Optimal Scheduling of Railroad Track Inspection Activities and Production Teams

Fan Peng The William W. Hay Railroad Engineering Seminar Series 11 February 2011

How tomorrow moves

Importance of Track Maintenance

- U.S. Class I railroads operated 160,781 miles of track (2009)
- 42.7% of the U.S. freight revenue ton-miles were carried by railroad (2007)
- Track maintenance
 - Identify and repair track defects
 - Critically important to railroad performance and safety

Costs Related to Track Maintenance

- Track maintenance costs
 - \$7.52 billion by Class I railroads in 2008
- Train accident costs
 - Track defects have become the leading cause of train accidents in U.S. since 2009
 - 658 of 1,890 (34.8%) train accidents were caused by track defects in 2009, which incurred a \$108.7 million loss
- Train delay costs
 - Track maintenance activities may delay trains
 - Estimated \$200-\$300 per hour per train (excluding shipment delay costs)
- Other costs (locomotive and car maintenance costs, etc.)

Importance of Optimizing Track Maintenance Process

- A small percentage of cost reduction implies a significant saving
- Cost reduction can be achieved by optimizing track maintenance processes
 - Activity schedule
 - Machinery movement
 - Material transportation

Optimization Problems on Track Maintenance in CSX

Track Inspection Scheduling

Track Inspection Scheduling

- Input
 - Tasks
 - Teams
 - Scheduling horizon
- Output
 - Assign every task a team and a start time
- Goal
 - Minimize costs
 - Satisfy business constraints

Track Maintenance Scheduling

Track Maintenance Scheduling

Maintenance Activity	Maintenance Team	Scale	Schedule	Examples
Corrective	Local team	Small	On demand	Defect repair
Capital	Production team	Large	Pre-planned	Rail project, timber and surfacing (T&S) project
Routine	Routine maintenance team	Middle	At a frequency	Ballast cleaning, surfacing, rail grinding

Track Maintenance Logistics

TY OF ILLINOIS AT URBANA-CHAMPAIG

Current Practice in Railroad Industry

- Large-scale and complex problem instances
 - Thousands of activities
 - Tens of teams
 - Thousands of business constraints
- Manual solution process based on expert knowledge and experience

Objective

- Develop mathematical models and corresponding algorithms for the identified problems
 - Models are complex and realistic enough to accurately reflect the business goals and constraints
 - Algorithms are effective and efficient and can be applied to largescale practical problem instances
- The developed models and algorithms have been adopted by CSX in the past two years
 - Improve operational performance and safety
 - Improve solution efficiency

Scope of Presentation

Track Inspection Scheduling

Track Inspection Scheduling

Track segments are inspected periodically

Inspection activities are called "tasks"

	Team 1	Team 2	Team 3	
	Tools 1	Task 4		
Week	TASK I	Travel	Tack 8	
1	Travel	Tasle 6	I dSK O	
	Task 2	Task o		
		Tool: 6	Travel	
Weels	Travel	TASK O		
vveek 2	Task 3	Travel		
		Task 7	TASK 9	

Model and Algorithm Selection

- Vehicle routing problem model
 - Real number task durations
 - Real number travel times
- Heuristic algorithm
 - Fast solution speed

	Team 1	Team 2	Team 3	
	Tool: 1	Task 4		
Week	TASK I	Travel	Task 8	
1	Travel	Task 5		
	Task 2		Travel	
Wook	Travel	Task 6		
vveek 2	Taula 0	Travel	Task 9	
	Task 3	Task 7		

Vehicle Routing Problem Model

- Spatial network composed of vertices and edges
- Binary variables for team routes
- A real number variable *u* for each activity, representing the start time of that activity
- Difficult to solve with integer programming algorithm if there are difficult side constraints

Side Constraints

- Constraint types
 - Periodicity
 - Non-simultaneity
 - Time window
 - Preference
 - Network topology
 - Discrete working time
- Hard vs. soft constraints

Periodicity Constraint

- A segment should be inspected periodically at a certain frequency, i.e., the interval between two consecutive tasks on a segment should be within a certain value
 - Penalty cost is due to the risk of defects

Non-Simultaneity Constraint

- Subdivision non-simultaneity constraint
 - Two tasks in the same subdivision should not be performed simultaneously
- Roadmaster non-simultaneity constraint
 - Two tasks involving the same roadmaster (or some other railroad employee) should not be performed simultaneously

	Team 1	Team 2	Team 3
	Took 1	Task 4	
Week	Task I	Travel	Task 8
1	Travel	Task 5	
	Task 2		Travel
Week	Travel	Task 6	
2	Task 3	Travel	Task 9
		Task 7	

Time Window Constraint

• A task should not be performed during certain times

- Rail inspection teams should avoid conflicts with
 - Railroad geometry inspection teams
 - Government geometry inspection teams
 - Track maintenance teams

Preference Constraints

- A task should be performed by certain teams
 - Closeness to home
 - Familiarity

Network Topology Constraint

- A task is represented by an arc but not a single point
- Some tasks can be performed together without travelling between each other

Discrete Working Time Constraint

 Inspection teams do not work during weekends and holidays unless paid for overtime

Team 3

Task 8

Travel

Task 9

Algorithm Framework

OF ILLINOIS AT URBANA-CHAMI

Case Study: <u>Short-Term</u> Scheduling

- Weekly scheduling for operations
- Data from CSX
 - 700+ segments
 - 19 teams
 - 8-week horizon
- Thousands of tasks and side constraints
- Solution time: less than 1 minute

Short-Term Scheduling: Results

Statistics	Manual solution	Model solution	Reduction (%)
Total overdue percentage outside the required interval (%)	15.8	4.2	73.7
Total travel distance between tasks (miles per team per week)	63.2	47.4	25.0
Total non-simultaneity constraint overlapping duration (days per week)	0.66	0.42	37.5

All hard constraints are satisfied.

*Cost entries are scaled to protect data confidentiality

Case Study: <u>Long-Term</u> Planning

• Resource planning

- Decision of the number of teams to hire
- Balance of workload across teams
- Prediction of workload peaks
- Data from CSX
 - 1-year horizon
- Tens of thousands of tasks and side constraints
- Cannot be performed manually
- Solution time: less than 1 hour

Long-Term What-If Analysis

Total overdue percentage outside the required interval

Total overdue percentage outside the allowed interval

Production Team Scheduling

How tomorrow moves

Production Team Scheduling

Projects are identified every year

	Team 1	Team 2	Team 3
Week 1	Project 1	Project 2	Project 3
Week 2	Project 1	Project 6	Project 3
Week 3	Project 4	Project 6	Project 3
Week 4	Project 5	Project 10	Project 3
Week 5	Project 5	Project 8	Project 9
Week 6	Project 5	Project 7	Project 9

Model and Algorithm Selection

- Time-space network model
 - Integer number project durations
 - No travel time
- Integer programming and heuristic algorithms
 - Longer solution time (a few hours) allowed

	Team 1	Team 2	Team 3
Week 1	Project 1	Project 2	Project 3
Week 2	Project 1	Project 6	Project 3
Week 3	Project 4	Project 6	Project 3
Week 4	Project 5	Project 10	Project 3
Week 5	Project 5	Project 8	Project 9
Week 6	Project 5	Project 7	Project 9

Time-Space Network Model

- Continuous time horizon is discretized into time points
- Network is duplicated at every time point
- Easier to solve with integer programming algorithms

Travel Costs

• Minimize the travel costs between projects

Side Constraints

- Constraint types
 - Time window, preference, mutual exclusion, precedence, simultaneity, non-simultaneity, consecution, split project, limitation, relay rail, Jamboree
- Hard vs. soft constraints

Time Window Constraint

- A project should not be performed in certain weeks
 - Weather
 - Seasonal high railroad traffic volume

Preference Constraint

- A project should be performed by certain teams
 - Closeness to home
 - Familiarity

Junction Mutual Exclusion Constraint

 Some adjoining subdivisions should not have simultaneous ongoing projects

How tomorrow moves

Corridor Mutual Exclusion Constraint

 Some subdivisions in a corridor should not have simultaneous ongoing projects

Yard Mutual Exclusion Constraint

 A yard and its adjoining mainline should not have simultaneous ongoing projects

Precedence Constraint

- Certain project should be performed before another project
 - Rail projects before tie projects so that the new ties are not damaged by pulling and inserting spikes

Simultaneity and Non-Simultaneity Constraints

- Simultaneity: two projects should be performed simultaneously
 - Technical difficulty
 - Busy train traffic
- Non-simultaneity: two projects should not be performed simultaneously
 - Limited space

Consecution Constraint

- Some projects should be performed consecutively by the same team
 - to improve efficiency

Split Project Constraint

- Some projects are split in order to increase the flexibility of scheduling
- Two parts of a split project should be performed either simultaneously by different teams or consecutively by the same team

	Team 1	Team 2	Team 3
Week	Project	Project	Project
1	1	2	3-1
Week	Project	Project	Project
2	1	6	3-1
Week	Project	Project	Project
3	4	6	3-2
Week	Project	Project	Project
4	5	7	3-2
Week	Project	Project	Project
5	5	8-1	8-2
Week	Project	Project	Project
6	5	8-1	8-2

Limitation Constraint

- A team should not perform a certain class of projects for too many weeks
 - 5-day projects

		Team 1	Team 2	Team 3		Team 1	Team 2	Team 3
v	Veek 1	Project 1	Project 2	Project 3	Week 1	Project 6	Project 2	Project 3
V	Veek 2	Project 1	Project o	Project 3	Week 2	Project 6	Project 1	Project 3
V	Veek 3	Project 4	Project 6	Project 3	Week 3	Project 4	Project 1	Project 3
V	Veek 4	Project 5	Project 7	Project 3	Week 4	Project 5	Project 7	Project 3
V	Veek 5	Project 5	Project 8	Project 9	Week 5	Project 5	Project 9	Project 8
ð	Veek 6	Project 5	Project 8	Project 9	Week 6	Project 5	Project 9	Project 8

Relay Rail Constraint

• Projects supplying relay rail should be scheduled before projects demanding relay rail

	Team 1	Team 2	Team 3
Week 1	Project 1	Project 2	Project 3
Week 2	Project 1	Project 6	Project 3
Week 3	Project 4	Project 6	Project 3
Week 4	Project 5	Project 10	Project 3
Week 5	Project 5	Project 8	Project 9
Week 6	Project 5	Project 7	Project 9

Jamboree Constraint

- All Jamboree teams should perform Jamboree projects during Jamboree weeks
 - Ongoing projects can be interrupted during Jamboree weeks and resumed after them

	Jambor	Team 3		
Week 1	Project 1	Project 1 Project 2		
Week 2	Project 1	Project 1 Project 4		
Jamboree	Jambore	Project 3		
Weeks		5	Project 3	
Week 5	Project 5	Project 7		
Week 6	Project 5	Project 7		

Algorithm Framework

Case Study: 2011 Data

- Data from CSX
 - 300+ projects
 - 20 teams
 - 1-year horizon
 - Thousands of side constraints
- Solution time: 8 hours
- All hard and most soft constraints are satisfied
- Solution was implemented with some revisions

Case Study: 2009 Data

- Data from CSX
- Solution time: 6 hours
- Solution is compared with those obtained by
 - railroad's manual process
 - our previous approach used in 2010 scheduling

2009 Data: Solution Comparison

Costs and violations		Manual procedure	Previous approach in 2010	Proposed approach
Travel costs		161,944	158,598	139,921
	Junction MX	24,117 / 72	8,709 / 26	2,345 / 7
Soft side constraints	Corridor MX	12,661 / 54	5,158 / 22	3,751 / 16
(penalty costs / # of violations)	Time window	257,965 / 95	14,664 / 41	6,062 / 36
,	Precedence	670 / 20	603 / 18	435 / 13
Total costs (trave	l + penalty)	(457,357)	187,733	(152,647)
Hard side constraints	Time window	15	0	0
(# of violations)	Precedence	8	0	0
Total hard constrai	int violations	23	0	0

-66.7% -18.8%

*Cost entries are scaled to protect data confidentiality

Future Research

How tomorrow moves

Thank you!

