ILLINOIS - RAILROAD ENGINEERING

Slide 1

Outline

Problem definition

Slide 2

- Characterizing the debonded region
- Estimating the debonded area visually
- Assessing the effect of debonding on track stiffness
- Conclusions and future research opportunities

Outline

Problem definition

Slide 3

- Characterizing the debonded region
- Estimating the debonded area visually
- Assessing the effect of debonding on track stiffness
- Conclusions and future research opportunities

- Insulated joints (IJ's)
- Bonded insulated joints
- IJ failure modes

Slide 4

Progressive epoxy debonding

Progressive epoxy debonding

- Many problems appear to begin with deterioration in the epoxy that holds the joint together
- "Progressive epoxy debonding": some of the epoxy comes unstuck from the rail, joint bar, or both
 - Begins near endpost (center of joint)
 - Grows outward towards edges of joint bar
 - Gradual reduction in stiffness and strength of epoxy bond

- As debonded region grows, shear strength of the bond decreases
- With enough debonding and high enough longitudinal loads, remaining bond breaks or insulator ruptures and the rails slip relative to joint bars
 - "Complete failure of the epoxy bond"
 - Reverts to bolted joint
 - Shear stress in bolts and bolt holes, increased deflections, wear on insulators, variable-size gap between rail ends

Complete epoxy failure

Ambiguity

- Difficult to tell whether some areas were debonded
 - Speckled light and dark; dark but not rusty
- Two different measurements of debonded area:
 - "Inclusive" area (A_i) includes ambiguous regions
 - "Strict" area (A_s) only includes regions with heavy, consistent rust or dirt
 - Inclusive debonded area A_i between 5% and 280% bigger than Strict area A_s

- Progressive epoxy debonding occurs mainly on hidden surfaces; only the edges of insulator layer are visible in an in-track IJ
- Practitioners estimate extent of debonding by examining these edges. Does this work?
- Two metrics adopted
 - V_m : Extent of missing top edge of insulator layer
 - $-V_d$: Extent of damaged (missing or loose) top edge of insulator layer

Visual metrics V_m and V_d

Visual metrics V_m and V_d

- V_d better than V_m for estimating debonded area
 - $-V_m$ can be zero with small / moderate debonding
 - Even with extensive debonding, V_d correlates better
 - Disadvantage: V_d harder to measure, more subjective and judge

- 80% Confidence interval for whole joint:
 - $A_i = V_d \times 206 \text{ mm} \pm 27,000 \text{ mm}^2$

 $A_s = V_d \times 161 \text{ mm} \pm 11,000 \text{ mm}^2$

• "Unofficial" 80% C.I. for a single rail / joint bar interface:

$$A_i = V_d \times 201 \text{ mm} \pm 10,000 \text{ mm}^2$$

 $A_s = V_d \times 159 \text{ mm} \pm 6,000 \text{ mm}^2$

 Not enough data to prove certain statistical assumptions; use with caution

3-point bending tests

- IJ plug simply supported
- Applied load at joint center
- Measured deflection at joint center

Bilinear stiffness, joint stiffening, rail head compression at endpost

- Hypothesis: increases resistance to deflection at high loads comes from compressive stresses developing in the railhead at the endpost
- Test: apply strain gages to several specimens

Joint stiffening in track (?)

- Compressive rail head stresses wouldn't have much effect under typical 160-kN static wheel load
- Our static model doesn't necessarily reflect what would happen under higher dynamic wheel loads
- Longitudinal tension in the rail might prevent compressive stresses from developing in rail head
- Conservative approach: assume no stiffening
 - Assume joint stiffness is always that indicated by the response at low static load levels

- Cox and Kerr, University of Delaware (1993)
- Two beams (the rails) connected by a rotational spring (the joint)
 - Rail ends deflect downward by equal amounts
 - Relative rotation between rail ends resisted by spring
- Stiffness of the joint characterized by a single parameter (the rotational spring stiffness)

 $M = s\Delta(y')$

Rotational spring stiffnesses

Specimen	s _b (kN-m)	
CA1	17,400	
TA1	9,600	
TA2	8,200	
TA3	5,600	
CB1	18,700	
TB1	12,900	
TB2	17,000	
TB3	5,200	
TB4	3,300	

Spring stiffness vs. debonding

- Even an IJ with complete epoxy failure has some stiffness, so decompose *s* into $s = s_{\mu} + s_{e}$
 - $-s_u$ = stiffness of an "unbound" joint
 - $-s_e$ = increase in stiffness due to epoxy bond
 - Estimate s_u = 3,300 kN-m from 3-point bending test on a joint with complete epoxy failure

Slide 43

ILLINOIS - RAILROAD ENGINEERING

80% Confidence intervals for stiffness parameters

Parameter	Estimated value (kN-m)	Range (kN-m)
s_e based on A_i	15,000 <i>e</i> ^{-0.0102A} <i>i</i> (1)	± 1,800
s_e based on A_s	14,700 <i>e</i> ^{-0.0150As} (1)	± 1,300
S _u	3,300	N/A

(1) A_i and A_s measured in mm² × 10³

- Lower spring stiffness leads to:
 - Higher deflections
 - Increased loads on the cross ties nearest the joint
 - Higher dynamic loads
- Increased damage to ballast and / or subgrade likely
- Increased damage to IJ itself (cracks, insulator wear, etc.) likely

Slide 48

•

Visual inspection

- Examine top edge of epoxy / insulator layer
- For best results, include places where the epoxy bead has started to separate from metal but not yet broken off
- For whole joint (80% confidence):

$$A_i = V_d \times 206 \text{ mm} \pm 27,000 \text{ mm}^2$$

 $A_s = V_d \times 161 \text{ mm} \pm 11,000 \text{ mm}^2$

- Ignoring any stiffening effects from compressive stresses in the railhead at the endpost, the rotational spring stiffness parameter of an IJ is reduced by:
 - ~80% with complete epoxy failure
 - > 30% with 50,000 mm² of debonding (about 15% of total epoxy surface)
- Potential increase in dynamic load factors and load concentration on nearby ties
 - Accelerated ballast and subgrade degradation

- Similar experiments to determine relationship between debonded area and longitudinal epoxy strength
- Experimentally verified dynamic model that can account for debonding
- Effect of debonding on joint bar cracks
- Dynamic loads increase
- Reaction forces concentrated on nearby ties, so bending moment carried by joint bars decreases
- Net effect unknown

Acknowledgements

- Funding from Association of American Railroads
- Assistance and technical guidance David Davis and Muhammad Akhtar, TTCI
- Material and other assistance BNSF Railway, Norfolk Southern, Portec Rail, L. B. Foster Co., CN, CSX
- Peltier supported in part by CN Railway Engineering Fellowship

