William W. Hay Railroad Engineering Seminar

"Railway Track Structures Research at Tampere University of Technology, Finland"

Pauli Kolisoja
Professor, Department of
Civil Engineering

Date: Friday, September 12, 2014

Time: Seminar Begins 12:15

Location: Newmark Lab, Yeh Center, Room 2311

University of Illinois at Urbana-Champaign

Sponsored by

Railway Track Structures Research at Tampere University of Technology, Finland

Prof. Pauli Kolisoja

Tampere – a town with 1/4 Million inhabitants in Finland, Northern Europe

A view over Tampere in summer

TUT Campus in Hervanta, Tampere

TUT Department of Civil Engineering

- Part of the Faculty of Business and Built Environment
- Annual student enrollment about 100 new MSc students
- Annual turnover about 8 MEUR
 - 3 MEUR governmental funding
 - 5 MEUR project funding
- About 130 employees (including research assistants) in three operational units:
 - Earth and foundation structures
 - Structural engineering
 - Construction management and economics

www.tut.fi/rak/en

TUT Earth and Foundation Structures

Dept. of Mechanical Engineering

Dept. of Materials Science

Structural solutions

Design methods

Renovation methods

Material technology

Field monitoring

Laboratory investigations

Foundation engineering Prof. Tim Länsivaara

- Pile foundations
- Soil structure interaction SSI
- Geotechnical calculations
- Stability, settlement
- GeoFEM
- Bridges and culverts
- Underpinning
- Geotechnical site investigation methods
- Foundations systems

Railway structures Prof. Antti Nurmikolu

- Wheel-rail interaction
- Rails
- Turnouts
- Sleepers
- Superstructureembankment interact.
- Ballast & subballast
- Embankment deformations
- Frost action
- Life-cycle costs

Earth structures Prof. Pauli Kolisoja

- Structural design of roads and streets
- Structures of waste disposal sites
- Characterization of fines
- Material technology of earth constructions
- Structures for sports and recreation areas structures
- · Use of industrial by-products

Instrumentation and monitoring of earth and foundation structures

Laboratory services

Geotechnical laboratory investigations; acceptability tests for soil and rock materials, asphalt, by-products and bricks

Geotechnical engineering

Engineering geology

TUT Geotechnical testing laboratory

Some of the TUT Large scale testing facilities

Some basic facts about Finnish rail network

- Total track length including side-tracks: 8 855 km (5506 miles)
- Gauge: 1 524 mm (5 ft)
- Most lines carry <u>mixed</u> (freight & passenger) traffic
- In 90 percent of the network <u>only single line</u> track exists
- On main lines 54 or 60 kg/m <u>rails</u>
- Continuous-welded track on 75 % of the network
- Concrete sleepers on 75 % of the network
- Only 13 % of the network has spike fastenings

Electrified tracks in Finland

Extent of the latest glaciation over Northern Europe

Most of the land area in Finland is moraine

– a soil consisting of a wide variety of grain
sizes - quite often covered with peat. Soft
soils mainly on costal areas in the South and West.

Geotechnical specialities on Finnish railways

- Frost design requires track structure thickness (ballast + subballast) of 2,0-2,6 m
- Materials must be and must stay non-frost-susceptible

 New tracks: Huge amount of high quality aggregate is needed

Geotechnical specialities on Finnish railways

- Existing tracks have originally been constructed by 1940's
- →On existing tracks structural thickness and material quality are typically insufficient for adequate frost protection
- → Large part of the rail network is on soft clay and peat subgrades

Research program "Life-Cycle Cost Efficient Track | II" at TUT - Ten study areas for 2013-2016 with Finnish Transport Agency

- 1. **Train-track-interaction:** stresses exerted on track
- 2. Rails: degradation mechanisms and life-cycle management
- 3. <u>Switches and crossings</u>: safety and degradation mechanisms
- **Sleepers**: superstructure-embankment-interaction, track stability
- 5. <u>Ballast</u>: degradation and management of track smoothness
- 6. Frost: frost action mechanism and frost protection solutions
- 7. <u>Embankment</u>: bearing capacity and track smoothness
- **8. Subsoil:** embankment stability management and foundation engineering solutions
- Bridges: bearing capacity calculation and condition assessment
- 10. Overall economics: life-cycle cost assessment

16

Railway track research projects at TUT 2009-2012

- 1: Principles of wheel-rail-interaction; traffic loads exerted on track
- 1: Wheel Impact Load Detector data analysis
- 2: <u>Rail</u> life-cycle → Rail surface defects
- 3: Operation mechanism of turning assist RAILEX and opening risk of turnout locking due to vibration
- 4: Degradation mechanisms of concrete sleepers
- 4: Lateral and longitudinal track resistance
- 5: Mechanisms and effects of ballast and subballast degradation
- 5: Utilization of Ground Penetrating Radar and integrated data analysis in track condition assessment
- 6: Frost and frost susceptibility in railway track
- 7: The optimization of width and slope of track embankment
- 7: Compaction and density of subballast
- 7: Track <u>bearing capacity</u> design
- 7: The problems on <u>bridge approaches</u>
- 7: Measurement of vertical track stiffness and utilization of stiffness data
- 8: <u>Subsoil stability</u> calculation and improvement of stability
- 8: Development of a monitoring technique for low stability embankments
- 9: Bearing capacity of bridges; usage of reliability analysis for capacity assessment
- 9: Improvement of <u>bridge</u> bearing capacity assessment on steel beam -reinforced concrete bridges
- 9: Soil-structure-interaction on an integral abutment railway bridge
- 10: LCC case study on iron ore line: "For which loads is it economical to improve the track?"
- 10: Problems in benefit-cost-calculations of railway projects
- 10: Degradation models and <u>LCC evaluation</u> of track components

See more details at: www.tut.fi/railway

1b: Wheel impact load detector data analysis

- Wheel impact load detectors in test use in 2011
 (...→ currently 6 devices installed)
- Statistical analysis of the data
 - –Comparison of the equipment
 - -Correlation between the flat size and load
 - -Statistical load distributions (static & dynamic)
 - -Role of winter on load levels
 - -Load levels vs. various rolling stock

2: Rail life-cycle; especially surface defects

- Review on rail life-cycle
 - Manufacture
 - Installation / construction
 - Stresses
 - Failure mechanisms
 - Inspection methods
 - Maintenance and repair
 - Bases for the end of life-cycle
- Surface defects have been prioritized
 - RCF, Squat
 - Turning and propagation of a crack to rail break can lead to dramatic consequences
 - The growth of cracks and wearing will be monitored on track
 - → A model that predicts the rate of deterioration in Finnish conditions?

3a: Snow problems of RST and switches

- Techniques to reduce the accumulation of snow on RST
- 2. Controlled detaching of snow outside the switch area
- Winter maintenance techniques of switches

3b: Risk of opening of switch locking due to vibration

3c: Vertical elasticity in turnouts; problems and their improvements

- Discontinuity → dynamic loading
 - Geometry problems ←→ tamping challenges

4a: Life-cycle and degradation mechanisms of concrete sleepers; field, laboratory, calculations

- 1. Mechanical damage due to traffic loading (taking into account the interaction with embankment and fatigue)
- 2. Weathering (frost and chemical)

5a: Life-cycle of ballast and subballast materials

Understanding of railway ballast degradation (fouling) mechanism is a starting point in order to improve life cycle economics of ballast

Effects of ballast degradation on:

- Frost heave susceptibility
- Deformation behaviour
- Stresses of concrete sleeper
- Track geometry quality
- Water adsorption

Development of ground penetrating radar to a cost efficient tool for ballast condition assessment (evaluation of the need for ballast cleaning) in collaboration with Roadscanners Oy

Material requirements based on life cycle costs

- Subballast: 100 years service life required
- Ballast: selection of ballast grade based on availability of ballast material

5b: Ground Penetrating Radar in analyzing ballast fouling and structural causes of track geometry deviations & Roadscanners Oy

5c: Integration of GPR and track geometry data = key to optimized rehabilitation planning!

Protection against freezing of subsoil on existing tracks

- On existing tracks frost insulation boards are utilized
- Long-term durability of XPSboards is sufficient

6: Frost and frost susceptibility in railway track

7a: The width and slope of track **e**mbankments

TAMPERE U**LIOASIP9**F(**KPIA**)DLOGY

625

700

Embankment width (m)		Measured recoverable vertical
		displacement of sleeper under Sr2
Straight	Curve	loco
6.0	6.4 ⁽¹	<0.6mm
6.2	6.6 ⁽¹	0.60.8mm
6.4	6.8 ⁽¹	0.81.0mm
6.6	7.0 (1	1.01.2mm
6.8 ²⁹	7.2 ⁽¹	>1.2mm

7c: Load carrying capacity design of a track

- Whole track 3D-model enables evaluation of mutual interaction of various structural components of track (for example: certain change in subsoil stiffness
 → magnitude of the change in rail stresses)

TAMPERE UNIVERSITY OF TECHNOLOGY

7d: Measurement of vertical track stiffness and utilization of stiffness data

9b: Bridges; improvement of bearing capacity evaluation of filler beam bridges

- Failure load testing (3171 ja 2762 kN) of two filler beam bridge decks
- Safety factor for 25 t axle load about 4...5!

→ Filler beam bridge decks can generally be considered as composite structure

9c: Soil-structure-interaction on an integral abutment railway bridge

- Longitudinal force was caused by dragging four heavily loaded wagons (with brakes on) on the bridge by wire rope attached to heavy wagons further on rails.
- Earth pressure measured on different levels of the abutment

International research assessment of TUT Civil engineering in 2011

Assessment results:		Assessment scale:
 Scientific quality 4 		Outstanding International Level (5),
 Scientific impact 	3	Very Good International Level (4),
Societal impact	5	Good International Level (3),
 Research environment 	4	Fair International Level (2),
 Future potential 	5	Poor International Level (1),

Cutting edge research areas:

- Railway structures (www.tut.fi/railway)
- Building physics
- Foundation engineering structures
- Renovation of buildings

TUT 50 years in 2015

