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® Damage requires near-saturated conditions
& Can a crosstie be critically saturated in well draining ballast?
® Damage requires many freeze-thaw cycles

& Midwest climate is more severe than the arctic!



What about air entrainment?

e Air entraining admixtures

Gel
Pores

AIR VOID







Goals: Improve understanding of...

& How air bubbles respond to vibration.
¢ Actual conditions of crossties in track.
® How to produce ties with better freeze-thaw resistance.

® New testing methods to assess freeze-thaw performance.
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Rheology of Concrete

* Concrete exhibits a yield stress at rest
 VVibration defeats yield stress

Bingham behavior

Yield Stress

Stress, o

Newtonian
behavior

Viscosity

Strain Rate, y



Rheology of Concrete
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Theory for bubble rise

 All bubbles are stable when concrete has yield stress is at rest
e Bubbles rise under buoyant forces in a viscous fluid with no yield stress
 VVibration defeats yield stress
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e Terminal velocity of a hard sphere:
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So, very small bubbles are relatively stable



Vibration with air entrainment

* VVibrate fresh materials and measure fresh air
content

 Air loss is prominent when aggregates are
present




Rheology during vibration

e Simple yield stress fluids (Bingham) with aggregates
* Shows influence of vibration
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Granular Physics

e Roscoe’s Equation predicts the viscosity increase when particles are

added to a fluid. From paste to concrete:
0.89m—9.31 0.57m—3.40

Hmortar = ‘upaste(l - ; Vsand) Heone = umortar(l — ? Vcoarse)

e Vibrated granular constitutive model predictions:

without vibration: o = Gy_+n,y
Bingham
with vibration:
. . . ©
High strain rate: g= Gy, +nyy 4
& Unvibrated
During Vibrati
| G | rnng ration
Low strain rate: o= f_ +nyY Newtonian!
b

Strain Rate, 7

Hanotin, C., et al. "Viscoelasticity of vibrated granular suspensions." Journal of Rheology 59.1 (2015): 253-273.



Practical Implication: “Cone of Action”

e A consequence of depth-dependent rheology: failure angle

=—4—= a = angle of repose

e Theoretical prediction: g, =" 7
=472

e Consequence: effect of vibration is not uniform, leading to
inhomogeneous air distribution
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Air Content under Vibration

 Vibrated concrete is quasi-Newtonian

* Model explains experimental observations

e We can predict air bubble size distribution:
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Bubble Rise simulations

* Large bubbles rise and leave quickly

* Small bubbles endure due to D? law

* Model explains how VISCOSITY under
VIBRATION controls AIR LOSS

* DURATION of vibration is key

e Suggests: There exists an ideal
viscosity for maintaining air
distribution

* And we control viscosity via concrete
mix design
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How Is vibration damped?

* Vibration of beam samples °r T
* Accelerometers measure vibration energy - o o
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Table 4.5 Bingham parameters of fresh concrete, mortar, and paste with %‘025
varying aggregate content 20
Yield Stress (Pa)  Plastic Viscosity g 15
Sample Name (Pa.s) 10 o
Mortar — 0% FA; 100% CP 164.2 31.8 N
Mortar —20% FA; 80% CP 114.2 49.1 .
Mortar —40% FA; 60% CP 90.1 68.3 0
Mortar — 60% FA; 40% CP 276.6 423.7
Concrete — 00% CA; 40% FA; 60 % CP 207.3 10.5
Concrete —22% CA; 40% FA; 38 % CP 130.1 22.8
Concrete —33% CA; 34% FA; 33 % CP 208.5 335

Concrete —45% CA; 28% FA; 27 % CP 467.3 101.1
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Loss of Air due to Vibration

Blue dot — no vibration
Red square — after vibration

Paste samples

e Paste shows no air loss
e Concrete has high air loss
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Plant Testing

e Three plants visits. (1 month stays for 2 plants; 4 days for 3rd plant)

e Testing in these plants included:
e Slump

Fresh and hardened air content

Unit weight

Temperature

Rheology

* Vibration



Plants Vibration

e Three plants visits. (1 month stays for 2 plants; 4 days for 3rd plant)

e Testing in these plants included rheology and vibration
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Plants Vibration

* The accelerometers used to measure vibrations.
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Confirmed:
Handling & vibration drives air from concrete

e Average hardened air content:
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Field testing

e Locations:
 Lytton, British Columbia
* Rantoul, IL

* Parameters
* Temperature
* Internal relative humidity




Instrumentation

e Install humidity & temperature sensors inside
crosstie at rail seat area during manufacturing
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Installing instrumented crossties

Lytton, BC
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Temperature {°C)

Model to predict temp/RH history on
basis of local weather station data

Measured Air Temperature and Predicted Temperatures Inside Concrete

Cumulative Freeze-Thaw Cycles (Temperature Only)
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Crossties received 70 FT cycles/yr
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How should we test crossties?
How should samples be taken?

30



Extensive FT testing

Full ties

FT tests

Half ties
Excised prisms
Cast prisms



Sawcut ties perform poorly

e Large samples (half-ties) vs. excised samples from the same ties
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Summary

 We developed new models for vibration and air

* We documented true field conditions of crossties

* We proposed new guidelines for making durable concrete

* We proposed new approaches for production specification language

 We recommended quality control approaches

e Better understanding of distress mechanisms leads us to improve
product performance!
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