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Fuel Price 
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• Railroad fuel consumption 
remains steady 

 

• Crude oil price sharply 
increases in recent years 

• Fuel-related expenditure is one of the biggest cost items in the 

railroad industry 



Fuel Price 

• Fuel (diesel) price 

influenced by: 

– Crude oil price 

– Refining 

– Distribution and marketing 

– Others 
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Fuel Price 

• Fuel price vary across 
different locations 

 

• Each fuel station requires 
a long-term contractual 
partnership 
– Railroads pay a contractual 

fee to gain access to the 
station 

– Sometimes, a flat price is 
negotiated for a contract 
period 
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• US national fuel retail price, by county, 
2009 
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Locomotive Routes in a Network 
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Candidate 

fuel station 

Contracted 

fuel station 



Motivation 

• Usage of each fuel station requires a contractual 

partnership cost  

• Hence, should contract stations and purchase fuel 

where fuel prices are relatively low (without 

significantly interrupting locomotive operations) 

– In case a locomotive runs out of fuel, emergency purchase is 

available anywhere in the network but at a much higher price  

– Each fueling operation delays the train  
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The Challenge 
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The Challenge 
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• Fuel cost vs. contract cost 
– Too few stations = high fueling cost (e.g., emergency purchase) 



The Challenge 
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• Fuel cost vs. contract cost 
– Too many stations = high contracting costs 
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Problem Objective 

• To determine: 

– Contracts for fueling stations 

– Fueling plan for all locomotives  

• Schedule 

• Location 

• Quantity 

• To minimize:  

– Total fuel-related costs: 

• Fuel purchase cost 

• Delay cost 

• Fuel stations contract cost 
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Notation 
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• Set of candidate fuel stations, N = {1,2,…, |N|} 

• Set of locomotives, J = {1,2,…, |J|} 

• Sequence of stops for locomotive j, Sj = {1,2,…, nj}, for all j    J  

i=1 i=2 i=3 

i=|N| i=|N|–1 

i 

For any location i  

ci = Unit fuel cost 

a1 = Delay cost per fueling 

stop 

a2 = Contract cost per fuel 

station per year 

Mi = Maximum number of 

locomotives passing 

p=Unit fuel cost for 
emergency purchase (p>ci 
for all i) 





Notation 

15 j=1 j=|J| j 

• Set of candidate fuel stations, N = {1,2,…, |N|} 

• Set of locomotives, J = {1,2,…, |J|} 

• Sequence of stops for locomotive j, Sj = {1,2,…, nj}, for all j    J  

For any locomotive j 

bj=Tank capacity 

rj=Fuel consumption rate 

nj=Number of stops 

fj=Travel frequency 

gj=Initial fuel 





Notation 

• Set of candidate fuel stations, N = {1,2,…, |N|} 

• Set of locomotives, J = {1,2,…, |J|} 

• Sequence of stops for locomotive j, Sj = {1,2,…, nj}, for all j    J  
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ls
j = Distance between 

the sth and (s+1)th fuel 

stations that locomotive j 

passes 

j j=1 j=|J| 
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s+1 

nj 
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n1 
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



Decision Variables 

• For each station, contract or not? 

– zi = 1 if candidate fuel station i is contracted and 0 otherwise 
 

• For each locomotive, where to stop for fuel? 

– xs
j = 1 if locomotive j purchases fuel at its sth station and 0 otherwise 

– ys
j = 1 if locomotive j purchases emergency fuel between its sth and 

(s+1)th station and 0 otherwise  
 

• How much to purchase? 

– ws
j =Amount of fuel purchased at stop s of locomotive j 

– vs
j =Amount of emergency fuel purchased between the sth and 

(s+1)th stations of locomotive j 
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Formulation 
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Problem Characteristics  

• The MIP problem is NP hard… 

– Integration of facility location and production scheduling 

• The problem scale is likely to be large 

–                  of integer variables,                 of constraints 

– For |J|=2500 locomotives each having nj=10 stops among |N|=50 fuel 

stations, there are 50,050 integer variables and 100,050 constraints 

• Commercial solver failed to solve the problem for real applications 

• Hence, to solve this problem 

– Derive optimality properties to provide insights 

– Develop a customized Lagrangian relaxation algorithm 
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Theoretical Findings 
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Optimality Condition 1 

There exists an optimal solution in which a locomotive stops for 

emergency fuel only when the locomotive runs out of fuel. 

Fuel station s1 Fuel station s2 

Fuel Level 

Optimal emergency fueling location 

station 

Tank 

Capacity 
Not optimum 



Theoretical Findings 

Station 

Fuel level 

1 

Optimality Condition 2 

There exists an optimal solution in which a locomotive purchases 

emergency fuel only if the following conditions hold: 

– Its previous fuel purchase (from either an emergency or fixed station) 

must have filled up the tank capacity 

– If the next fuel purchase is at a fixed stations, then the purchased fuel 

should be minimum; i.e., the locomotive will arrive at the next station with 

an empty tank 

23 s+1 s 

Tank 

capacity 

Not optimum 



Station 

Fuel level 

1 s+1 s 

Tank 

capacity 

Theoretical Findings 
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Optimality Condition 3 

If a locomotive purchases fuel at two fixed fueling stations  s1  and s2  

(not necessarily adjacent along the route) but no emergency fuel in 

between, then there exists an optimal solution in which the locomotive 

either departs s1 with a full tank, or arrives at s2 with an empty tank. 

Not optimal 

Either of these 

two is optimal 



Lagrangian Relaxation 

• Relax hard constraints: 

 

 

 

• Then add them to the 

objective function with 

penalty: 
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Constraints 

Variables 

Fueling plan for 

locomotive 1 

Facility location and fueling constraints 

Fueling plan for 

locomotive 2 

Fueling plan for 

locomotive j 



Formulation of Relaxed Problem 
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Relaxed Problem 

• After relaxing hard constraints the remaining problem 

could be decomposed into sub-problems 

– Each sub-problem solves the fueling planning for each 

locomotive 

 

 

  where zj(u) is optimal objective function of jth sub-problem 
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Sub-problem for the jth Locomotive 
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Sub-problem for Individual Locomotive 

• Three types of possible “optimal” fuel trajectory 
– Type a: From one station to nonzero fuel at another station 

– Type b: From one station to zero fuel at another station, without 

emergency purchase 

– Type c: From one station to zero fuel at another station, after one or more 

emergency fuel purchases 

 

Station 

Fuel level 

2 s–1 

bj 

1 

0 

s 

(a) 

(b) 

(c) 

rj 
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Shortest Path Method 

Station 

State 

2 s–1 

bj 

1 

0 

s 

(a) 

(b) 

(c) 

(s, 1) 

(s,) 

(s,) 

(a) (a) 

gj 

30 
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• We find a way to apply a simple shortest path method to 

solve the sub-problem 



Outline 

• Background 

• Model Formulation 

• Optimality Properties and Solution Techniques 

• Case Studies 

• Conclusion 

34 



Test Case 

($5) ($3) 

($3) ($5) ($2) 

($4) ($2.5) ($2) 

($2) 

($2) 

($3) 

($3.5) 

1000 1050 1100 

1050 1500 1000 1050 1100 

1050 

1050 1100 1550 

1050 

1100 1600 

1050 

1000 

1050 1000 1100 
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Network Information 



Test Case 
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Locomotive Route Information 



Test Case 

• 12 nodes, 8 locomotives 

•  1=100, 2=10,000 

• Tank capacity=2500 

• Different fuel price for fixed stations between $2 to $5 

and $7 for emergency 

• Frequency assumed 1 for all locomotives 

• Consumption rate assumed 1 for all locomotives 
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Optimal Fuel Stations 

($5) ($3) 

($3) ($5) ($2) 

($4) ($2.5) ($2) 

($2) 

($2) 

($3) 

($3.5) 
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Optimal Fueling Plan: Locomotive 1 

$5 $3 

$3 $2 

$4 $2.5 $2 

$2 

$2 

$3 

$3.5 

$5 

(1000) 

(1700) (2500) 

(750) (2500) 
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Optimal Fueling Plan: Locomotive 2 

$5 $3 

$3 
$2 

$4 
$2.5 $2 

$2 

$2 

$3 

$3.5 

$5 

(650) 

(2100) 

40 

(1000) (2500) 



Optimal Fueling Plan: Locomotive 8 

5 3 

3 
2 

4 2.5 2 

2 

2 

3 

3.5 

5 

(0) 

(0) 

(1050) 

(1650) 

(2500) (1050) 
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$5 $3 

$3 $2 

$4 
$2.5 $2 

$2 

$2 

$3 

$3.5 

$5 



Total Fuel Consumption 

($5) ($3) 

($3) 
($5) ($2) 

($4) 
($2.5) ($2) 

($2) 

($2) 

($3) 

($3.5) 

8700 15150 4950 

6100 
12650 

6700 9,550 
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Real World Case Study 

• Full railroad network of a Class-I railroad 

company 

• 50 potential fuel stations 

• Thousands of predetermined locomotive 

trips (per week) 

• Fuel price from $1.9 - $3.0 per gallon with 

average $2.5 per gallon 

• Tank capacity 3,000 - 5,000 gallons 

• Consumption rate 3 - 4 gallons per mile 

• Contracting cost of fuel stations $1 - $2 

billion per year 
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Real World Case Study 

• Algorithm converges after 500 iterations in 1200 CPU 

seconds 

• The optimality gap was less than 6%  

• This model can efficiently reduce the total cost of the 

system 
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Real World Case Study 

• Solution 1: Bench-

mark (current 

industry practice) 
 

• Solution 2: Optimal 

fueling schedule 

using all current 

stations 
 

• Solution 3: Global 

optimum (using an 

optimal subset of 

stations) 
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Conclusion 

• A Mixed Integer Programming (MIP) model 

– Integrates fuel schedule problem and station (location) selection 

problem 

– Considers fuel cost, delay, and fuel station contracting costs 

• LR and other heuristic methods are developed for large-scale 

problem with good computational performance 

• We developed a network representation and shortest path method 

for solving scheduling sub-problems 

• This problem was later used as a competition problem at 

INFORMS Railway Applications Section (RAS)  
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