Development of 220 mph High Speed Rail Senvice for Illinois

Mark C. Walbrun, PE
TranSystems Corporation

EXPERIENCE | Transportation

MIDWEST HIGH SPEED RAIL
ASSOCIATION

Study Purpose

- Worldwide Use of High Speed Rail Technology
- Japan, France, Italy, Germany, Spain, China, UK
- Feasibility of 220 mph Alternative to 110 mph Chicago - St. Louis
- Alternative Alignment to Serve Champaign and Decatur
- Use of Railroad Corridors for HSR Right of Way
- Develop Cost Estimate \& Phasing Plan

Design Criteria

- Trains Based on UIC Standards (Non-FRA Compliant)
- Requires Separate Dedicated Alignment
- Same Criteria as California and Forida HSR Systems

Key Findings

- Feasible for HSR to Share Existing 100 ft Railroad Right of Way
- Grade Separated Alignment Can Be Created Providing Benefits to Both Communities and Railroads
- Chicago - St' Louis Travel Time 1h52m for a non-stop train
- Infrastructure Cost \$11.5B

Background

CHICAGO - ST LOUIS AND INTERMEDIATE CORRIDOR CITIES 1937 PASSENGER TRAIN SERVICE
Chicago-St. Louis Corridor - 1937

- 3 main routes
- 4h55m senvice operated on 2

Historical Route (1937)	Miles	Through trips	Fastest Time
Chicago \& Alton	283.9	6	$4: 55$
Wabash	285.7	3	$5: 15$
Illinois Central	294.2	3	$4: 55$
Comparison	283.9	Miles	Through trips
Amtrak in 2009	283.9	3	$5: 20$
Final EIS Chicago-St. Louis HSR Project (Jan. 2003)	306.9	Hourly	$1: 52$
Current Study, 220 mph Express Service via Champaign/Decatur/Springfield			

MIDWEST HIGH SPEED RAIL MSSOCIATION

Chicago - St. Louis Routing via Champaign

- Champaign and the Research Activities at UIUC Have Increased Prominence and Need for Connectivity to Business Centers
- At 220 mph the Extra Distance to Serve Champaign Takes and Additional 6 minutes
- Use of the Former Illinois

Central Railroad Right-of-Way Allows for Very Fast
Operations
CHICAGO - ST. LOUIS INTERMEDIATE
CITIES IN CORRIDORS REVIEW

MIDWEST HIGH SPEED RAIL ASSOCIATION

ED RAIL

Tran Systems

The Alignment

- Urban Segments
- Rural Segments

O'Hare Western Terminal

- Significant Ridership Base
- NWSuburbs Have 2.5M Population, Same as St. Louis
- Allows Full Air-Rail Integration
- Space Available for Adding Tracks Next to Metra
- 3 Key Ryovers Required
- Enables Lower Cost Site for Fleet Storage \& Maintenance

O'Hare Western Terminal

- Significant Ridership Base
- NWSuburbs Have 2.5M Population, Same as St. Louis
- Allows Full Air-Rail Integration
- Space Available for Adding Tracks Next to Metra
- 3 Key Ryovers Required
- Enables Lower Cost Site for Fleet Storage \& Maintenance

Urban Segments - Chicago

Serves

- Union Station
- Amtrak, Metra, CTA, Loop
- McCormick Place
- Largest Convention Center in US

MIDWEST HIGH SPEED RAIL association
$\ldots \rightarrow$ is

Urban Segments - Chicago

Serves

- Union Station
- Amtrak, Metra, CTA, Loop
- McCormick Place
- Largest Convention Center in US

Chicago-St. Louis 220 mph HSR

```
TranSystems
```

MIDWEST HIGH SPEED RAIL
Assoclation
\rightarrow

Urban Segments - Champaign

- UIUC Access
- Serves New"Illinois Terminal" Station

Chicago-St. Louis 220 mph HSR
TranSystems
MIDWEST HIGH SPEED RAIL

Urban Segments - Decatur

- ADM Headquarters
- Proposed Routing Avoids Complexity of RR Yards East oi Downtown
- Operation via I-72 Alignment is Also an Option

Urban Segments - Springfield

- Planned to Use $10^{\text {th }}$ Street Corridor
- Potential Interchange Station with Existing Amtrak Service
- Serves State Capital

Urban Segments - St. Louis

- A "Greenfield" Metro East station is proposed, as well use of new Gateway station

MIDWEST HIGH SPEED RAIL ASSOCIATION

Rural Segments

- Plan is based on purchase of portion of ROWfrom Railroads
- Existing railroads would generally be separated as well
- Grade separation achieved through construction of separation for about half of the crossings and closing the others; essentially same strategy as utilized in construction of Interstates
- Possible alternative would be construction of a new
 alignment which would probably have lower cost but, more complex environmental

Garnering Stakeholder Support

- Cities Served
- Rural Communities
- Railroads
- Contractors
- Airlines
- Tourism

	Midwest High Speed Rail Study Chicago (O'Hare) to St. Louis (Downtown) (220 mph) Rail/Roadway Construction Cost Breakout				
		UNIT		TOTAL	
ITEM DESCRIPTION		COST		COST	
Railroad Construction			\$	7,990,769,499	63.4\%
	Trackwork	\$1,902,185,017			
	Electrification	\$1,265,620,140			
	Signaling	\$ 353,750,800			
	Bridges	\$ 690,787,900			
	Flyovers	\$ 799,876,213			
	Property \& ROW	\$ 305,402,040			
	Allocated Engineering, Final Design, PM, CM (12\%)	\$ 601,466,408			
	Allocated Contingency (35\%)	\$2,071,680,981			
Roadway Construction			\$	4,618,009,882	36.6\%
Rural Grade Separations (Type I \& II)		\$ 231,046,920			
	Urban Grade Separations (Trench \& Embankment)	\$2,641,558,485			
	Bridge, Roadway (Includes Sub Structure)	\$ 6,888,000			
	At-Grade Crossing Protection	\$			
	Utilities \& Environmental	\$ 174,745,935			
	Allocated Engineering, Final Design, PM, CM (12\%)	\$ 366,508,721			
	Allocated Contingency (35\%)	\$1,197,261,821			
	TOTAL PRELIMINARY COSTS		\$	12,609,000,000	100\%

Chicago-St. Louis 220 mph HSR

Travel Time / Cost / Phasing

SEgment		ate seg ㅍllions)		APPROXIMATE CUMULATIVE COST (in Millions)	APPROXIMATE SEGMENT TRAVEL TIME (Min.)	APPROXIMATE CUMULATIVE TRAVEL FROM UNIION STATION TIME (Hrs.:Min.) IME (Hrs.:Min.)	EXPRESS RUN APPROXIMATE EEGMENT TRAVEL TIME (Min) TRAVEL TIME (Min.	EXPRESS RUN CUMULATIVE TRAVEL FROM UNIION STATION TIME (Hrs :Win) TIME (Hrs.:Min.)
O'Hare Airport to Chicago Union Station	\$	1,012	\$	1,012	22	-	22	
Chicago Union Station to McCormick Place	\$	119	\$	1,131	3	0:03	43	0:43
McCormick Place to Kankakee	\$	2,719	\$	3,850	21	0:24		
Kankakee to Champaign	\$	2,818	\$	6,668	26	0:50		
Champaign to Decatur	\$	1,741	\$	8,409	15	1:05	32	1:15
pecatur to Springfield	\$	1,358	\$	9,767	18	1:23		
Springfield to Metro East	\$	1,861	\$	11,629	27	1:50	37	1:52
Metro East to Downtown St. Louis	\$	904	\$	12,533	14	2:04		

Costs include ROW acquisition, but not trains, stations, maintenance facilities

Chicago-St. Louis 220 mph HSR
Iran§ystems

MIDWEST HIGH SPEED RAIL

Ridership Estimates

- Fare Systems Studied - \$46 Standard Class Chicago - St. Louis
- Estimated Passenger Miles per Year - 581,578,000
- Estimated Passenger Trips per Year - 3,000,000
- PNTM - 399, Train Capacity 500, 80\% Load Factor
- Revenue - $\$ 125$ million per Year

Benefits Estimates

- Construction Jobs over 7 years - 26,224
- O\&M Permanent Jobs - 904
- New Job Creation - 16,390
- Value of Time Savings - \$35.6 million per year
- Vehicle Accident Reduction - \$56.3 million per year
- Consumer Travel Savings - \$42.8 million per year
- Carbon Emissions Net Savings - 187 million Ibs.

Riding 220 mph Trains

MIDWEST HIGH SPEED RAIL

