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Summary:  Aerodynamic efficiency of intermodal freight trains can be significantly improved by 
minimizing the adjusted gap lengths between adjacent loads.  This paper first develops a static model to 
optimize load placement on a sequence of intermodal trains that have scheduled departure times.  This model 
applies when full information on all trains and loads is available.  Then, a dynamic model is developed to 
account for the realistic situation where information on future trains and incoming loads may not be 
completely available.  This paper seeks ways to balance between: (i) the advantage from optimizing multiple 
trains together; and (ii) the risk of making suboptimal decisions due to incomplete future information.  We 
propose a rolling horizon scheme to address this challenge, where exponentially decreasing weights are 
assigned to the objective functions of future trains.  Numerical results based on empirical data show 
significant aerodynamic efficiency benefits from these optimization models. 
 
Index Terms:  intermodal transportation, energy efficiency 
 
 
NOTATION AND UNITS 
i  index referring to the type and size of the 

load  
C  subset of i for containers 
Ji  number of loads of a specific type and size i 
 t I index for outgoing trains (t = 1, 2…T).  k 
 position of each unit in the train   
Ak  adjustment factor of the kth gap shown in Utk 
 length of kth unit of train t 
δk  the type of kth unit, where δtk = 1 when the 

unit is a well-car unit, and δtk = 0 otherwise 
 Li length of the ith type load 
Qtkp  length limit of position p in the kth unit of 

train t  
wij  weight of the jth load of type i 
Ctk  weight limit of the kth unit of train t 
Ritpk  a four dimensional matrix for loading 

capabilities of each slot, where Ritpk = 1 if 
the ith type of load can be assigned to 
position p in unit k of the train t, and it is 0 
otherwise 

Ф  represents an arbitrarily specified large 
number  

αt an smooth decreasing weight 
 
INTRODUCTION 
 
Intermodal (IM) freight is among the largest 
segments of US railroad freight transportation, and 
has experienced rapid growth over last 15 years [1, 
2].  However, intermodal trains are generally the 
least fuel efficient due to the physical constraints 
imposed by the combination of loads and the railcar 
design [3, 4].  This is particularly ironic given that 
intermodal trains are typically the fastest freight 
trains in operation. 
 
At intermodal terminals, containers or trailers are 
assigned to available well, spine or flat cars [5].  
Although computer software [6] is often used by 
terminal managers to assist in this task, it is still a 
largely manual process.  Railroads already provide 



incentives to terminal managers for maximizing slot 
utilization, but they do not take into account the size 
of the slot compared to the size of the load.  A 
perfect slot utilization indicates maximal use of the 
feasible slots available, it is not intended to, nor 
does it ensure, that intermodal cars are loaded to 
maximize the energy efficiency of intermodal trains.  
For example, two trains may have identical slot 
utilization, but different loading patterns and 
consequent train resistances [7].  Consequently, 
there is a gap between slot utilization and energy 
efficiency, and work needs to be done to merge 
automatic loading assignment models into the 
terminal software used by major North American 
railroads.   
 
Lai et al [7] developed an optimal loading 
assignment model in which the objective function 
was maximizing aerodynamic efficiency of the 
outgoing intermodal freight train given any 
particular static combination of loads and railcar 
types.  Because terminal managers usually load only 
one train at a time, each optimization analysis 
considers only the current outgoing train with 
available loads.  If advance information on outgoing 
trains and loads is available, better loading plan 
solutions may be possible by optimizing for 
multiple trains simultaneously.  The larger pool of 
loads and railcars will enable better matching.   
 
This research is particularly timely in light of recent 
increases in fuel prices, their impact on industry 
operating costs, and the need to conserve energy 
and reduce green house gas emissions.  Class I 
railroads spent more than $6.2 billion on fuel in 
2005 making it their second largest operating 
expense [8].  As of 2005, fuel costs had increased 
by 2.67 times since 1998, and this trend continues, 
making fuel efficiency more important than ever [9].  
This calls for investigation of options to improve 
aerodynamic efficiency, which have important 
economic and environmental implications for rail 
freight transportation [10, 11]. 
 
In this paper, we first extend the model to optimize 
the aerodynamic efficiency at the multiple train 
system level.  The benefit of optimizing more trains 
and loads will be evaluated assuming static 

information of trains and loads.  We will then allow 
dynamic load information by developing a rolling 
horizon scheme for continuous terminal operations.  
This will be followed by an empirical case study 
and some discussion. 

 
 
METHODOLOGY  

Loading Assignment at Intermodal Terminals 

At intermodal terminals, containers and trailers of a 
variety of lengths are assigned to available well, 
spine or flat cars by terminal managers [5, 12].  In 
this study, we focus on intermodal services of the 
BNSF Railway between Chicago and Los Angeles 
(LA).  About 80% of the IM trains on this route are 
loaded or unloaded only at Chicago and LA, so 
there is little container shifting occurring enroute 
[13, 14, 15].   

 
Intermodal loads, i.e. trailers or containers, range in 
length from 20 to 57 ft.  There is considerable 
variety in the design and capacity of intermodal 
railcars with different numbers of units and slots, 
and thus loading capabilities.  An intermodal railcar 
can have one or more units permanently attached to 
one another (via articulation or drawbar).  A unit is 
a frame supported by at least two trucks, providing 
support for one or more platforms (a.k.a. slots).  For 
example, Figure 1a shows an articulated 3-unit well 
car, and Figure 1b is a 5-unit spine car.  A platform 
(or slot) is a specific container/trailer loading 
location.  As a result, each well-car unit has two 
slots because of their accommodation of two 
containers, one stacked on the other (a.k.a. “double 
stack”), and each spine-car unit has one slot (Figure 
1).  

 

 
(a) 

 
(b) 

FIGURE1 (a) a 3-unit well car with 6 slots (b) a 5-unit spine 
car with 5 slots 
 
There are also a number of loading rules developed 
for safety purposes and various feasible and 



infeasible combinations of IM load and car 
configuration.  Because intermodal cars in a train 
are not generally switched in and out at terminals, 
managers primarily control the assignment of loads 
but not the configuration of the equipment in a train.  
Consequently, we treat the train make-up as given 
in this study.   

Aerodynamic drag is a major component of train 
resistance, particularly at high speeds [16, 17, 18].  
The Association of American Railroads (AAR) 
supported research on wind tunnel testing of rail 
equipment, including large-scale intermodal car 
models [19].  The results were used to develop the 
Aerodynamic Subroutine of the Train Energy Model 
(TEM) [20].  These experiments showed that gap 
length between IM loads and position-in-train were 
the two important factors affecting train 
aerodynamics [21].  Larger gaps result in a higher 
aerodynamic coefficient and greater resistance.  The 
front of the train experiences the greatest 
aerodynamic resistance due to headwind impact.  
Therefore, to incorporate both the gap length and 
position-in-train effect, the objective function of the 
model is to minimize the adjusted gap length within 
the train.  Adjusted gap length is equal to the 
adjustment factor times gap length.  The adjustment 
factor associated with each gap is computed by 
dividing the drag area of a given unit by the drag 
area of the 100th unit (Table 1) to account for 
position-in-train effect.  

TABLE 1 Adjustment factor for each gap in the train [7] 

k Drag area (ft2) Adjustment factor
1 (locomotive) 31.618 1.5449

2 28.801 1.4073
3 26.700 1.3046
4 25.133 1.2280
5 23.963 1.1709
6 23.091 1.1283
7 22.440 1.0964
8 21.954 1.0727
9 21.591 1.0550
10 21.320 1.0418
100 20.466 1.0000  

 
Static Aerodynamic Efficiency Model 
                                                                                           
The following notation is used in the algebraic 
model: i is an index referring to the type and size of 

the load (namely, 40' container, 48' trailer, 53' trailer, 
etc.); C is the subset of i for containers.  We group 
loads of the same type together with an index, j (j = 
1, 2, 3…Ji); Ji is the number of loads of a specific 
type and size i (i = 40C, 48'T, 53T, etc.), for 
instance, J48T =10 means that there are ten 48' 
trailers in the storage area.  t is the index for 
outgoing trains (t = 1, 2…T).  The symbol k defines 
the position of each unit in the train (k = 1, 2, 3…N), 
where k=1 corresponds to the first intermodal unit 
of the train.  The slot position in each unit is 
denoted by p, where p = 1 represents the upper (top) 
platform in a well-car unit or the single platform in 
a spine-car or flat-car unit, and p = 2 represents the 
lower (bottom) platform in a well-car unit (Figure 2).  
The following symbols represent the parameters 
used in the model: Ak is the adjustment factor of the 
kth gap shown in Table 1, where A1 > A2 > …>AN; 
Utk is the length of kth unit of train t; δk indicates the 
type of kth unit, where δtk = 1 when the unit is a well-
car unit, and δtk = 0 otherwise; Li is the length of the 
ith type load; Qtkp is the length limit of position p in 
the kth unit of train t; wij is the weight of the jth load 
of type i; Ctk is the weight limit of the kth unit of 
train t; and Ritpk is a four dimensional matrix for 
loading capabilities of each slot, where Ritpk = 1 if 
the ith type of load can be assigned to position p in 
unit k of the train t, and it is 0 otherwise.  Finally, Ф 
represents an arbitrarily specified large number 
introduced for modeling purposes as will be 
explained in the model description below.   

 

 
(a) 

 
(b) 

FIGURE 2 The available slots in (a) 5-unit well car (b) 5-unit 
spine car 
 
Two sets of binary decision variables are included 
in the IP model.  The first variable is denoted by 
yijtpk where:  

1,   if  load of type  is assigned to position  in  unit of train 
0,  otherwise
⎧

= ⎨
⎩

th th

ijtpk
j i p k t

y
  

The second binary variable, denoted by xtk, 
determines whether the top slot in a well unit can be 
used, namely:   



1,   if the top slot of the  unit in train  can be used
0,  otherwise
⎧

= ⎨
⎩

th

tk
k t

x  

According to the loading rules, the top slot can be 
used when the bottom slot is filled by containers 
whose total length is at least 40' [22].   
 
The loading problem is formulated as a linear 
integer program to minimize fuel consumption (i.e., 
the total adjusted gap length) of all outgoing trains.  
For train t, the objective function is  
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The complete mathematical program for all T trains 
is as follows: 
 

Min 
1=
∑

T

t
t

z       (2)       

Subject to:   
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The objective function (total adjusted gap length for 
train t) is comprised of two parts.  The first part, 

representing the gap length between the locomotive 
and the first load (Figure 3), is the difference 
between the length of the first unit (Utl) and the 
length of the load in position 1 of the 1st unit (∑∑ 
yijt11Li), which is then divided by 2.  Multiplying the 
gap length by the adjustment factor A1 results in the 
first adjusted gap length.  Each of the subsequent 
gaps is half of the difference in length between the 
current unit and the load (Utk - ∑∑ yijt1kLi)/2 plus 
half of the length difference between the next unit 
and the load (Utk+1 - ∑∑ yijt1k+1Li)/2 multiplied by 
the appropriate adjustment factor, Ak.  Thus, the 
second part of the objective function computes the 
sum of the subsequent adjusted gap lengths.  Note 
that we only take into account the loads in position 
1 of all units in the train.  This is reasonable since 
they are the only loads in spine or flat cars; and for 
well cars, the upper level gaps have a more 
significant aerodynamic effect than the lower level 
gaps (23, 24, 25).  A schematic representation is 
given in Figure 3.  

 

 
FIGURE 3 Locomotive and first two intermodal units in a 
train  
 
Minimizing total adjusted gap length creates the 
most efficient train configuration.  However, not all 
loads can be assigned to all slots.  The loading 
assignment must conform to the loading capability 
of each unit as well as length and weight constraints.  
Constraint (3) ensures that each load can be 
assigned to no more than one slot, and it has to obey 
the loading assignment rules (Ritpk); constraint (4) 
eliminates the possibility of assigning loads (yijtpk = 
1) to unavailable slots (Ritpk = 0).  Constraints (5) 
and (6) together state that if the bottom slot 
(position 2) in a well-car unit (δtk = 1) is not filled 
with containers greater than 40 ft, in which case 
equation (5) requires that xtk = 0, then no load can 
be assigned to the top slot (position 1) for the same 
unit, i.e., ∑∑ yijt1k = 0 and therefore yijt1k = 0 for all 
i,j.  Note that constraint (6) allows a bottom load 
without a top load (yijt1k = 0).  Constraint (7) is the 
weight limit that is imposed for each car unit in 



order to reflect its total carrying capacity (Ctk).  And, 
constraint (8) is the length limit imposed for each 
slot to guarantee that the total length of loads in a 
given slot (position) does not exceed the length of 
that slot (Qtkp).  Constraint (9) states that both yijtpk 
and xtk are binary variables.  Note that the trivial 
solution, namely yijt1k = 0 and xtk = 0, satisfies all the 
constraints of the model.  However, this would 
result in the largest total adjusted gap since all gaps 
would be at their maximum value.  This case is 
ruled out because of the minimization of the total 
gap.  Thus, the model prefers not to leave a load 
behind if a suitable slot is available.  
 
Conventional practice is to consider loads only for 
the current outgoing train.  This scenario is a special 
case of the general model we developed here by 
setting t equal to 1.  The model thus optimizes the 
aerodynamic efficiency of one outgoing train for a 
given set of loads.  However, if advance information 
about outgoing trains and loads is available, 
optimizing more trains and loads together may lead 
to even more aerodynamically efficient loading 
patterns.  

                                                                                                                        
Dynamic Aerodynamic Efficiency Model 
 
Optimization of multiple trains will often lead to 
more efficient loading overall if complete 
information on all trains and loads is available at the 
time of optimization (i.e., static current information).  
However, the information requirement on future 
loads and trains often imposes some degree of 
uncertainty in practice, because information about 
some loads may not be immediately available (i.e., 
dynamic future information).  Under some 
circumstances, optimizing the loading pattern of a 
later train will reduce the efficiency of the 
immediate outgoing train.  For example, the two 
trains may compete for the same “suitable” load, 
and the later train may get it.  There is some 
possibility that after the dispatch of the immediate 
train, another suitable load with the same 
characteristics becomes available for the later train.  
In this case, the earlier optimal solution (without 
future information) turns out to be suboptimal 
(overall).  Therefore, uncertainty about future loads 
introduces some degree of risk that the overall 

optimum for multiple trains will not be achieved.  In 
a dynamic setting, there is a trade-off between the 
benefit of optimizing multiple trains simultaneously 
versus the risk of making wrong decisions for the 
uncertain future. 
 
To address this trade-off, we propose a dynamic 
loading approach with rolling horizons, where 
loading decisions are updated over time as new 
information becomes available.  Carrying out this 
approach poses three questions: (1) when to 
optimize loading patterns for one (or more) trains; 
(2) how many trains to optimize each time; and (3) 
how many trains to load after each optimization. 
 
The first and third questions are relatively simple to 
answer.  In principle, it is always better to postpone 
an optimization to the last moment possible (before 
loading a departing train), because it maximizes the 
available information, thereby reducing uncertainty.  
On the other hand, loading a train early will often 
lead to a suboptimal loading pattern because less 
information is available.  Therefore, to the extent 
practicable train loading should be delayed until just 
before its departure.  For the same reason, it is 
always better to load just the immediately outgoing 
train based on the optimal loading pattern even 
though multiple trains may be optimized together.  
Hence, we should always load the minimum number 
of trains if the solution speed is efficient enough to 
frequently update the optimal loading patterns.  The 
only remaining question is how many trains should 
be optimized each time.   
 
The dynamic train loading problem can be related to 
dynamic vehicle routing problems, where vehicles 
deliver loads to dynamically emerging customers 
with schedules.  See Gendreau [26], Ghiani et al. 
[27], and Larsen [28] for reviews.  Psaraftis [29] 
proposed a rolling horizon approach where 
decisions are made at any time t with regard to loads 
in a future time interval [t, t+L] while only the loads 
in [t, t+αL], 0<α<1, are actually assigned to 
departing vehicles.  Later, Mitrovic et al. [30] 
proposed a double horizon heuristic.  The objective 
function is formulated as a linear combination of 
actual costs in a short horizon and indirect costs 
(slack time in vehicle schedule) in a long horizon.  



The modification of the objective function has been 
shown to improve the optimal solution by balancing 
short-term versus long-term costs.  
 
Based on similar ideas, we propose an exponential 
smoothing approach to the dynamic train loading 
problem.  Before loading the tth train, we optimize 
the following weighted average of objectives for 
trains departing in a future horizon: 
 

Min ∑
+

=

τ

α
t

ts
sst z,          (10) 

s.t.   (3)-(9) 
 

In (10), τ is the maximum number of future trains 
that can be filled with currently known loads, and 
αt,s is a weight assigned to a future train s ≥ t.  The 
set of weights, )(~ tα := (αt,t, αt,t+1, …, αt,τ, …), 
specifies how future trains are considered in the 
loading decision.  For example, )(~ tα  = (1, 0, 0, …) 
corresponds to the trivial case where we optimize 
and load the departing train t only, while )(~ tα  = (1, 
1, 0, …) corresponds to optimizing two trains t, t+1 
together and loading t only.  Ideally, we want to use 

)(~ tα such that the objective in (10) is a weighted 
average of short-horizon and long-horizon 
objectives.  To achieve this, we propose to use 
exponentially decreasing weights:  
 

)(~ tα = (1, αt, αt
2, …) for 0 < αt < 1, 

 
where αt is a scalar used to define vector )(~ tα . 
 
Then, (10) becomes  
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which is a weighted average of zt, (zt + zt+1), …, 

∑
+

=

τt

ts
sz .  If most load information is already known 

and there is little uncertainty in the future, we 
should choose αt ≈ 1, such that )(~ tα ≈ (1, 1, 1, …) 

and ∑∑
+

=

+

=

≈
ττ

α
t

ts
s

t

ts
sst zz, , to exploit the efficiency from 

optimizing multiple trains together.  On the other 
hand, if future loads are highly uncertain, we should 
choose αt ≈ 0, such that )(~ tα ≈ (1, 0, 0, …) and 

t

t

ts
sst zz ≈∑

+

=

τ

α , , to avoid penalty due to the uncertain 

future.  
 
Weight scalar αt can vary across the train index t.  
Its appropriate value can be estimated over repeated 
field experiments or simulations for any existing 
intermodal facility.  When empirical data are not 
available, a reasonable value must be estimated.  
Note from (11) that αt reflects the relative 
importance of the short-term objective (regarding 
the train departing right away) based on static 
information, and that of long-term importance 
(future trains to be loaded) based on dynamic 
information.  This concept is closely related to the 
“degree of dynamism” (DOD) defined in Lund et al 
[31] and Larsen [28] –– the proportion of dynamic 
information at the time of decision.  We propose to 
use 1 – DOD for the scalar weight; i.e.,   
 

tutk

tk
t nn

n

,,

,

+
=α    (12) 

 
where nk,t and nu,t are the numbers of unassigned 
loads known and unknown before loading the tth 
train, respectively. 
 
EMPIRICAL CASE STUDY 
 
The cutoff times for loads to make the next 
departing train are generally 7-8 hours for 
international and domestic container stack trains, 
and 3-4 hours for domestic trailer trains [32].  The 
nature of advance information differs for containers 
versus trailers.  It may often be possible to know 
about containers as much as 12 hours prior to 
departure, whereas information about trailers is 
generally not available until about 4 hours before 
departure.  However, loading containers from 
storage area to assigned slot is more time 
consuming than loading trailers; so the loading 



assignments and process must start earlier if 
containers are involved.  Based on these parameters 
and train departure intervals typical of a busy 
intermodal line operation with both domestic and 
international IM loads, we conducted an analysis of 
6 trains with 1,380 loads in an 8-hr window. 
 
We first apply the static model to evaluate 
aerodynamic efficiency obtained from optimal 
loading at the system level, assuming fully static 
information of trains and loads.  Then, we use the 
dynamic model to carry out continuous terminal 
operations when information is dynamic. 
 
Static Benchmark Case 
 
In the static case, four scenarios were conducted to 
show the benefit of optimizing more trains together.  
They are to optimize one, two, three, or six trains at 
a time, assuming that all the information regarding 
these trains and loads is available.  Optimizing one 
train at a time is consistent with current terminal 
practice.  However, the more trains that are 
optimized at a time, the better the aerodynamic 
efficiency (Figure 4); although, the marginal benefit 
declines considerably beyond three trains.  
Depending on the particular train configuration, the 
potential fuel savings of the first scenario over a 
2,200-mile BNSF Transcon route would be 1,500 
gallons per train [7].  Since scenario 2, 3 and 4 are 
more beneficial than scenario 1, the fuel savings is 
also more significant.  
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FIGURE 4 Effect of number of trains simultaneously 
optimized on adjusted gap length 
 

In practice, loads often arrive and depart at 
terminals quickly with little lead time on their size 
or configuration.  Each train has its own departure 
scheduled about every 70 ~ 90 minutes.  Therefore, 
it is rarely the case that reliable load information 
will be available for more than 3 trains.  
Consequently, a rolling horizon framework is 
needed for continuous terminal operations such as 
this.  
 
Rolling Horizon Operations 
 
The same dataset in the static case (6 trains with 
1,380 loads) is used.  At the beginning of the 8-hour 
time window, 705 loads are available, while the rest 
becomes known at a constant rate of approximately 
120 loads/hour.  The degree of dynamism (DOD) of 
this system is almost equal to 0.5 at any time within 
the time window. 
 
We start with a set of scenario analyses with six 
different cases; see Table 2.  Scenario 1 is the base 
case in which only one train is optimized and loaded 
at a time.  In scenario 2 we optimize two trains at a 
time and load only the first outgoing train.  In 
scenario 3 we optimize two trains at a time and load 
both trains.  The other scenarios follow the same 
logic.  
 
We clearly see that scenario 3 is worse than 
scenario 2, and scenarios 5, 6 are worse than 
scenario 4.  This verifies our qualitative analysis 
that it is not desirable to assign loads to trains other 
than the immediately outgoing one.  We also see in 
this example that optimizing two trains together is 
better than optimizing three trains.  This confirms 
our argument that making decision for future trains 
and loads may incur penalties due to future 
uncertainty.  Overall, the best scenario is scenario 2, 
yielding a total adjusted gap length of 7,470 ft.  It is 
already very close to the static benchmark from 
loading six trains with full information (7,317 ft). 
 
Table 2 Scenario analysis of rolling horizon without 
decreasing weights 



Scenario Operations Adjusted Gap Length (ft)
Scenario 1 opt 1 train, load 1 train 7,539
Scenario 2 opt 2 train, load 1 train 7,470
Scenario 3 opt 2 train, load 2 train 7,535
Scenario 4 opt 3 train, load 1 train 7,713
Scenario 5 opt 3 train, load 2 train 7,828
Scenario 6 opt 3 train, load 3 train 8,851  

 
Finally, we test the exponentially smoothing 
approach with the same data.  Since DOD≈0.5 at all 
time, we use αt = 1 – 0.5 = 0.5, such that )(~ tα = (1, 
0.5, 0.25, …), ∀t.  Optimizing (10) yields an 
adjusted gap length of 7,445 ft, which is closer to 
the static benchmark case with full information 
(Figure 4).   
 
DISCUSSION 

  
To compare the performance of the optimal loading 
patterns and the current operations, we constructed a 
random loading simulation and applied it to the 
same example.  In this case, the average adjusted 
gap length of the random assignments was 9,578 (ft).  
Our optimal result from the realistic rolling horizon 
case is 22.27% lower than this current case.  This 
shows a substantial benefit from optimizing the 
aerodynamic efficiency of the loading pattern of 
intermodal trains.   
 
The objective of our optimization model – 
“matching intermodal loads with cars” -- has not 
currently been widely adopted in terminal 
operations.  This is not because it requires 
significant changes in operations but because there 
has been little understanding of the benefit prior to 
the energy efficiency research in Lai & Barkan [18].  
The model and solution technique proposed in this 
paper would not increase the operating costs at the 
rail terminals because there are no additional 
operational constraints or requirements.  
 
Rail intermodal business in North American is 
different from the general freight business.  
Railroads try hard to avoid intermediate switching 
and stops because the intermodal business is highly 
time sensitive.  For example, approximately 80% of 
the intermodal trains on the BNSF Transcon route 
have no intermediate operations.  Most of the other 
20% have no more than 2 intermediate stops and 

these are generally close to the final destination.  
Therefore, in this work, we focused on the 
intermodal services between Chicago and LA 
assuming that no intermediate yard operations were 
present.  If intermediate operations are necessary, 
the model can be modified to incorporate the time 
value of adjusted gap lengths in the objective 
function.  It is likely that the resulting problem will 
become too complex to solve using integer 
programming.  Further research should explore the 
possibility of using heuristic methods to compute 
second best (slightly sub-optimum) loading patterns 
in a practical way. 
 
 
CONCLUSION 
 
We extend a previously developed aerodynamic 
efficiency model [7] to be able to optimize 
aerodynamic efficiency at the system level, and 
develop a rolling horizon scheme for continuous 
terminal operation.  For the deterministic case, the 
system optimum can be reached by optimizing as 
many trains as possible; however, terminals actually 
operate in a stochastic environment due to 
uncertainty regarding incoming loads and trains.  
Attempting to optimize the loading of too many 
trains in this environment will reduce the ability to 
achieve the most efficient loading configuration 
because of imperfect information.  Therefore, a 
modified model with descending weight assigned to 
each train is proposed to counterbalance the effect 
of uncertainty.  Appropriate weights are determined 
by simulations based on real data from an existing 
intermodal facility.  Depending on the particular 
train configuration, the potential fuel savings of 
optimizing one train at a time over a 2,200-mile 
BNSF Transcon route would be 1,500 gallons per 
train.  Since using the dynamic model is even more 
beneficial, the necessary additional planning or 
handling may be worthwhile.  
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