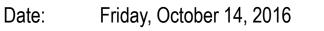
William W. Hay Railroad Engineering Seminar


"An Overview of AAR Railway Research and Technology Innovation"

Semih Kalay

Senior Vice President, Technology

Time: Seminar Begins 12:15

Location: Newmark Lab, Yeh Center, Room 2311 University of Illinois at Urbana-Champaign

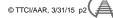
Sponsored by

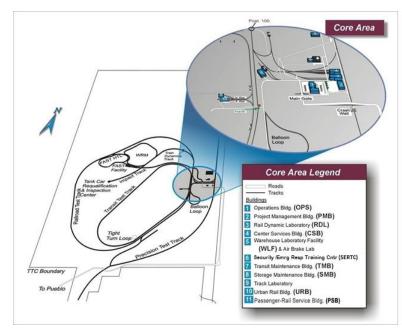
Students welcome and encouraged to attend!

Transportation Technology Center, Inc., a subsidiary of the Association of American Railroads

North American Research and Technology Innovation Program to Improve Safety and Efficiency

Semih Kalay Senior Vice President, Technology


September 2016


Railroad Facts and Figures

- ◆ \$77.7 billion in Operating Revenue (\$17 b Can, \$2.8 b Mexico
- 94,300 miles of road owned (30k miles CN & CP, 7.5k Mexico)
- Major US freight RRs own 60,000 bridges
 - Over 1,400 miles or 7.6 million feet
 - Each major RR owns more than 10,000 bridges
- Over 26,000 locomotives
- Over 1.56 million freight cars
- Average length of haul:1006 m
- 1.85 trillion revenue ton miles
- Almost 72 cars per freight train
- ♦ 479 RTM/gal of fuel

TTCI - Transportation Technology Center, Inc.

- Wholly owned subsidiary of the Association of American Railroads
- Located in Pueblo, Colorado
- Operates the Transportation Technology Center on behalf of the Federal Railroad Administration
- Focus on research, development, testing and training for the rail industry
- 270 Employees
- 52 square mile facility with 48 miles of track

© TTCI/AAR, 3/31

 Full-size laboratories capable of testing rail cars

Transportation Technology Center, Inc., a subsidiary of the Association of American Railroads

2016 North American Strategic Research Initiatives Program

AR Strategic Research Initiatives Program

- Strategic Research Initiatives Program (SRI) addresses current and future strategic issues relating to the North American rail industry
- Research Objectives

Improve Safety Improve Reliability

- Reduce track and equipment-related derailments through technology development
- Reduce or eliminate line-of-road failures

Improve Efficiency

Increase productivity and reduce costs

2016 AAR Strategic Research Program

Wheel/rail interface management

- Wheel/rail interface maintenance
- Root causes of rolling contact fatigue

Improved car performance

- Integrated freight car truck
- Dynamic load environment

Vehicle/track performance

- Effects of short cars on bridges/track
- Effects of Impact loads on rail failure
- Loaded tank car/track interaction

Heavy axle load implementation

- FAST/HAL Operations
- HAL revenue service monitoring
- HAL revenue service-Northern megasite
- Track structure for HAL coal lines

Improved braking systems

• Improved brake system performance

Train condition monitoring

- Technology driven train inspection
- Automated cracked wheel detection

Track integrity monitoring

• Phased array rail flaw inspection

Improved car components and materials

- Strategies to prevent wheel failure
- Optimized HBD performance

Special trackwork

Improved special trackwork designs and materials

Bridge research

Bridge life extension

Improved track components

- Improved rail welding
- Improved rail performance

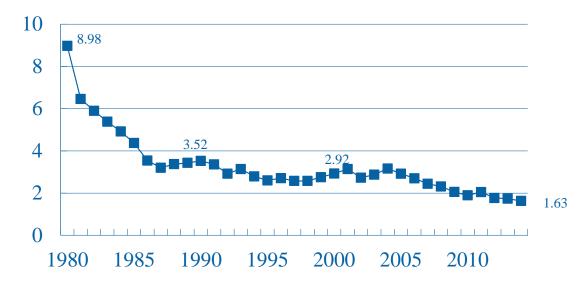
Improved performance track

- Investigation of rail wear Limits
- Improved tie/fastener system performance

New technology implementation

- Equipment health monitoring technology
- Equipment and track technology implementation

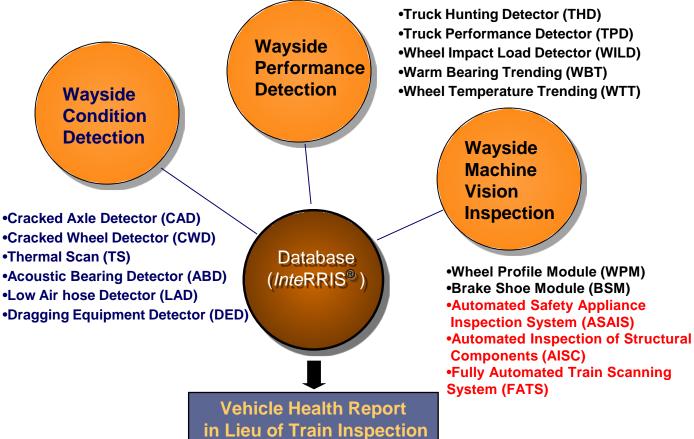
AAR Strategic Research Initiatives Program

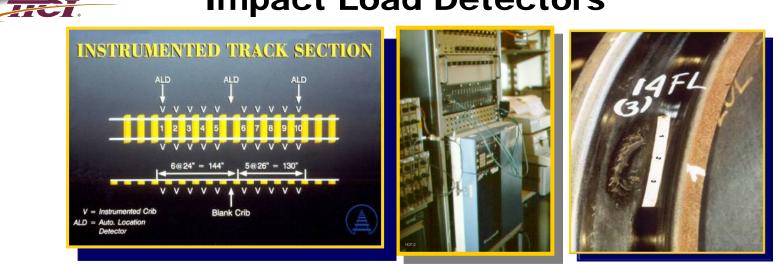


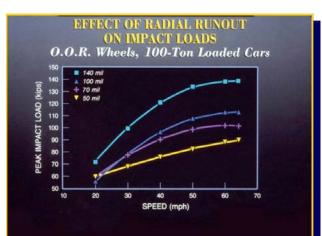
- Reduce Track and Equipment-related Derailments Using Technology
- Phased Array Rail Inspection
- Measurement of Rail Longitudinal Forces
- Onboard Bridge Inspection
- Cracked Wheel Detection
- Technology Driven Train Inspection
- Improved Hot Box Detectors
- Integrated Freight Car Truck
- High Performance Car Couplings
- High Performance Wheel Steels
- Full-scale Evaluation of Track Components
- Implementation of Flange Bearing Diamonds

© TTCI/AAR, 3/31/15

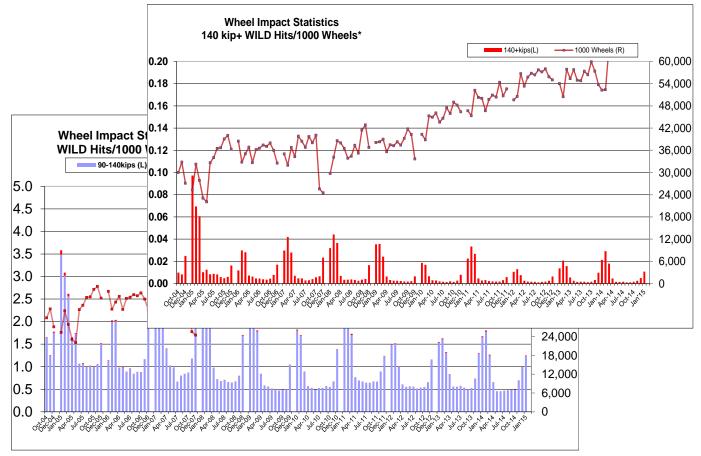
• Improved Rail Steels, Crossties & Welding

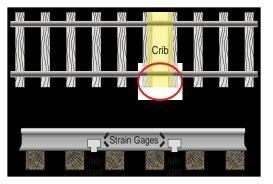

Derailments per Million Train-miles have Dropped to a New Low: 82 percent since 1980, and 44 percent since 2000

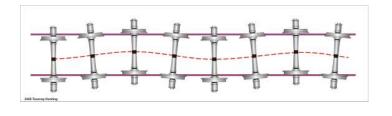

Sources: <u>http://safetydata.fra.dot.gov/officeofsafety/publicsite/summary.aspx</u> (2014 data). FRA, <u>Railroad Safety Statistics Annual Report</u>, 1997-2010, Tables 1-1, 5-6. FRA, <u>Accident/Incident Bulletin</u>, 1980-1996, Tables 19, 36. Note: Excludes grade crossing accidents. Data is for 2014.


North American Technology Driven Train Inspection

Impact Load Detectors




Rate of Wheel Impact Readings in North America



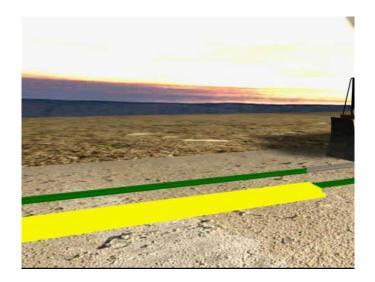
Hunting Detector

Instrumented cribs measure vertical & lateral wheel loads

 to establish a hunting index (HI) over a length of track

•THD alerts in the AAR Field Manual — Rule 46.A.1.e

▲ A single LBFoster, Salient Systems, detector absolute value at least 0.50


▲Tbogie optical detector system ▲Tracking indices

Cracked Wheel Detection

Goals:

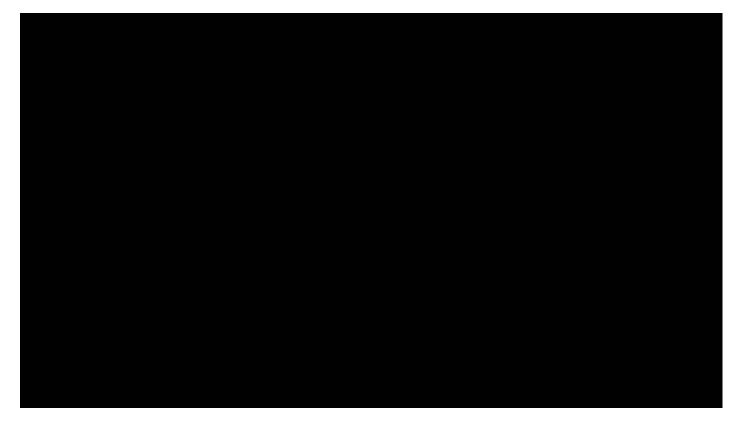
- Develop a wayside inspection system
- Reduce derailments resulting from broken wheels

Maximize Safety by Significantly Reducing Wheel-Caused Derailments

Automated Cracked Wheel Inspection Systems

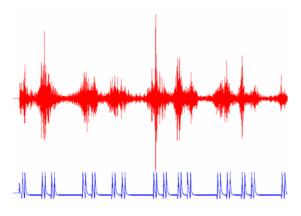
Solutions: Facilitate development, testing, and evaluation of new and alternative cracked wheel detectors capable of inspecting all trains

Vehicle Health Monitoring Systems: Next Generation Cracked Wheel Detection Systems

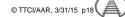

- Cost-effective, Less Complex Systems Needed
- TTCI Research Underway to Accelerate Development & Implementation of New Systems

Tycho ACWDS

Trackside Acoustic Bearing Detectors in North America



BNSF - Arkansas


Deep cone spalling

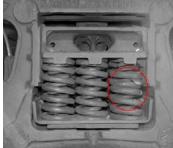
End Products: New and alternative machine vision detection systems capable of inspecting all trains at all times under all weather conditions

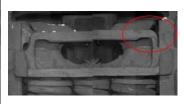
Technology Driven Train Inspection Fully Automated Train Scanning System

Fully Automated Train Scanning System:

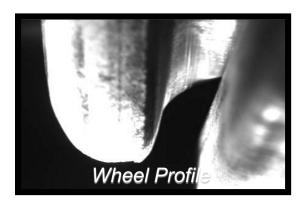
- Ongoing applications include:
 - Car underbody
 - ▲Truck component details
 - ▲Coupler securement/draft pocket inspection
 - ▲Brake rigging details
 - Top and side views
 - ▲Shifted / imbalanced loads
 - ▲Unsecured lading
 - ▲Top chord condition
 - Security applications
 - ▲Tank car inspection
 - ▲ Foreign object detection

Technology Driven Train Inspection FATSS


Technology Driven Train Inspection


Machine-vision Inspection of Truck Details

•Three vendors chosen to demonstrate truck detail inspection modules at FAST



Wheel Profile Measurement

What is Next for Machine Vision Car Inspection Systems?

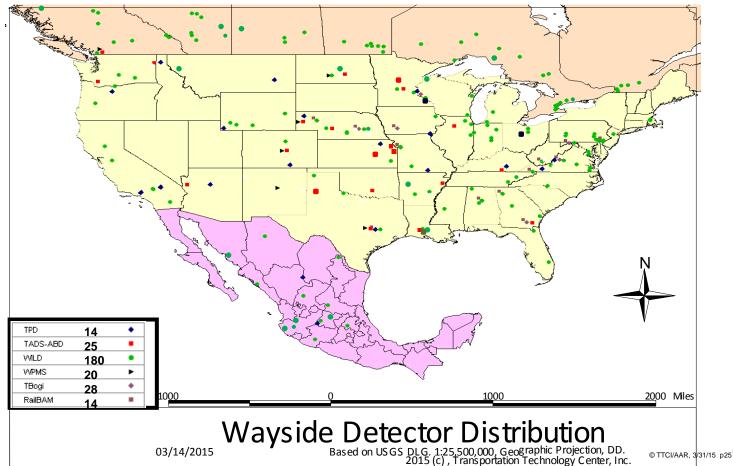
Locomotive Underframe Inspection Systems

3D Machine Vision Systems

End Products: New and alternative machine vision detection systems capable of inspecting all trains at all times under all weather conditions

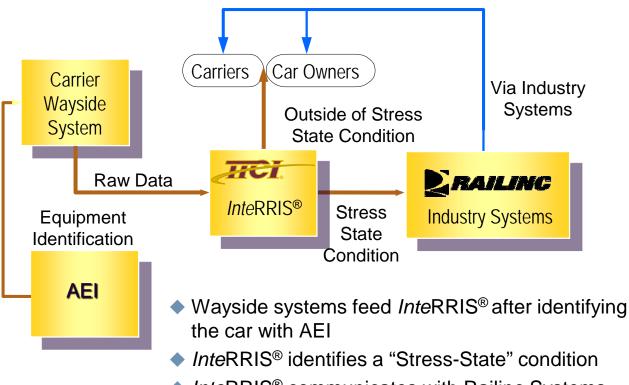
Duos VUE[™] Train Imaging Portal

Train Inspection Portal


Тор

Side

Axle


Bottom

RRs have spent millions to improve safety and efficiency. North American Detector Network

Implementation of Automated Equipment Health Monitoring & Management

 InteRRIS[®] communicates with Railinc Systems for processing

Industry Central Detector Database (*Inte*RRIS®):

2+ Terabytes of data stored (since 2000)

Incoming

- ♦ 300+ wayside detectors reporting ♦ 50+ outbound datafeeds
- \approx 4,300 trains/day
- \approx 400,000 vehicles/day
- ◆ ≈ 470,000,000 records/month

Incoming From

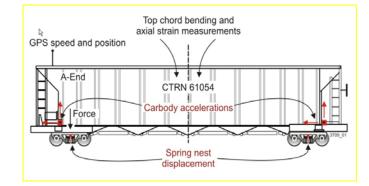
- > WILD (wheel impacts)
- > THD (bogie hunting)
- TPD (bogie steering)
- > ABD (acoustic bearing)
- > WPMS (wheel profile)
- > OGD (bogie geometry)

Outgoing

- 1.7 million vehicles monitored
- 1600+ daily event notification messages

Outgoing To

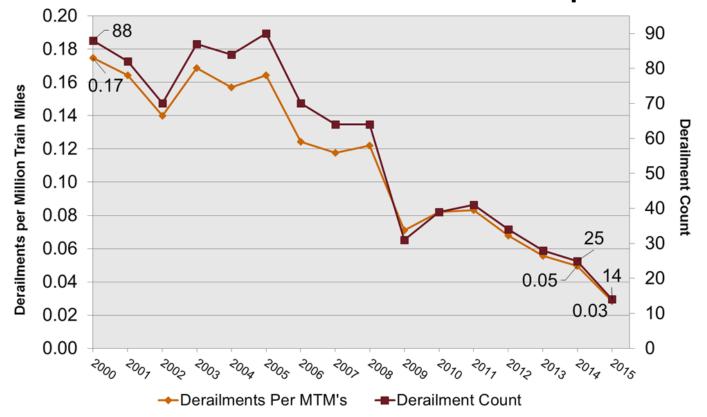
- Carriers
- Private Car Owners
- Shops\Fleet Managers
- > 3rd Party Services
- Manufacturers
- Industry System (EHMS)


Technologies for Track and Vehicle/Track Interaction Inspection

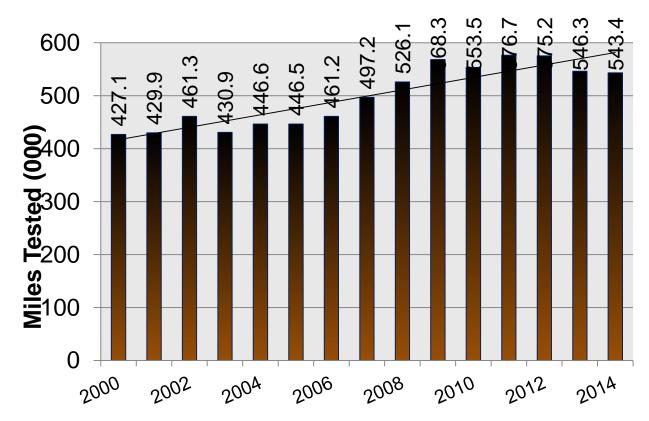
Vehicle mounted inspection systems

- Track Geometry Cars
- Advanced Rail Flaw Inspection
- Vehicle/Track Interaction (VTI) systems
- Instrumented freight cars (IFCT)
- Performance-based track inspection systems
- Rail restraint measurement systems
- Machine vision track inspection

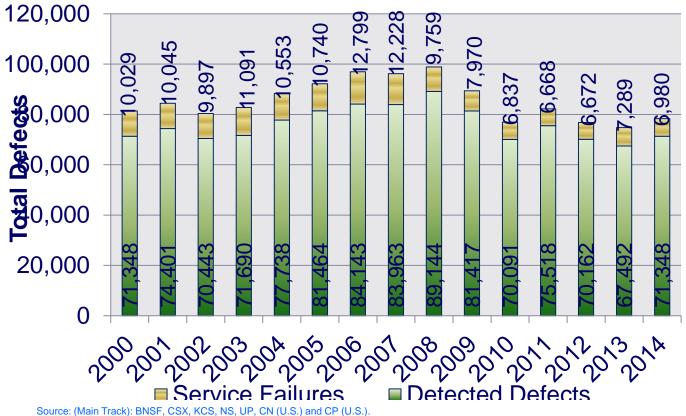
Track Geometry Cars (TGC)


- TGCs measure and report on exceptions:
 - Track gage
 - Curvature
 - Cross-level
 - Alignment and Surface
- Additional systems commonly found on TGCs include:
 - Rail Profile and Corrugation Systems
 - Machine Vision Systems

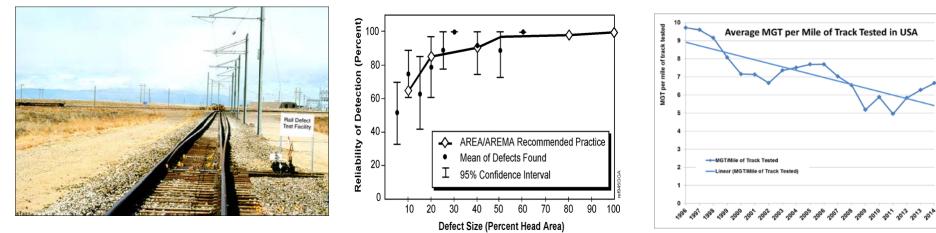
Broken Rail Train Derailment Rates involving U.S. Class I Railroads on Main Track have continued to drop

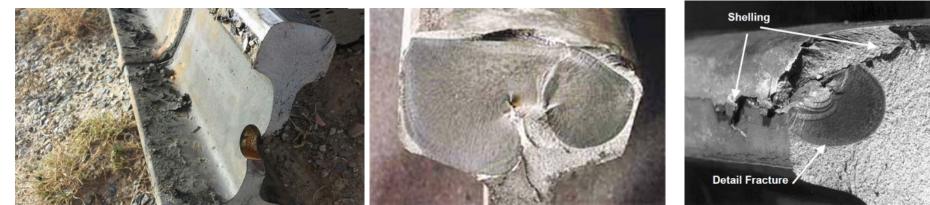

Rail Defect Detection

Rail is tested to identify internal defects by using an Ultrasonic Rail Flaw Testing Vehicle



Miles of Rail Tested (2000 - 2014)


Source: (Main Track): BNSF, CSX, KCS, NS, UP, CN (U.S.) and CP (U.S.), FRA Office of Railroad Safety. Note: Two railroads reported data on ALL track (industry, yard and sidings)

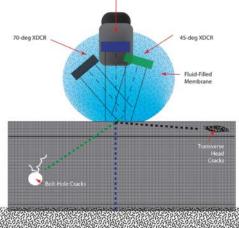

Rail and Weld Defects (2000 – 2014) Service Failures and Detected Defects

Note: One railroads reported data on ALL track (industry, yard and sidings) for the reported Detected Defects.

What is the North American Rail Industry Doing to Eliminate Broken Rail Derailments?

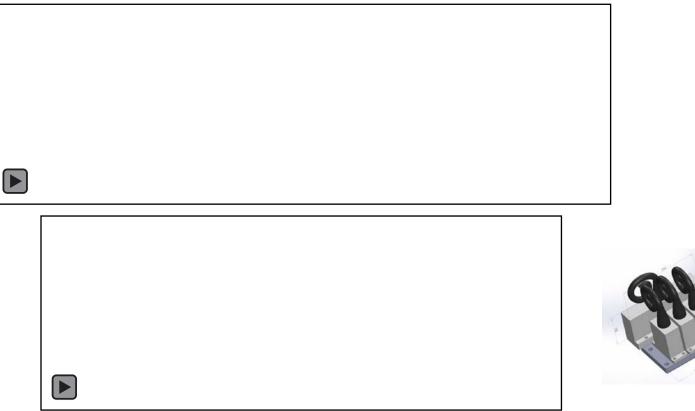


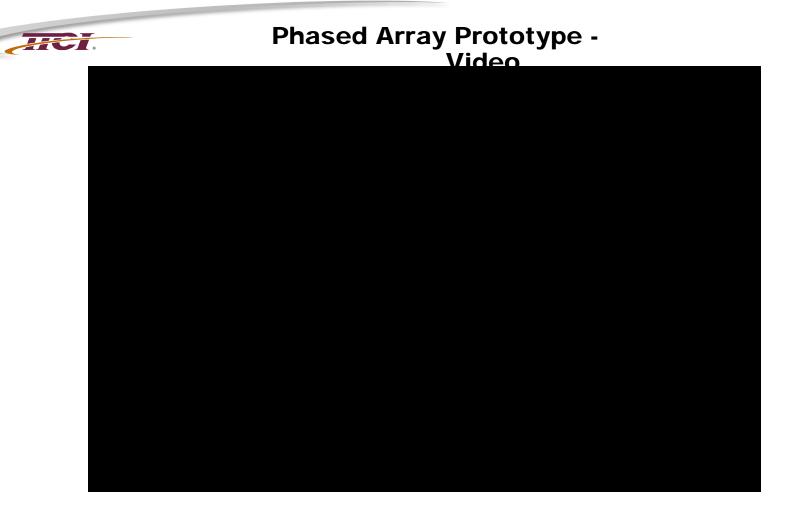
Can we Detect Missed Flaws using New Technology? Phased Array Rail Inspection

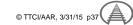

Multiple Matrix Phased Array

- 20-mph vehicle inspection speed
- Rail profile compensation
- High resolution mode
- Onboard flaw validation

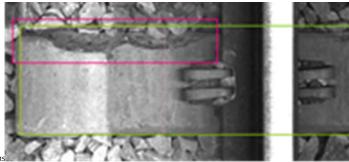
Commercialization




Phased Array Rail Flaw Detection


Linear Probe Coverage

Phased Array Angle Beam Inspection Provides full rail head coverage



EXAMPLE 1 Machine Vision Inspection of Track

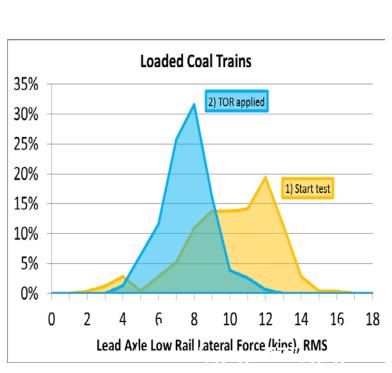
Machine vision inspection systems that target a variety of track elements

Images courtesy of Ens

Automated Wheel/Rail Contact Inspection System

- Contact parameters assessed by this system include:
 - Contact position

- Contact conicity
- Contact conformity of outer rail on curves
- Maximum contact angle
- Rolling radius difference on curves
- Contact stress
- The system can be operated at speeds up to 100 km/h

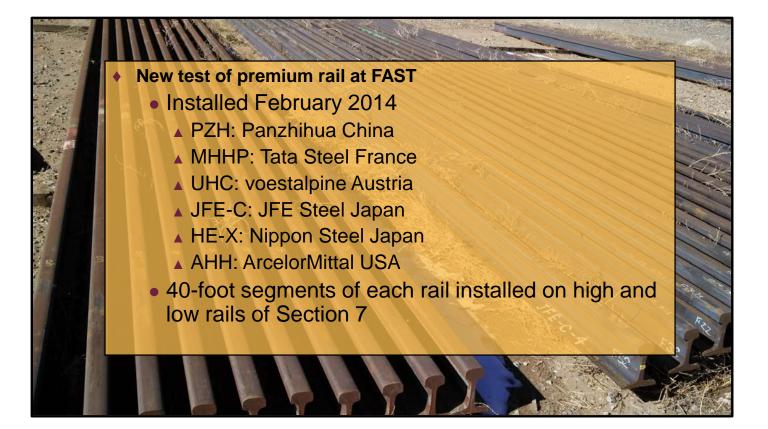


TRI.

Friction control and impact of TOR on lateral forces

REGION	No. TOR Lubricators	No. GF Lubricators		
Western	597	1,131		
Southern	12	559		
Northern	193	866		
TOTAL	802	2,556		

Heavy Axle Load Research at the Facility for Accelerated Service Testing at TTC


- Challenges addressed by this research
 - Enhance understanding of safety, technical and economic impact of heavy axle loads
 - Accelerated testing of the effects of a 17k-ton train on new and untried track components at FAST
 - Operations under computer control
 - Rail technology evaluation test bed

• Safe implementation of increased axle loads in North America

Currently being tested at FAST

HCI.

Steel Bridge Life Extension Five Riveted Girder Spans Being Tested

Fitness for Service Assessment

- Considers a broad spectrum of factors contributing to safe service life
- Used for aircraft and pipeline industries
- Encompasses the following:
 - ▲ Fatigue evaluation and redundancy
 - ▲ Statistical reliability
 - ▲ Fracture toughness
- Advanced Designs and materials
- Onboard inspection systems

Improved Safety and Efficiency Improvements: Full-scale Track Component Evaluation at FAST and in Revenue Service

- Investigate performance of improved track components and maintenance procedures
 - New rail steels to increase rail wear and fatigue performance
 - Higher strength crossties
 - Advanced special trackwork designs
 - Proof of concept and prototype evaluation of new technologies
 - Track substructure
 - Cold weather effects on track

Mitigating the Consequences of Rolling Contact Fatigue (RCF)

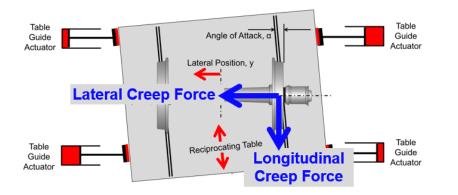
Challenges Addressed

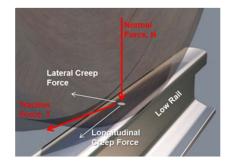
- Wheel/rail line of road failures
 - Reduce/eliminate wheel removals / unscheduled rail grinding
 - Broken wheels/rail failures

End Products

- High Performance (HP)
 - Materials
 - Design (shape)
 - Manufacturing methods
- Specifications supporting HP wheel and rail supply in North America

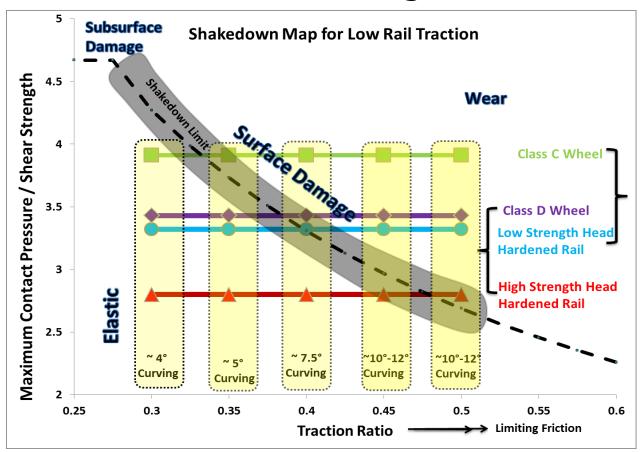
High Impact Wheel




© TTCI/AAR, 3/29/2016.

Vertical Split Rim

Simulate Lead Axle, Low Rail, T/N


Low Rail High Rail Rolling Direction

© TTCI/AAR, 3/29/2016. p46

Over-the-Road (IWS) Wheel / Rail Force Data

RCFS Test Program

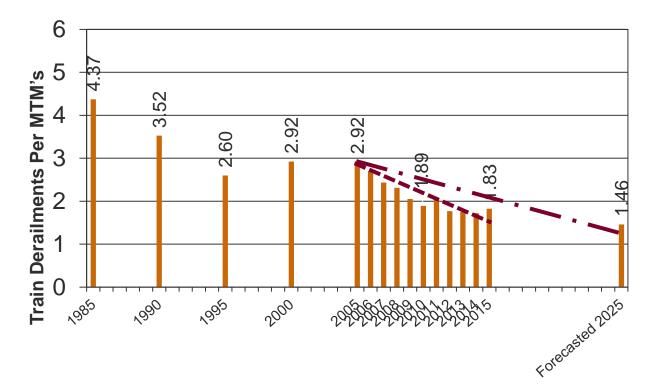

HCI.

© TTCI/AAR, 3/29/2016. p47

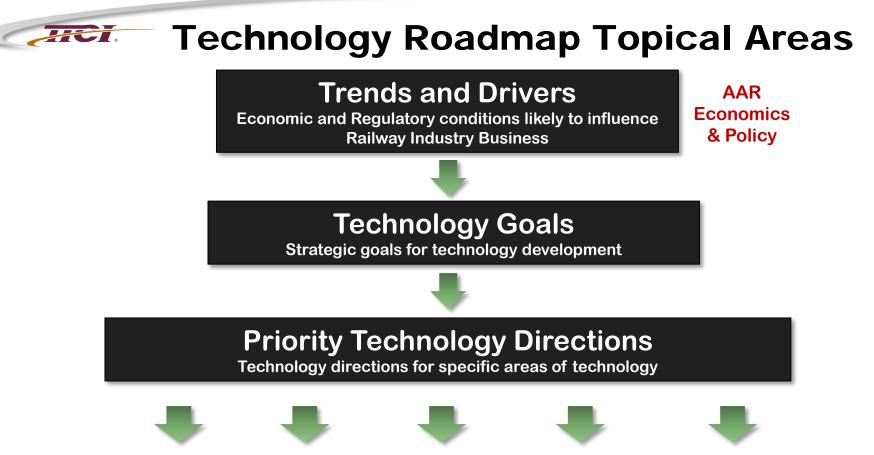
Rolling Contact Fatigue Simulator

RCFS 24-hr Camera Monitoring System

Railway Research Needs


Future Opportunities:

- Machine vision detection of condition changes
- Onboard wagon health inspection
- Drone & Robotic-assisted inspection (UAVs)
- "Big Data Analysis": composite alarms and relational databases and predictive analytics
- Advanced rail flaw inspection systems
- Rail surface condition (RCF) inspection
- Rail longitudinal stress measurement systems
- Track substructure inspection systems
- Friction/lubrication condition measurement systems
- Wood or engineered cross-tie inspection
- Bridge structure inspection (acoustic emissions, etc.)
- Cost effective, contact or non-contact wheel and axle inspection

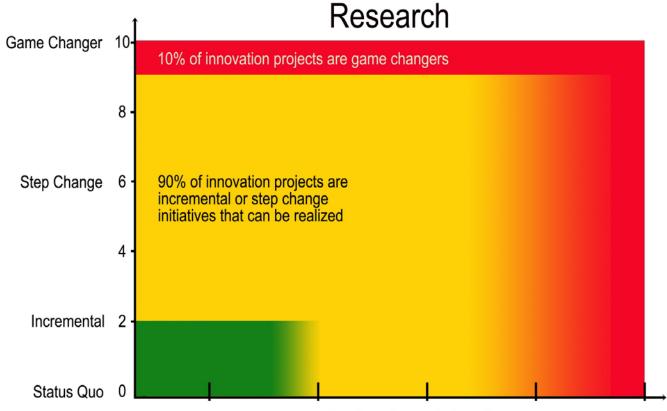


Train Derailments – Per Million Train Miles (MTM's) FRA Reported for U.S. Railroads (1985-2015)

Source: FRA Reported Train Derailments (AAR Railroad Facts Book) Note: 2005-2015 data downloaded 9/6/2016

Rolling Stock RTWC

Track and Structures RTWC Motive Power TSWC/Loco Operations & Customer Train Control Service Comms & Ops Railinc © TTCI/ARR, 1/11/2012, Filename p52 TICI.


Technology Development Priorities Rolling Stock: 2015 Update

Industry	Priority				
Role	Useful	Necessary	Essential		
High		Asset health strategy initiatives Improved asset tracking Unified car and component database Technical Specs for Interoperability and mechanical standards Wheel/rail interface management	Reduced Accidents Automated health monitoring/inspection Reduced in-service failures Next generation tank car and tank car research Increased rolling stock & component life Improved vehicle/track interaction		
Medium	Improved braking capability Locomotive technology research Zero reactive maintenance Simplified car design Aerodynamic design	Reduced life-cycle and total system cost Big data analytics Improved car and truck performance Increased car and train capacity, and axle loads Theoretical modelling to give accurate predictions of the minimum life or failure of assets Car and component design for improved / efficient maintenance practices			

Track & Structures : 2015 Update

Industry Polo	Priority			
Industry Role	Useful	Necessary	Essential	
		Life extension for existing bridges	Accident reduction	
		Prevention of track failures for increased reliability	Automated on-board track	
		Improved signaling and train control	inspection (including drones and machine vision)	
		Improved track substructure	Improved understanding of long and heavy trains on track structure Increased rail life	
High		Automated in-track condition monitoring		
		Reduced track component life-cycle cost		
		Longer lasting/cost-effective bridges		
		Reduced component life cycle and total system costs	Increased axle loads	
		Improved track maintenance		
	Standard designs of infrastructure	Improved tie/fastener systems		
	The development of intelligent infrastructure	Decreased maintenance cost/ton-mile		
	 maintenance planning Shared use corridors Theoretical modelling to give accurate predictions of the minimum life or failure of assets Sustainable infrastructure development 	Improved special trackwork designs and materials		
		Low-impact track		
		Track design for smooth train velocities		
Medium		Big data analytics for inspection analysis and maintenance management		
		Improved track/signal interfaces		
		Training/ technology transfer		
		Standardized wayside detection systems		
		Zero reactive maintenance		

Strategic Research Innovation

Number of years to benefit

Thank you for your support.

