.99 0.453 0.072
1.56 2.00 0.44 -5.62 0.090 0.040
2.00 2.12 0.12 -4.82 0.200 0.024
2.12 2.13 0.01 -4.00 0.452 0.005
2.13 2.63 0.5 -4.82 0.200 0.100
2.63 2.64 0.01 -4.00 0.452 0.005
2.64 3.02 0.38 -4.82 0.200 0.076
3.02 3.33 031 -4.78 0.209 0.065
3.33 3.34 0.01 -3.95 0.471 0.005
3.34 3.50 0.16 -4.78 0.209 0.033
TOTAL EXPECTED 0.541
0.50 Dot
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Figure 5.5 Service Failure Rate vs. Mile Post for pothetical Case Study
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non-failure. Additionally, two ANN/LR hybrid claggation models were developed.
Each of the three advanced models performed oigltsl better than the traditional
logistic regression techniques. Finally, the pcattiogistic regression model was
transformed into a prospective prediction modekldas the overall probability of
service failures on the BNSF network. This prosipegrediction model was then used
in a hypothetical case study to examine how thasligtion tool can be used to evaluate
specific track segments.

This analysis revealed that service failures ady be predicted with accuracy
levels ranging from about 65% to 70% using the datalable for this study and the
methods presented. The different methods and iggobs used to find the best prediction
model had only slightly different classificationcacacies, indicating that 30% or more of
the cases presented here were not able to be tpckassified from the available data.
This indicates that the models developed were catunting for about 30% to 35% of
the variance. Examples of these sources of vagiaray include the occurrence of
thermally-induced stress in the rail, the frequeacg magnitude of dynamic loading
events from out-of-round wheels, and other charaties of rail steel and fatigue-crack
growth.

The models developed in this study are intendexbsist railroads to more
effectively allocate resources to prevent the a@nge of broken rails. The models can
be implemented in two different ways involving maimance planning. They can be
used tactically for short-term maintenance assigtasuch as determining specific track
segments to monitor closely or repair. They cao ak used strategically for long-term
maintenance planning and renewal activities. TWeerhost common prevention
techniques for broken rails are rail grinding aatl replacement. Both of these activities

require long lead times for planning and have lagbociated costs.

5.8.1 Future Work on Service Failure Prediction

This analysis included many of the available Ja@da that potentially affect the
growth of defects and the occurrence of brokemsradowever, as discussed above, some
additional factors that could be considered inclcideatic data for track locations, track

inspection frequency, and density of service fasuand defects. Climate effects,
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especially in areas of continuously welded railexgnce high tensile stress that may
affect the growth of rail defects and the occuresotbroken rails. Also, more frequent
track inspection probably reduces service failuweuorence because cracks are more
likely to be detected and repaired (Zarembski &Be2005). Additionally, it may be
possible to determine the overall density of serValures and detected defects for each
particular piece of rail, thereby increasing theuaacy of the prediction model.

Future work might also include determination ofogtimized statistical model
that considers the trade-off between the numbpacimeters and the accuracy of
prediction. This is based on the idea that astiaddil parameters are added to the model
there may be an incremental cost. The incremenotdlto add each parameter may or
may not be linear. However, as the level of accyrsincreased there should be a
savings due to the reduced occurrence of brokés refith this information a “utopia
point” solution balancing cost versus benefit cdutddeveloped to find the optimal
model (Marler & Arora 2004).

Another area of possible future work would bealeate different artificial
neural network models. This includes differenthéag techniques and objective
functions to determine the optimal neural netwoExperimenting with different
numbers of neurons in the hidden layer may alst iea more accurate ANN, but care
must be taken to not over-fit the data with adddlofactors. Finally, the use of neuro-
fuzzy networks might be possible to apply to toisi¢. Fuzzy Neural Networks (FNN)
may be able to classify each case as well as pecainoutput value regarding how
strongly each case is in its respective classifioat This output value may be a close
approximation to determine the probability of fadua value a simple ANN cannot
produce.
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CHAPTER 6: ECONOMIC IMPACT OF BROKEN RAILS

The purpose of this study was to understand tbhaa@uic impact of service
failures, broken rail derailments, and their resipegrevention techniques. In Chapter 5
| considered factors and various analytical techesqto predict locations that have a high
probability of broken rail occurrence. The most ortpnt factors were rail weight, rail
type, rail age, annual traffic, average weightafsc presence of an ultrasonic defect,
presence of a geometric defect, and the presereémdge. However, understanding
where broken rails are most likely to occur is rssegy, but not sufficient for cost-
effective management of the problem. Addition&timation on the economic impact of
broken rails as well as the cost and effectivenésarious preventive strategies is also
needed. In this chapter | quantify the cost okbrorails. In particular, costs associated
with broken rail derailments, service failuresjrtrdelay, and typical prevention
measures are examined. The results of this stuedyeended to assist railroads to make

better informed decisions regarding maintenancepa@gention of broken rails.

6.1 Introduction to Economic Study of Broken Rails

Broken rails are generally caused by either intesnaurface defects in the rail
(Sperry Rail Service 1999). Internal defects ameegally present due to the growth of
minute flaws introduced during rail manufacturehe$e flaws grow due to cyclic vertical
and horizontal loading of the rail and consequatigjfie crack growth. Surface defects
are generally caused by wheel-rail contact stresisdge running surface of the rail from
passing trains. In either case, if a flaw is akovto grow large enough, at some point the
rail may be subject to a load that it does not rexfécient strength to withstand and it
fractures. Broken rails are separated into twegates, those that result in a derailment
and those that are detected by some other mearerauypically called “service
failures”. The consequences of these two evertguaite different, but understanding
their economic impact is important to making beitdormed decisions regarding their
prevention. Overall, broken rails were responsibte335 mainline derailments on Class
| freight railroads from 2003 through 2006 (FRA Z@). These derailments resulted in
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over $176 million of equipment and track damagewkelver, the economic impact of
broken rails includes many other costs besidek tiad equipment damage.

Economic analysis of railroad engineering and apens is a topic that has been
the subject of extensive study for over a centumy @ half. Among the most well-known
early treatises on railway economics was by Weltind1887). More recent research
has focused on specific topics of railway economsosne that is applicable to this
analysis, includes the expected life of rail antremewal (Zhao et al. 2006, Ling 2006).
However, the economic costs specifically associati#itl broken rails have not
previously been quantified. The potential cossoamted with broken rails have been
explored as part of an overall analysis of railed& (Cannon et al. 2003). Cannon et al.
stated that the cost of broken rails includes iogpe of track, train delay, remedial
treatments, pre-emptive treatments, derailments)@ss of business.

The cost of a specific broken rail event will védgsed on many factors, but the
intention of this analysis was to calculate typiesgpected costs based on past averages of
similar events. However, some costs, such asoosgsiness, were difficult to quantify,
while others could not be obtained because of¢hsisvity of the information. The
objectives of this analysis were to:

¢ Quantify the costs associated with broken rail deents and service failures,

o Determine costs associated with train delay,

e Develop a train delay cost calculator based ordéresity of a line, and

e Quantify the costs associated with preventive megsu

6.2 Costs Associated with Broken Rail Derailments

The economic impact of a broken rail derailment loarsevere. Such accidents
are also a major disruption to railroad operatioRailroads spend a great deal of time
and money in their efforts to prevent broken railfie costs associated with broken rail
derailments include track damage, equipment dansagélent clean-up, labor and
materials for repair, train delay, lading damagmel kss of future business. Railroads are
generally apprehensive about sharing completenmdtion on derailment related costs;

but some information is publicly available (FRA Z&). This information was
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supplemented by interviews with railroad industxperts and other research to further

understand the associated costs.

6.2.1 Track and Equipment Damage of Broken Raibid®ents

The Federal Railroad Administration (FRA) requitieat railroads report
equipment and track damage for railway accidergsdRkceed a specified monetary
threshold ($7,700 in 2006). The cost of equipnimhage includes any repair or
replacement of on-track equipment such as carepmotives, and maintenance
equipment. This also includes any necessary laboraterials needed for equipment
repair or replacement. Track damage reporteddd-RA is a broad category, as it
includes the costs associated with repair or replent of any track, signals, or track
structures, such as bridges and grade crossirgsding any labor and materials needed
for repair or replacement. Track damage also adeduhe costs of accident clean-up,
such as clearing the right of way of damaged gi#ied lading, and the cost of third-
parties contracted to assist with accident cleansUpe financial impact associated with
environmental and hazardous material clean-up @aa accident is not included in the
FRA reportable costs.

FRA accident data are publicly available at thé\FRfice of Safety website.
Train accident data were downloaded and analyzed 2003 through 2006 (FRA
2007a). The FRA defines 14 unique accident caodesrelated to broken rails (FRA
2007b). During the four-year study period, U.Sag8l | freight railroads experienced 335
mainline broken rail derailments (Table 6.1). Toil costs of these derailments
exceeded $176 million in equipment and track damfagean average cost of $525,400
per incident. By contrast, an examination of gydierailments revealed that there had
been 40 derailments during the same interval wita\gerage cost of $76,490 per
incident (Table 6.2).

6.2.2 Other Related Broken Rail Derailment Costs
Besides reportable equipment and track damagéhemionportant cost
associated with broken rail derailments is trailagle Train delay cost is based on the

time of track-outage as well as the number of sr@elayed. A train delay cost calculator

92



Table 6.1 Equipment and Track Damage for Class | \&. Freight Railroad Mainline
Broken Rail Derailments, 2003-2006

FRA Code Cause Description Frequency Total Cost Cost Per Incident
T201 Bolt hole crack or break 14 $12,854,596 $918,185
T202 Broken Base 26 5,804,332 223,244
T203 Broken Weld (plant) 3 1,026,794 342,265
T204 Broken Weld (field) 25 17,338,957 693,558
T207 Detail fracture from shelling or head check 82 52,792,131 643,806
T210 Head and web separation (outside joint bar) 23 5,380,144 233,919
T211 Head and web separation (within joint bar) 7 2,042,042 291,720
T212 Horizontal split head 5 1,967,657 393,531
T213 Joint bar broken (compromise) 6 3,111,204 518,534
T214 Joint bar broken (insulated) 9 8,152,304 905,812
T215 Joint bar broken (noninsulated) 15 14,225,856 948,390
T219 Rail defect with joint bar repair 1 664,622 664,622
T220 Transverse/compound fissure 90 42,315,036 470,167
T221 Vertical split head 29 8,333,190 287,351

335 $176,008,865 $525,400

Table 6.2 Equipment and Track Damage for Class | l&. Freight Railroad Siding
Broken Rail Derailments, 2003-2006

FRA Code Cause Description Frequency Total Cost Cost Per Incident
T201 Bolt hole crack or break 1 $14,688 $14,688
T202 Broken Base 4 211,636 52,909
T203 Broken Weld (plant) 0
T204 Broken Weld (field) 0
T207 Detail fracture from shelling or head check 11 1,303,978 118,543
T210 Head and web separation (outside joint bar) 0
T211 Head and web separation (within joint bar) 0
T212 Horizontal split head 0
T213 Joint bar broken (compromise) 1 15,237 15,237
T214 Joint bar broken (insulated) 0
T215 Joint bar broken (noninsulated) 1 128,879 128,879
T219 Rail defect with joint bar repair 0
T220 Transverse/compound fissure 16 975,877 60,992
T221 Vertical split head 6 409,321 68,220

40 $3,059,616 $76,490
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was developed as part of this study and is destiiba later section. Discussions with
industry experts indicated that the time of tracitage from a broken rail derailment
depends on the situation. Some of the factorsaff@tt track-outage time are the
severity of the accident, access to the site,ZzBhdous materials were involved, or if the
accident is near a metropolitan area. Track dardagedo broken rail derailments is
typically restricted to about 500 to 1,500 feetassult of the cars piling up. A moderate
to large scale broken rail derailment will take pgmately 24 hours to return the track
to service. One expert stated that if the expeatadge is several days or more, then
arrangements to reroute trains will be made if iidss

Other costs associated with broken rail derailsmérntlude lading damage and
loss of business or customers. The cost of ladargage is not required to be reported to
the FRA and therefore is not publicly availableneTcost of lading damage was
unavailable and is highly variable. Depending dratns lost or damaged, it can vary
from a few thousands to millions of dollars perid®nt. The loss of future business due

to broken rail derailments is difficult to quantify

6.3 Costs Associated with Service Failures

The next step was to examine the costs associatiedevvice failures. Service
failures have a much lower economic impact thakdmaail derailments, but occur
much more frequently. One major Class | railrogplegienced 3,171 service failures and
19 broken rail derailments per year from 2003 tgtoA006 (167:1 ratio). Generally,
service failures are detected by the signal systetmack inspector, or a train crew. Once
detected, trains typically do not proceed over sigation of track until the rail has been
repaired. Although, FRA regulations allow trainse “walked” over a broken rail while
the break is monitored by a qualified railroad emypk, this practice is not generally
used by the major U.S. railroads. Instead, traneshalted and a repair crew is
dispatched to remove and replace the broken rail.

The costs associated with service failures includéerial, labor, and train delay
costs. One railroad industry expert stated thatlrerage material and labor cost for a
service failure is $1,500, which includes mobiliaatof the crew and materials. Another

railroad provided further details based on theliinestes for average labor and materials
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for rail repair. The estimated material cost dfafoot section of 136 pound rail and two
welds is $373.60 (Table 6.3). The estimated la&ost for removing the old rail,
unloading and placing new rail, installation of tiequisite other track material (OTM),
and installing field welds totals $370.00 (Tabl8)6.The combined total cost, not
including mobilization, is $743.60. The differerfaetween this value and the $1,500
estimate is the cost of mobilizing the labor andemals needed for the repair. A number
of factors must be considered to evaluate theafasipbilization, such as the time of
day, time of year, location of service failure, anailability of materials.

Table 6.3 Estimated Labor and Material Repair Cosffor a Service Failure

Item Cost per Unit Cost
136 Ib. CWR rail $17.84 per foot $267.60
Welding kit 53.00 each  106.00
Total Material Cost  373.60
Remove & load old rail 3.12 per foot 46.80
Unload new rail and OTM 0.49 per foot 7.35
Place new rail and OTM 2.19 per foot 32.85
Install field welds 141.50 each  283.00
Total Labor Cost  370.00
TOTAL REPAIR COST $743.60

The final cost associated with service failurethescost of train delay. The
length of the delay will be affected by a numbefamtors. Railroad industry experts
indicated that a typical service failure will reisml approximately a four-hour track-
outage, from initial notification of the failure tinthe line is reopened for normal
operation. Again, the delay cost will also dependhe number of trains delayed and

can be estimated using the train delay calculagecibed in the next section.

6.4 Train Delay Cost Calculator

Train delay cost is affected by both broken raraglenents and service failures.
The total cost due to train delay is based on tis¢ af delay per train-hour, the number
of trains delayed, and the total length of the ylelmdustry experts estimated that the
cost due to delay of a single train is in the raof$200 to $300 per train-hour. The

purpose of this analysis was to calculate an updeadfie based on operating averages
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for all U.S. Class I railroads. Additionally, arfoula was developed to determine the
cost of delay based on the number of trains delayeltheir length of delay based on

any given line density.

6.4.1 Calculation of Train Delay Cost per Train-mou

Interviews with industry experts led to the cosatun that single-train delay cost
per train-hour includes four components: car doshmotive cost, fuel cost, and crew
labor cost. Car delay cost refers to the cosaifoad-owned cars that are delayed and
therefore cannot be used elsewhere. Privately dwases are excluded from this analysis
because, in many cases, they are charged by teeandl do not have a direct cost to
railroads if delayed. The average number of cardnain in 2006 was 69.2 cars (AAR
2006) and 39.8% were railroad owned (AAR 2007).d&termine the cost per car, an
average car-hire rate was used. Industry expaiitsated that a reasonable estimate for
this was $0.75 per car-hour in 2006. The totalaye car delay cost per train was
computed to be about $20.67 per hour in 2006 (TéaMdle

The second component of train delay cost is thsb@ated with delay of
locomotives. Similar to car delay, locomotive deleas determined by estimating the
opportunity cost due to unavailability of locomas/for other applications. This value
can be estimated based on the locomotive depragititat occurs during the time of
delay. The average numbers of locomotives pean tra2006 was 2.7 (AAR 2006). A
2008 survey of Class | railroad data revealedttiativerage cost of a new road
locomotive, which varies greatly based on type, agsroximately $1,877,500 and the
salvage value after 25 years of road life was apprately $250,000 (Murray 2008).
Assuming a discount rate of 10%, the annual locoraatepreciation per locomotive for
2006 was $209,383. Therefore, the locomotive pestocomotive-hour was $23.90 or
$64.54 per train-hour (Table 6.4).

The third component of train delay is the costuel consumed during the delay.
The cost of diesel fuel purchased by Class | radsin 2006 was $1.93 per gallon (AAR
2006). The average fuel consumed per locomotive-hoidle was approximately 3.5

gallons based on information provided for differer@omotive types from a major U.S.
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Table 6.4 Breakdown of Train Delay Cost per Train-tour

Car Cost
Average number of Cars per train 69.2
Car Hire per hour $0.75
Percent of cars owned by railroad 39.8%
Total per Train-hour $20.67
Locomotive Cost
Average number of Locomotives per train 2.7
Average cost of new locomotive $1,877,500
Average Life of locomotive 25
Average salvage value $250,000
Discount Rate 10%
Average cost per locomotive year  $209,382.57
Total per Train-hour $64.54
Fuel Cost
Average number of Locomotives per train 2.7
Gallons per Hour In idle 35
Cost per Gallon $1.93
Total per Train-hour $18.24
Crew Cost
Number of employees per train 2
Average Hourly Pay $21.40
Average Overtime Pay $31.45
Percent of wage for fringe benefits 75%
Total per Train-hour $110.08
TOTAL COST PER TRAIN HOUR $213.52

freight railroad. Based on an average of 2.7 loatbras per train, the total fuel cost was
$18.24 per train-hour in 2006 (Table 6.4).

The fourth component of train delay is labor co&verage hourly wages for train
and engine crews for Class | U.S. freight railrosd2006 was $21.40 for straight time
and $31.45 for overtime pay (STB 2008). For theuwdation of labor cost, only the
overtime rate was used based on the assumptioa thaih delay of more than a few
hours will generally result in overtime pay for tinain crew. Additionally, the labor cost
includes fringe benefits, such as vacation payidaglpay, railroad retirement,
unemployment, health welfare, and group life ineaea Fringe benefits are estimated to
be approximately 75% of wages in 2006. Therefoased on a two-person train crew,
the labor cost of delay was $110.08 per train-t{@able 6.4).
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A summation of the four components of train dejajds a total cost of $213.52
per train-hour in 2006. However, this estimatsti only a partial estimate because
additional costs due to train delay are not comemlle For example, in some delay
situations crews must be replaced due to federaishof-service regulations that limit
crews to a maximum period on duty of 12 hours. rémeay also be some extra stopping
and starting of the train resulting in extra fuehsumption and wear and tear on brakes

and other components.

6.4.2 Cost of Multiple Train Delay

The number of trains delayed and the duratiomeir tdelay during a track-outage
must be considered in the calculation of train ylelast. These values can be
approximated based on the density of the line hachimber of mainline tracks. To
determine the number of trains delayed, | assummgtitains will arrive in constant time
intervals from both directions. The average tgerated for Class | U.S. railroads was
6,312 gross tons, including cars and locomotive2006 (AAR 2006). The number of
trains per year for a particular line is the anrgralss tonnage (in millions) (ANMGT) of
that line divided by 0.006312 million-tons per traiThe interval between trairtswas
determined by dividing the number of hours per y8af66, by the number of trains per

year:

AnnualMGTs _ ANMGT

— = (6.1)
tonsper train(millions) 0.006312

n = Numberof trainsperyear=

hoursperyear 8,766 5533

: = = (6.2)
trainsperyear n ANMGT

t = hoursper trainarrival=

The total cost of train delay can then be caledldty the cost of delay per train-
hour and the hours per train arrival of the patéictine. The total number of trains
delayed is determined by dividing the total delayetby the hours per train arrival. The
length of delay for each train is based on the tinneir respective arrival. The total
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cost due to train delay from a service interruptian be calculated using the following

formula:

C:Tx+zm:(T—nt)x (6.3)

n=1

where,

C = total train delay cost for multiple trains

T = total delay time for service interruption

x = cost of delay per train-hour ($213.52)

m = number of following trains delayedT=/ t (rounded to the nearest integer)
t = hours per train arrival 55.33 / ANMGT

The total train delay cost presented in Equati@i$valid for broken rail
scenarios in which no trains can proceed due tevkat. This would include service
failures on single track territory or broken raérdilments on multiple track or single
track territory because no trains would be ablprozeed. However, Equation 6.3 must
be adjusted for situations in which a service failoccurs on one track in multiple track
territory. In these situations trains will be atideproceed on the other mainline track and
there will not be complete (100%) delay. It carabsumed that a service interruption on
a single track may cause up to half the trains (5@be delayed (i.e. traffic in one
direction stops). However, in most cases, less 8o of trains would be delayed, and
the actual amount of delay is dependent on theityesfsthe line.

A sensitivity analysis was conducted on a hypathétase study to evaluate how
Equation 6.3 can be used to evaluate train delalyafdroken rail events on various
density lines (Table 6.5). The case study asswarsdgle track mainline with either a
service failure with a track outage of 4 hours twraken rail derailment with a track
outage of 24 hours. Using Equation 6.3, the tdalay cost on a 60 MGT line was
calculated to be $2,235 for a service failure 03,284 for a broken rail derailment.
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Table 6.5 Sensitivity Analysis of Train Delay Costs

Annual Gross Broken Rail Event

Tons (Million's) Service Failure Derailment
15 $854 $19,332
30 1,314 35,902
45 1,775 52,472
60 2,235 69,244
75 2,695 85,853

6.5 Costs Associated with Broken Rail Preventive Mesures

To determine the economic impact of broken ré#ils,costs associated with
preventive measures must also be examined. Typi@lentive measures include rail
inspection for defects, rail grinding, and rail leegement and renewal. These preventive
measures decrease the likelihood of a brokenhaitever, they are also used to extend
the life of the overall track structure. For exdeppail grinding improves the overall
wheel-rail interface and the allocation of the aesated to broken rail prevention cannot
be determined. Therefore, the cost of brokenpraVentive measures is an indirect cost
related to broken rails (Table 6.6).

Table 6.6 Estimated Indirect Costs of Broken Rails

Broken Rail Prevention Technique Annual Cost per Track Mile ($)
Ultrasonic and Geometric Track Inspection 900
Rail Grinding 1,900
Rail Surfacing 700
Rail Renewal and Replacement 2,500
TOTAL INDIRECT COST 6,000

One of the most effective broken rail preventiosasures is the use of ultrasonic
and geometric inspection of track (Zarembski & Bal2005). Its cost is dependent on
the frequency of inspections. The BNSF Railwaysusesk-based approach for
inspection frequency (Palese & Zarembski 2001).dé&fned by BNSF, the calculated
risk factor of any particular line depends on maasables, including the number of
previously detected defects, if the line carriesspagers and/or hazardous materials, and
the railroad-determined “importance” of the lingltrasonic and geometric inspections

are estimated to cost approximately $900 per traibk in 2007 (Table 6.6).

100



Class | U.S. freight railroads also use rail giigdto prolong the life of rail and to
eliminate surface defects. Grinding locationstgpécally based on the life of the rail,
the density of the line, and the number of preipdstected surface defects. Rail
grinding is estimated to cost approximately $1,p80track-mile (Table 6.6).
Additionally, railroads complete rail surfacing Fcts to maintain stable and properly
aligned track structure for many reasons, includilogving potential crack growth.
These costs are estimated to be approximately p@&0tack-mile for capital surfacing
projects (Table 6.6). Finally, rail renewal angleeement projects are crucial for large
railroads to prevent broken rails and other traalted accident causes. However, rall
replacement occurs due to both wear and fatigusk geowth, so allocation of this
expense is not possible without knowing the peamgmof rail replaced due to these
different causes. The average amount of rail oegldy Class | U.S. railroads in 2006
was 3.25 tons per track-mile (AAR 2006). One aaitt reported that the cost of 141-Ib.
rail in 2006 was approximately $760 per ton. Thees the cost of rail renewal is
approximately $2,500 per track-mile (Table 6.6)ddAional information on preventive
measures, such as the cost of local rail surfgeiogects, was difficult to determine and

are not included in this analysis.

6.6 Conclusions

The costs associated with broken rails are a anbat concern to all major U.S.
railroads. Based on this analysis, an averageebrodil derailment will have a direct
economic impact to the railroad of $550,000 or bigiepending on the density of the
line, plus indirect costs associated with preventheasures. A service failure on a
medium density line will incur a direct cost ofl@ast $2,500, plus the indirect costs of
prevention. Broken rail derailments from 2003 tigio 2006 resulted in a total FRA
reportable damage to equipment and track of $1T®mior approximately $44 million
per year; however, the economic impact of brokds i greater when the additional
costs considered in this analysis are includedsufisng that service failure rates are
similar for all Class | U.S. railroads and that gwerage line traffic density is 30 MGTSs,
the annual direct cost of broken rails for all UC%ass 1 railroads was approximately $83

million (Table 6.7). The annual indirect cost frdamoken rail preventive activities was
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approximately $855 million, based on a reported, 422 track-miles operated by U.S.
Class | freight railroads (AAR 2006) (Table 6.7).

Table 6.7 Estimated Annual Broken Rail Costs for 5. Class | Railroads

Broken Rail Associated Cost Cost ($)
Derailment Damage 44,002,216
Derailment Delay Cost 3,006,793
Service Failure Repair Cost 19,141,747
Service Failure Delay Cost 16,768,170

TOTAL DIRECT COST 82,918,926

Track Inspection 128,185,200
Rail Grinding 270,613,200
Rail Surfacing 99,699,600

Rail Renewal and Replacement 356,070,000
TOTAL INDIRECT COST 854,568,000

The values presented in this analysis are ovavallages for Class | U.S. freight
railroads and will vary based on the circumstarudessach broken rail event. Pertinent
factors include the severity, location, densityilog, and availability of labor and
materials. The methodologies developed here doeildsed by railroads to estimate the

costs associated with broken rails based on thairlme and operating characteristics.

6.6.1 Future Work on Economic Impact of Broken $Rail

Additional work on this topic could include resgaon hard-to-quantify values
associated with broken rails. Some of these fadtmiude the average cost of lading
loss in a broken rail derailment, the financial anpof loss of business from accidents
and train delays, and the costs associated witsugacing at the local level. Additional
future research might also be useful to furtherewsidhnd and refine the costs associated
with train delay. A better estimate for the casto@omotive delay may be based on
leasing rates for locomotives or number of add@ldacomotives purchased to
compensate for delays. It also may be possibiefioe the car delay cost to include

privately owned cars.

102



CHAPTER 7: CONCLUSIONS & FUTURE RESEARCH

Understanding the factors affecting the likelihaddrain accidents is essential
for identifying and implementing the most effectamed efficient accident reduction
measures. In Chapter 3 | presented an analysieaffect of train length on accident
rates. Train accident likelihood is dependent oth lzar-mile and train-mile-related
causes and FRA train accident causes were claksifie these two categories using a
new quantitative metric. Updated mainline car-aitel train-mile-related accident rates
were calculated for U.S. Class | freight railroadig the reclassified accident causes.
In 2005 the accident rate for car-mile-related eausas 1.05xI®or about 0.011
accidents per million car-miles, and the train-rniéated accident rate was 8.62X1dr
about 0.86 accidents per million train-miles. Thedel developed here enables
guantification of the effect of operational changesain length on accident rate at both
the individual train, and system-wide levels.

In Chapter 4 | presented an analysis of receimt &ecident data and found that
broken rails are the leading cause of major deembsion U.S. railroads. A previous
study by Dick (2001) used logistic regression aathan 11 possible track and traffic
characteristics to develop a statistical modelremljzt service failures. | conducted
further evaluation of Dick’s model using unseeradatd found it to be robust for the
time period and dataset used in his study. Aduktiy, artificial neural networks
(ANNs) and hybrid ANN/Logistic Regression (ANN/LIR)odels were used in an attempt
to improve the accuracy of the logistic regressimdel. Although neither ANNs nor
ANN/LR models improved the predictive performanakthe models had a similar level
of accuracy and were robust for unseen cases.

In Chapter 5 | extended Dick’s (2001) study, bgaacting an analysis using a
new, more recent dataset that included an expamaiedher of factors with the potential
to affect rail crack growth rate and service faloccurrence. The new dataset included
28 factors on track and rail characteristics, stinacture features, maintenance activities,
and on-track testing results. The predictive amcyof Dick’s (2001) model was
reduced when applied to the new data. ConsequseNiral types and variations of

modeling techniques were tried, including logisggression, ANNs, and hybrid
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ANN/LRs. Each was evaluated for accuracy and rioless to determine the best
prediction model. A “practical” logistic regresaionodel was ultimately selected
because it was accurate, understandable, and aseHtis model included only eight
parameters and had a predictive accuracy of 64.T78€. most important factors related
to service failures were rail weight, rail type) esge, annual traffic, weight of car,
presence of an ultrasonic defect, presence of meei defect, and the presence of a
bridge. A prospective prediction model was devetbpased on service failure rates for
the BNSF Railway. The objective of the models d@ved in this analysis was to
provide railroads with tools to help them identifigations with a high likelihood of
service failure occurrence and more effectivelg@te resources to prevent them.

In Chapter 6 | presented an analysis of the ecanonpact of broken rails. From
2003 through 2006 broken rails were responsibl@8& FRA-reportable mainline
derailments on Class | freight railroads, or al®uper year. The average cost of
damage to track and equipment from these accideass525,000 per incident and the
average annual cost was $44 million. In additmthe FRA-reportable costs, expenses
due to broken-rail-accident-caused train delayeatanated to be about $3 million per
year. Railroads also incur about $19 million pearyfor repair of service failures, and an
additional expense of $17 million due to the trdéhay that results from their occurrence.
The costs of preventive measures, such as raikatgm, rail grinding, track surfacing,
and rail replacement were estimated to be apprdri;n&855 million per year, but
because these activities provide multiple ben#ditgilroads it was not possible to

determine what share of this amount should be atibatto broken rail prevention.

7.1 Future Research
Future research specific to the topics presemteilis thesis is described at the
end of each chapter. However, some of the mosbitapt topics are summarized here.
The analysis presented in Chapter 3 was basedoragy classification of
accident causes that assumed that they could gsifeda as either car-mile or train-mile-
related. Future work regarding train accident eausay reveal that some accidents are a

function of both car and train-miles. Therefotanay be possible to develop a function
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for each cause group that accounts for the effidopt. This work might further refine
the understanding of train accidents and traindeetirates.

It may also be possible to improve the accuraghefservice failure prediction
models. The models presented in this analysisahaatcuracy ranging from about 65%
to 70% for prediction of service failures leavirgpat 30% to 35% of the variance
unexplained. Examination of additional factors thidect crack growth may help to
understand this variance. Some of the factorsabatd be considered include location-
specific climatic data, flat wheel incidence, aratk inspection data.

Incorporation of climatic data may enable quarditfien of cyclic longitudinal
loading due to fluctuations in thermal stressmdty also be possible to determine the
extent of cyclic vertical loading that rail at sgiclocations experiences under various
degrees of tensile stress.

Out-of-round (flat) wheels are known to affect é&rgcowth in rails. Therefore,
incorporation of wheel impact load detector (WILd¥ta might enable the occurrence
and magnitude of these loads to be included asaarder in a prediction model.

More sophisticated use of ultrasonic and geomatsipgection data might also
improve the predictive ability of the model in tways. First, the incidence of broken
rails is commonly believed to be related to the aftboth rail defect and service failure
occurrence, but neither of these was accounteit fitve models that were developed.
Second, inspection frequency was also not accodatedrhis parameter might be
inversely related to service failures because problare more likely to be detected and
corrected before a broken rail occurs.

Finally, it may also be possible to apply the modgetechniques explored in this
thesis to other accident causes. For exampldikdldnood of track buckling, also
known as “sun kinks”, is affected by a variety aftors. The same multivariate
modeling techniques that were applied to serviderfaprediction in this thesis might be

able to be adapted to determine the factors retatédte occurrence of track buckles.
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APPENDIX A: SAS OUTPUT FOR PRACTICAL SERVICE FAILUR E
PREDICTION MODEL

Model Information
Data Set WORK.TRIAL_1
Response Variable BROKEN_RAIL
Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read| 25370
Number of Observations Used 25370

Response Profile
Ordered Total
Value| BROKEN_RAIL | Frequency
11 12685
20 12685

Probability modeled is BROKEN_RAIL=1.

Step-wise Selection
Procedure

Step 0. Intercept entered:

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

-2 Log L |=/35170.288
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Residual Chi-Square Test

Chi-Square

DF

Pr > ChiSq

3595.0046

8

<.0001

Step 1. Effect ULTRASONIC_DEFECT entered:

Model Convergence Status

N

Convergence criterion (GCONV=1E-8) satisfief.

Model Fit Statistics
Intercept
Intercept and
Criterion Only | Covariates
AlC 35172.288 33941.932
SC 35180.429 33958.21%
-2 Log L 35170.288 33937.932

Testing Global Null Hypothesis: BETA=0

Test Chi-Square| DF | Pr > ChiSq
Likelihood Ratio | 1232.3557 1 <.0001
Score 1142.0348 1 <.000]
Wald 944.4974 1 <.0001

Residual Chi-Square Test

Chi-Square

DF

Pr > ChiSq

2565.4889

7

<.0001

Note: No effects for the model in Step 1 are removed.

Step 2. Effect RAIL_TYPE entered:
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Model Convergence

Status

Convergence criterion (GCONV=1E-8) satisfie

joN

D

Model Fit Statistics
Intercept
Intercept and
Criterion Only | Covariates
AIC 35172.288 33323.061
SC 35180.429 33347.48%
-2 Log L 35170.288 33317.061

Testing Global Null Hypothesis: BETA=0

Test Chi-Square | DF | Pr > ChiSq
Likelihood Ratio | 1853.2271 2 <.0001
Score 1715.0878 2 <.0001
Wald 1471.8881 2 <.0001

Residual Chi-Square Test

Chi-Square

DF

Pr > ChiSq

2023.9459 6

<.0001

Note: No effects for the model in Step 2 are removed.

Step 3. Effect ANNUAL_MGT entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfi¢

14
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Model Fit Statistics

Intercept

Intercept and

Criterion Only | Covariates
AlC 35172.288 32728.646
SC 35180.429 32761.211
-2 Log L 35170.288 32720.646

Testing Global Null Hypothesis: BETA=0
Test Chi-Square| DF | Pr > ChiSq
Likelihood Ratio | 2449.6421 3 <.0001
Score 2273.7011 3 <.0001
Wald 1980.8580 3 <.0001

Residual Chi-Square Test
Chi-Square| DF | Pr > ChiSq
1471.8589 5 <.000]

Note: No effects for the model in Step 3 are removed.

Step 4. Effect AVE_TONS entered:

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates
AlC 35172.288 32241.567
SC 35180.429 32282.273
-2 Log L 35170.288 32231.567

Testing Global Null Hypothesis: BETA=0
Test Chi-Square| DF | Pr > ChiSq
Likelihood Ratio n 2938.7214 4 <.0001
Score 2701.5118 4 <.0001
Wald 2313.8615 4 <.0001

Residual Chi-Square Test
Chi-Square| DF | Pr > ChiSq
1005.8357 4 <.0001

Note: No effects for the model in Step 4 are removed.

Step 5. Effect GEOMETRIC_DEFECT entered:

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics
Intercept
Intercept and
Criterion Only Covariates
AlC 35172.288 31931.386
SC 35180.429 31980.234
-2 Log L 35170.288 31919.386

Testing Global Null Hypothesis: BETA=0

Test

Chi-Square

DF

Pr > ChiSq

Likelihood Ratio

3250.9021

5

<.0001

Score

2973.549¢

)

5

<.0001

Wald

2540.4068

)

5

<.0001

Residual Chi-Square Test

Chi-Square

DF

Pr > ChiSq

705.7051

3

<.0001

Note: No effects for the model in Step 5 are removed.

Step 6. Effect RAIL_WGT entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfi¢

14
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Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates
AIC 35172.288 31595.359
SC 35180.429 31652.348
-2 Log L 35170.288 31581.359

Testing Global Null Hypothesis: BETA=0

Test Chi-Square| DF | Pr > ChiSq
Likelihood Ratio | 3588.9288 6 <.0001
Score 3268.5913 6 <.0001
Wald 2777.7570 6 <.0001

Residual Chi-Square Test
Chi-Square| DF | Pr > ChiSq
370.3985 2 <.0001

Note: No effects for the model in Step 6 are removed.

Step 7. Effect BRD_PRESENT entered:

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfi¢

14

2d.
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Model Fit Statistics
Intercept
Intercept and
Criterion Only Covariates
AlC 35172.288 31328.628%
SC 35180.429 31393.759
-2 Log L 35170.288 31312.628%

Testing Global Null Hypothesis: BETA=0

Test Chi-Square| DF | Pr > ChiSq
Likelihood Ratio | 3857.6599 7 <.0001
Score 3492.4723 7 <.0001
Wald 2945.4859 7 <.0001

Residual Chi-Square Test

Chi-Square| DF | Pr > ChiSq

118.3244 1 <.0001

Note: No effects for the model in Step 7 are removed.

Step 8. Effect AGE_OF_RAIL entered:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfi¢

14
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35172.288

31211.12%

D

35180.429

31284.397

35170.288

31193.12%

3977.1626

3595.0046

8

<.0001

3025.2001

<.0001

Note: No effects for the model in Step 8 are removed.

Note: All effects have been entered into the model.

1 1 1142.0348 <.0001
1 2| 605.0523 <.0001
1 3 586.6958 <.0001
1 4/ 474.1906 <.0001
1 5| 308.3617 <.0001
1 6| 337.4356 <.0001
1 7| 253.0159 <.0001
1 8 118.3244 <.0001
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF  Estimate Error | Chi-Square| Pr > ChiSq
Intercept 1/ 49373 0.3219 235.3116 <.0001
RAIL_WGT 1/ -0.0454 0.00218 435.8151 <.0001
RAIL_TYPE 1 -1.3464 0.0551 598.0631 <.000%
AGE_OF_RAIL 1|/ -0.0106 0.000978 117.4865 <.0001
ANNUAL_MGT 1|/ 0.008990.000356 638.139C <.0001
AVE_TONS 1/ 0.0232 0.00133 306.784( <.0001
ULTRASONIC_DEFECT 1 1.6130 0.0571 796.7727 <.0001
GEOMETRIC_DEFECT 1| 0.8227 0.0455 327.092( <.0001
BRD_PRESENT 1| 1.6294 0.1119 212.0447 <.0001
Odds Ratio Estimates
Point 95% Wald

Effect Estimate| Confidence Limits

RAIL_WGT 0.956 0.952  0.960

RAIL_TYPE 0.260 0.234  0.290

AGE_OF_RAIL 0.989 0.988 0.991

ANNUAL_MGT 1.009 1.008 1.010

AVE_TONS 1.023 1.021 1.026

ULTRASONIC_DEFECT 5.018 4.486 5.613

GEOMETRIC_DEFECT 2.277 2.083 2.489

BRD_PRESENT 5.101 4.096 6.351
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Association of Predicted Probabilities and
Observed Responses

Percent Concordant 71.7/Somers'D| 0.43
r

Percent Discordant 28.0|Gamma 0.43
9

Percent Tied 0.3| Tau-a 0.21
9

Pairs 1609097 c 0.71
25 9

Wald Confidence Interval for Adjusted Odds Ratios

Effect Unit | Estimate 95% Confidence Limits
RAIL_WGT 1.0000 0.956 0.952 0.960
RAIL_TYPE 1.0000 0.260 0.234 0.290
AGE_OF_RAIL 1.0000 0.989 0.988 0.991
ANNUAL_MGT 1.0000 1.009 1.008 1.010
AVE_TONS 1.0000 1.023 1.021 1.026
ULTRASONIC_DEFECT 1.0000 5.018 4.486 5.613
GEOMETRIC_DEFECT |1.0000 2.277 2.083 2.489
BRD_PRESENT 1.0000 5.101 4.096 6.351
Partition for the Hosmer and Lemeshow Test
BROKEN_RAIL=1 | BROKEN_RAIL=0

Group Total| Observed Expected Observed Expected

1 2537 502 611.85 2035 1925.15

2| 2537 750] 814.76 1787, 1722.24

3| 2537 832 910.77 1705 1626.23

4| 2542 1065  995.19 1477 1546.81

5| 2540 1364 1086.92 1176, 1453.09

6| 2537 1249 1202.03 1288 1334.97

7| 2537 1273 1353.28 1264 1183.77

8| 2543 1591 1624.56 952 918.44
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Partition for the Hosmer and Lemeshow Test

BROKEN_RAIL =1 | BROKEN_RAIL =0
Group | Total | Observed Expected Observed Expected
9| 2537 1900 1888.49 637 648.51
10| 2523 2159 2196.91 364 326.09
Hosmer and Lemeshow
Goodness-of-Fit Test
Chi-Square| DF| Pr> ChiSq
196.6711 8 <.0001
Classification Table
Correct Incorrect Percentages
Prob Non- Non- Cor- | Sensi- Speci-| False| False
Level Event Event| Event| Event rect| tivity @ ficity | POS NEG
0.000 12685 0112685 0| 50.0 100.0 0.0] 50.0
0.100 12685 31/12654 0| 50.1 100.0 0.2/ 49.9 0.0
0.200 12601 448/12237 84 51.4| 99.3] 3.5/ 49.3 15.8
0.300 12105 217910506 580 56.3| 95.4 17.2 46.5 21.0
0.400 9828 6628 6057 2857 64.9] 77.5 52.3 38.1 30.1
0.500 6979 9428 3257 5706 64.7| 55.00 74.3 31.8 37.7
0.600 5258 11087 1598 7427 64.4 415 87.4 23.3 40.1
0.700 422711540 1145 8458 62.1 33.3] 91.0 21.3 42.3
0.800 2076/12334 351/10609 56.8/ 16.4] 97.2 14.5 46.2
0.900 674/12604 8112011 52.3] 5.3 99.4 10.7| 48.8
1.000 012685 0112685 50.00 0.0/ 100.0 50.0
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