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ABSTRACT 

 

Railways offer a safe and efficient means to transport hazardous materials in North America. 

Nonetheless, the potential risk of hazardous materials release incidents to human health, property 

and the environment must be appropriately managed and minimized to the extent feasible. 

Railroad train safety is affected by a variety of infrastructure, rolling stock and operational 

factors. These factors, individually and in combination, should be properly accounted for in 

hazardous materials transportation risk management. This dissertation presents analytical models 

to analyze train derailment probability and severity, evaluate hazardous materials release risk and 

identify optimal solutions to efficiently reduce the risk.  

 

 This research is organized into three principal parts: derailment analysis, risk analysis and 

decision analysis. First, statistical models are developed to estimate train derailment rates. The 

analysis shows the variation of train and car derailment rates under different infrastructure and 

traffic characteristics. Understanding derailment severity is also important. A quantile regression 

model is developed to analyze derailment severity distribution at various quantiles. After a 

hazardous materials train is derailed, the probability distribution of the number of tank cars 

releasing is estimated based on a series of related events using the Law of Total Probability. 

Based on train derailment probability and the number of tank cars releasing per derailment, the 

risk of a hazardous materials release incident is estimated in the second part of this dissertation. 

The model accounts for FRA track class, method of operation, traffic density, train length, 

derailment speed, number and placement of tank cars in a train, tank car safety design and 

population density along rail lines. In the final part, this dissertation evaluates the safety 

effectiveness of several risk reduction strategies, individually and in combination. An integrated 
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risk reduction framework is developed to determine the optimal portfolio of investments for 

multiple risk reduction strategies.  

 

 In summary, this dissertation presents statistical analysis, risk analysis and decision 

analysis models to assist decision makers to develop, evaluate, prioritize and implement potential 

strategies for reducing railroad hazardous materials transportation risk. The methodology and 

results provide insights that have been implemented or could potentially be used to develop 

better-informed rail safety policies and practices.  
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Chapter 1 

Introduction 

 

1.1 Introduction  

Railroads play an important role in safely and efficiently transporting hazardous materials 

(hazmat) in North America. Rail shipment of hazardous materials in the U.S. and Canada has 

steadily increased from approximately 1.8 million carloads in 2002 to over 2.4 million carloads 

in 2012 (BOE 2013). In light of growing hazardous materials traffic, managing the associated 

risk of a release is important to both the public and private sector (DOT 2012).  

 

 The majority of train-accident-caused hazardous materials release incidents are caused by 

train derailments (Barkan et al. 2003). The probability and severity of train derailments are 

affected by a variety of infrastructure and rolling stock characteristics. An overarching goal of 

the research described in this dissertation is development of a broader understanding of the most 

important factors affecting derailment probability, severity and consequences. Beyond this, my 

research attempts to understand and quantify the benefits of various train operation, 

infrastructure and tank car improvement strategies, both alone and in combination. The ultimate 

goal is development of a methodology to optimize investment in risk reduction strategies that 

maximizes safety improvement.  

 

Derailment rate is a metric in train safety and risk analyses (Nayak et al. 1983; Treichel 

and Barkan 1993; Anderson and Barkan 2004). It has been shown to be statistically correlated 

with FRA track class (Nayak et al. 1983; Treichel and Barkan 1993; Anderson and Barkan 
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2004). These track classes include specifications for track structure, geometry, inspection 

frequency and method of inspection, with more stringent requirements for higher track classes. 

However, FRA track class does not account for all factors affecting derailment rates. Developing 

up-to-date freight-train derailment rates using multivariate regression techniques accounting for 

additional factors is the focus in chapter 2. Derailment severity, measured by number of cars 

derailed, was estimated as a function of derailment speed (Nayak et al. 1983). Nayak et al.’s 

model was improved by use of the Truncated Geometric model developed by Saccomanno and 

El-Hage (1989, 1991), which was further modified by Anderson (2005) and Bagheri (2009). 

However, previous studies have focused on estimating the mean number of cars derailed, without 

accounting for other important distributional statistics, such as quantiles. Chapter 3 introduces a 

new modeling technique called quantile regression to analyze train derailment severity 

distribution.  

 

Railroad transport of hazardous materials differs from highway transport in several 

important ways. Notably rail transport involves trains of multiple cars, sometimes over 100 in a 

single train. Some or all of these may be tank cars. By contrast, highway transport generally 

involves a single tank trailer. Unlike highway transport, derailment of a hazardous materials train 

may result in releases from multiple tank cars. In chapter 4, a probabilistic approach is developed 

to estimate the distribution of the number of tank cars releasing per train derailment. In chapter 5, 

I extend the analysis in chapter 4 and develop a multiple-car release risk model. This risk model 

is used to evaluate the nationwide risk of rail transportation of flammable liquids.  
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Train safety and risk analyses are used to evaluate the cost-effectiveness of potential risk 

reduction strategies. Each risk reduction strategy has a direct effect on both risk and cost, and 

they have interactive effects as well. In chapter 6, a model is developed to optimize the 

integration of multiple risk reduction strategies, including broken rail prevention and tank car 

safety design improvement. The model is intended to provide a tool that can be adapted to 

optimize allocation of risk reduction resources under a wide range of scenarios.  

  

In summary, I aim to develop analytical frameworks to inform both public and private 

sector in developing, evaluating, prioritizing and implementing cost-efficient policies and 

strategies for improving train safety and reducing railroad hazardous materials transportation 

risk. This dissertation develops new applications of statistical analysis, risk analysis and decision 

analysis in the context of railroad transportation. Finally, this dissertation has several 

implications regarding rail transportation safety policies and practices.     

 

1.2 Dissertation organization and research objectives  

This dissertation includes seven chapters (Figure 1.1).  
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Figure 1.1: Hierarchical organization of the analytical framework developed in the dissertation 

 

 

The specific objectives of each chapter are as follows:  

1. Introduction (Chapter 1)  

a) Introduce the objectives and problems to address  

b) Briefly discuss the essential contents of each chapter and present potential 

contributions to the field of railroad safety and hazardous materials 

transportation risk analysis  

 

2. Derailment Rates (Chapter 2)  

a) Estimate train and car derailment rates  

b) Estimate the confidence intervals of freight train and car derailment rates  

c) Illustrate the application of the results regarding railroad hazardous materials 

transportation risk management 

• Derailment rate 

(chapter 2)

• Derailment severity 

(chapter 3)

Analytical 

Framework

Derailment

Analysis

Decision 

Analysis

Risk 

Analysis

• Probability of multiple 

car releases 

(chapter 4)

• Risk of multiple car 

releases (chapter 5)

• Integrated risk 

reduction strategies 

(chapter 6)
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3. Derailment Severity (Chapter 3)   

a) Develop a zero-truncated negative binomial (ZTNB) model to analyze the mean 

of derailment severity 

b) Develop a quantile regression (QR) model to analyze the quantiles of derailment 

severity  

 

4. Probability Analysis of Multiple Car Releases (Chapter 4)   

a) Develop a probabilistic approach to estimate the distribution of the number of 

tank cars releasing per derailment  

b) Evaluate the effect of speed reduction, tank car upgrade and changing tank car 

placement in trains on multiple-tank-car release incidents  

 

5. Risk Analysis of Multiple Car Releases  (Chapter 5)   

a) Develop a multiple-car release risk analysis model accounting for FRA track 

class, method of operation, traffic density, train length, speed, number and 

placement of tank cars in a train, tank car safety design and population density  

b) Evaluate the risk of unit train shipments of flammable liquids on U.S. Class I 

mainlines  

 

6. Integrated Risk Reduction (Chapter 6)  

a) Develop an optimization model to maximize risk reduction given budget  

b) Develop a multi-attribute decision model to determine the optimal investment 

for safety improvement  
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7. Future Research (Chapter 7)  

 

1.3 Contribution summary 

The potential contributions of my dissertation are summarized below:  

1. Contributions to government, policy makers and rail industry  

a) Develop new methodologies to estimate train derailment probability and severity  

b) Provide a risk-based approach to evaluate rail transportation safety policies 

c) Provide a better-informed decisions through identification, evaluation, 

prioritization and implementation of risk reduction strategies  

d) Support the development of  Rail Corridor Risk Management System (RCRMS), 

a web-based software that is used by railroads to perform route-specific 

hazardous materials transportation risk analysis 

e) Support AAR’s petition to the FRA for amending PTC regulations  

 

2. Contributions to academics and researchers  

a) Develop several statistical models to advance the understanding of train 

derailment probability and severity 

b) Develop a multiple-car release risk analysis model to evaluate the nationwide 

risk of rail transportation of flammable liquids 

c) Develop a decision analysis model to optimally allocate railroad transportation 

risk reduction resources 
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1.4 Summary of each chapter  

Chapter 1: Introduction 

This chapter presents the objectives of my dissertation and a description of each chapter. 

 

Chapter 2: Derailment Rates  

Derailments are the most common type of train accident in the United States. They cause damage 

to infrastructure, rolling stock and lading, disrupt service, and have the potential to cause 

casualties, and harm the environment. Train safety and risk analysis relies on accurate 

assessment of derailment likelihood. Derailment rate, the number of derailments normalized by 

traffic exposure, is a variable to represent the likelihood of a derailment. Despite its importance, 

up-to-date derailment rate analysis using multiple factors has not been previously developed. In 

this chapter, I present an analysis of the latest derailment rates on Class I railroad mainlines 

based on data from the U.S. Federal Railroad Administration and the major freight railroads. The 

point estimator and confidence interval of train and car derailment rates are developed by FRA 

track class, method of operation and annual traffic density. The analysis shows that signaled 

track with higher FRA track class and higher traffic density is associated with a lower derailment 

rate. The new accident rates have important implications for safety and risk management 

decisions, such as the routing of hazardous materials. A numerical example shows that using the 

new multiple-factor-based accident rates leads to a more accurate routing decision, compared to 

use of the earlier single-factor-based accident rates.   
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Chapter 3: Derailment Severity  

Despite the low probability of a train derailment, it could potentially cause severe consequences. 

In this chapter, a zero-truncated negative binomial (ZTNB) regression model is developed to 

estimate the conditional mean of train derailment severity (measured by number of cars 

derailed). Recognizing that the mean is not the only statistic describing derailment severity 

distribution, a quantile regression (QR) model is also developed to estimate derailment severity 

at different quantiles. The two regression models together provide a better understanding of train 

derailment severity distribution. Results of this work can be used to estimate train derailment 

severity under various operational conditions and by different accident causes.  

 

Chapter 4: Probability of Multiple-Car Releases 

Hazardous materials trains are fundamentally different from highway transport because they 

routinely transport multiple tank cars, sometimes over 100 in a single train. Therefore, train 

derailments may cause releases from multiple tank cars, thereby requiring a different quantitative 

approach to assess the likelihood of events of various magnitudes. This has become more 

important for government and the industry due to the rapid growth in hazardous materials traffic, 

especially in unit trains, and growing regulatory and public attention to the safety and risk 

implications. In this chapter, a probabilistic model is developed to estimate the distribution of the 

number of tank cars derailing and releasing. Principal factors considered include train length, 

speed, position of the first car derailed, number and placement of tank cars in the train and tank 

car safety design. The results show that reducing train speed, enhancing tank car safety design 

and changing tank car placement all affect the number of tank cars releasing per derailment. This 

research provides insights regarding the circumstances likely to result in multiple-tank-car 
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release incidents and the strategies to reduce their occurrence. The model can be incorporated 

into a risk management framework to enable local, regional and national safety management of 

hazardous materials transportation by rail.  

 

Chapter 5: Risk Analysis of Multiple-Tank-Car Release Accidents  

Over the past decade, alcohol and petroleum crude oil have dramatically increased. Much of this 

traffic is transported in large blocks or unit trains. The increase in this traffic has raised questions 

regarding transportation safety, especially after the Lac-Mégantic accident in July 2013. In this 

chapter, I develop a risk analysis model to evaluate the nationwide risk of rail transportation of 

flammable liquids and quantify the safety effectiveness of tank car safety design improvement. 

The probability distribution of the number of tank cars releasing is estimated based on a series of 

probability distributions accounting for a variety of infrastructure and rolling-stock-related 

factors. The consequence of a release incident is measured by the affected population, which is 

analyzed using a geographic information system (GIS) platform. The analysis shows that tank 

car safety design improvement has a more substantial effect on prevention of large, multiple-car 

release incidents than a small number of tank car releases. Use of more robust tank car safety 

designs can have a strong effect on prevention of large, catastrophic release incidents.  

 

Chapter 6: Integrated Risk Reduction Strategies      

A number of strategies have been implemented or are being developed to reduce the risk of 

hazardous materials releases from train accidents. Each of these risk reduction strategies has 

corresponding safety benefit and implementation costs. However, the cost effectiveness of the 

integration of different risk reduction strategies is not well understood. This chapter presents an 
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optimization model that considers the combination of two risk reduction strategies, broken rail 

prevention and tank car safety design enhancement. The Pareto-optimality technique is used to 

maximize risk reduction at a given level of investment. The framework can be adapted to address 

a broader set of risk reduction strategies.  

 

Chapter 7: Future Research  

This chapter presents potential future research topics based on the findings of my dissertation.  
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Chapter 2 

Analysis of Freight-Train Derailment Rates in the United States 

Adapted from  

Liu, X., Saat, M.R., Barkan, C.P.L. Analysis of freight-train derailment rates  

in the United States. Accident Analysis and Prevention (under review). 

 

2.1 Introduction  

Derailments are the most common type of train accident in the United States. They cause damage 

to infrastructure, rolling stock and lading, disrupt service, and have the potential to cause 

casualties and harm the environment. Understanding the most important factors affecting 

derailments is critical to development of effective risk reduction strategies. Train safety and risk 

analysis relies on accurate estimation of derailment rate, which is defined as the number of 

derailments normalized by some metric of traffic exposure, such as train-miles, car-miles or 

gross ton-miles (Nayak et al. 1983; Treichel and Barkan 1993; Anderson and Barkan 2004; Liu 

et al. 2011).  

 

Highway safety researchers have conducted a number of studies quantifying the 

relationship between accident rates and roadway design. These studies have considered the 

effects of road curvature, traffic volume, grade, shoulder width, number of lanes and other 

factors (e.g., Miaou 1994; Maher and Summersgill 1996; Hauer 2001; Lord et al. 2005; Lord 

2006; Mitra and Washington 2007). The earliest example of a comprehensive analogous study of 

railroad accident rates in the United States was conducted by Nayak et al. in the 1980s (Nayak et 

al. 1983). Using analyses of accident frequency and rail traffic volume, they found a strong 

statistical correlation between FRA track class and derailment rate. A subsequent unpublished 

study by Treichel and Barkan (1993) found a similar result. Anderson and Barkan (2004) used 
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new data to develop updated estimates. All of these studies found that higher FRA track classes 

had lower derailment rates, varying by more than an order of magnitude. This relationship was 

not surprising; higher FRA track classes are intended to ensure safe operation at higher operating 

speeds and therefore require a variety of more stringent engineering safety and maintenance 

standards.  

 

These derailment rate estimates have been used by railroads, government agencies and 

researchers to address a variety of risk analysis and management questions (CCPS 1995; ADL 

1996; STB 2003; Kawprasert and Barkan 2008, 2010). As the importance and sophistication of 

these questions has grown, so too has the importance of their accuracy. This led to closer 

scrutiny of the factors affecting the relationship between FRA track class and derailment rate.  

Developing a better understanding of the underlying factors affecting the relationship is 

important if the information is to be used to improve railroad risk management practices.  

 

Over the three decades since Nayak et al (1983) completed their work, the U.S. mainline 

train derailment rate has declined ten-fold (Barkan et al. 2013). This affects the absolute rate on 

different track classes, and might also affect the relative rate between track classes, because the 

relative importance of accident causes correlated with different track classes may have shifted 

(Anderson and Barkan 2004). There is ongoing interest in improving rail safety and new 

concerns have been raised regarding the risk of rail transport of hazardous materials due to 

several fatal release accidents in the mid-2000s. This prompted renewed interest in a more 

detailed understanding of the factors affecting derailment rate (Barkan et al. 2013). In the same 

time frame, post-9/11 security concerns led the U.S. Department of Transportation to promulgate 
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new regulations that required railroads to conduct, "transportation route analysis, alternative 

route analysis, and route selection" for toxic inhalation hazard materials (DOT 2008). This led to 

new consideration of how to calculate derailment rate and whether it provided a sufficiently 

detailed means of assessing localized risk. Research in this chapter suggested that other factors 

not previously considered might be affecting it as well, notably method of operation (i.e., traffic 

control system) and traffic density.  

 

Previous constraints on data systems and availability had limited the ability to consider 

more fine-grained questions regarding factors that might co-vary with track class and affect 

derailment rate. Furthermore, these analyses had used relatively simple statistical techniques that 

were not capable of detecting the complex relationship between derailment rates and multiple 

influencing factors. To address these questions, a new dataset was developed that contained 

information on FRA track class, method of operation and traffic density.   

 

2.2 Data and variables 

2.2.1 Derailment data 

Data for the derailment rate analysis were obtained for the major freight railroads operating in 

the U.S. for the years 2005 to 2009. These railroads account for approximately 69% of route 

miles and 88% of carloads transported on U.S. railroads (AAR 2013).  

 

Data on the number and cause of derailments came from the U.S. Federal Railroad 

Administration (FRA) Rail Equipment Accident (REA) database. This database records all 

accidents that exceed a specified monetary damage cost to on-track equipment, signals, track, 
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track structures, or roadbed (FRA 2011). Each accident record includes information on 

approximately 50 different variables detailing the circumstances of the accident. Among these 

are the method of operation and the annual traffic density measured in annual gross tonnage at 

the accident location. However, having traffic density data only for FRA-reportable accident 

locations is insufficient for proper estimation of derailment rates because it does not permit 

understanding of the entire network under consideration. In particular, comprehensive data on 

the exposure of rail traffic to different combinations of infrastructure and operating conditions 

are needed to develop accurate estimates of accident rates. Therefore, each railroad provided 

additional data for their entire, mainline network. In total, there were 1,420 freight-train 

derailments and 17.5 trillion gross ton-miles of traffic reported for the period covered in this 

analysis. Derailment and traffic data were categorized into a three-dimensional matrix defined by 

the explanatory variables: FRA track class, method of operation and annual traffic density. A 

brief description of each variable is presented in the following subsections.  

 

2.2.2 Explanatory variables  

FRA track class    

The FRA specifies track quality standards or "track classes" required to operate freight and 

passenger trains at different maximum speeds (FRA 2003). There are five principal track classes 

commonly used by U.S. freight railroads, ranging from track class 1 with the lowest maximum 

speed (10 mph), to class 5 with the highest (80 mph). These classes include specifications for 

track structure, geometry, inspection frequency and method of inspection, with more stringent 

requirements for higher track classes. The FRA standards represent minimum requirements; in 

fact, railroads often maintain various sections of their infrastructure to standards that exceed the 
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minimum required by the FRA. This introduces additional variance in analyses of the 

relationship between track quality and derailment rates within the same track class (El-Sibaie and 

Zhang 2004).  

 

Method of operation  

The FRA records multiple different values for method of operation; however, for the purposes of 

this analysis, I am interested in a somewhat higher level, specifically, whether the track has a 

system of automatic signaling in place or not. Approximately 60 percent of U.S. mileage and 80 

percent of rail traffic operates on signaled trackage (FRA 2008). Signaled tracks use electrical 

track circuits to detect the presence of trains. However, an important secondary benefit of track 

circuits is that they also enable detection of several types of infrastructure problems including 

broken rails, which are the leading cause of train derailments on U.S. railroads (Dick et al. 2003; 

Barkan et al. 2003; Liu et al. 2012).  

 

Traffic density  

Traffic density is the third variable included in the model. Track with a higher traffic density 

receives more frequent track maintenance leading to higher track quality (FRA 2003; Peng 

2011). Railroad traffic density represents the total weight of all locomotives, rolling stock and 

lading traversing a given section of track and is commonly measured in million gross tons 

(MGT). The traffic density variable was assigned two values, <20 MGT annual traffic and ≥20 

MGT. The demarcation at 20 MGT was selected because it represents the average annual track 

traffic density on U.S. Class I railroad mainlines (AAR 2005-2009) so the two classifications 

indicate, below average traffic density and above average, respectively.  
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As mentioned above, FRA track class is determined by speed of operation on a given 

segment of track. In circumstances where there are civil speed restrictions due to curves or other 

features, these segments will generally be classified as lower FRA track classes. However, these 

lower-speed sections on higher-traffic-density routes are generally designed and maintained to 

the same high standards as adjacent sections of track with higher speeds and track classes, 

commensurate with the higher volume of traffic using them.  

 

Each segment of track in this study could be classified by various combinations of FRA 

track class, method of operation and traffic density allowing us to investigate whether there was 

a statistical relationship with derailment rate. Thus, a 5 × 2 × 2 matrix was constructed using the 

three categorical explanatory variables: 

  

 track classes: 1, 2, 3, 4, 5;  

 method of operation: signaled and non-signaled;  

 annual traffic density: <20 MGT and ≥20 MGT.  

 

Table 2.1 presents the distribution of freight-train derailment and traffic data by the predictor 

factors used in this study. In the next section, I describe a negative binomial regression model 

that was developed to analyze mainline freight-train derailment rate.  
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Table 2.1  
Distribution of freight-train derailment and traffic data by predictor variables 

 

 

(a) Freight-train derailment distribution  

Annual Traffic 
Density (MGT) 

Method of 
Operation 
(MO) 

FRA Track Class (TC) 

1 2 3 4 5 TC Total 

<20 Non-Signaled 2.0% 3.5% 4.4% 3.7% *n/a 13.7% 

 Signaled 1.3% 2.5% 3.3% 4.6% 0.4% 12.2% 

 MO Total 3.4% 6.1% 7.7% 8.3% 0.4% 25.8% 

        

≥20 Non-Signaled 0.7% 1.8% 2.0% 6.0% 0.5% 11.0% 

 Signaled 2.6% 6.7% 11.3% 31.0% 11.6% 63.2% 

 MO Total 3.3% 8.5% 13.2% 37.0% 12.1% 74.2% 

        

Total Non-Signaled 2.7% 5.4% 6.3% 9.7% 0.5% 24.6% 

 Signaled 3.9% 9.2% 14.6% 35.6% 12.0% 75.4% 

 MO Total 6.7% 14.6% 20.9% 45.3% 12.5% 100.0% 

* There were no instances of non-signaled, Class 5 track with less than 20 MGT of annual traffic 

 

(b) Freight traffic  

Annual Traffic 
Density 
(MGT) 

Method of 
Operation 
(MO) 

FRA Track Class (TC) 

1 2 3 4 5 TC Total 

<20 Non-Signaled 0.1% 0.5% 0.9% 1.6% *n/a 3.2% 

 Signaled 0.1% 0.3% 1.2% 3.3% 0.3% 5.2% 

 MO Total 0.2% 0.9% 2.1% 4.9% 0.3% 8.4% 

        

≥20 Non-Signaled 0.2% 0.4% 0.8% 2.1% 0.2% 3.7% 

 Signaled 0.5% 2.0% 8.2% 47.8% 29.4% 88.0% 

  MO Total 0.7% 2.4% 9.0% 49.9% 29.7% 91.6% 

        

Total Non-Signaled 0.3% 0.9% 1.7% 3.7% 0.2% 6.9% 

 Signaled 0.5% 2.4% 9.4% 51.1% 29.7% 93.1% 

 MO Total 0.8% 3.3% 11.1% 54.7% 30.0% 100.0% 
        

* There were no instances of non-signaled, Class 5 track with less than 20 MGT of annual traffic 
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2.3 Methodology 

2.3.1 Train derailment rate analysis 

The negative binomial regression model has been widely used in accident rate analysis in 

highway transportation (e.g., Miaou 1994; Hauer 2001; Wood 2002; Lord et al. 2005; Lord 2006; 

Oh et al. 2006; Mitra and Washington 2007); however, no previously published research has 

attempted to apply this analytical approach to multivariate estimation of railroad accident rate.  

 

Equations (2.1) to (2.3) present the basic framework for a negative binomial model:  

~ ( )Y Poisson                (2.1) 

~ ( , )
f

Gamma f
m

               (2.2) 

0

exp
k

P P

p

m b X M


 
  

 
              (2.3)  

Where: 

Y = observed number of derailments  

m = estimated number of derailments  

bp = pth parameter coefficient  

Xp = pth explanatory variable  

M = traffic exposure (gross ton-miles)  

f = inverse dispersion parameter  

 

 The confidence intervals of estimated derailment rates using the Poisson regression or 

negative binomial regression models were developed by Wood (2005) (Table 2.2).  
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Table 2.2 
95% confidence interval for accident models (Wood 2005) 

 

Poisson  

m * *exp[   1.96 ( )]TX b Var h  

 

 

y 

 

* * 2 * *0, 19 ( ) ( )m m Var h m   
   

 

 

Negative binomial 

m * *exp[   1.96 ( )]TX b Var h  

 

 

 

λ 

* 2 * * 2
* * 2 *

*

( ) ( ) ( )
max 0, 1.96 ( ) ( )

m Var h m
m m Var h

f

  
  

  

,

* 2 * * 2
* * 2 *

*

( ) ( ) ( )
1.96 ( ) ( )

m Var h m
m m Var h

f


   

 

 

y 

  

* 2 * * 2
* * 2 * *

*

( ) ( ) ( )
0, 19 ( ) ( )

m Var h m
m m Var h m

f

  
    
    

 

 

Note: 
* * * *

0 1 1 ... log( )k kh b b X b X M     (the parameter with * represents an estimator)  

 

2.3.2 Train derailment rate  

0exp( )trk trk moo moo den denZ b b X b X b X                            (2.4) 

Where: 

Z = estimated derailment rate per gross ton-miles  

Xtrk = FRA track class (1 to 5) 

Xmoo = method of operation (1 for signaled, 0 for non-signaled) 

Xden = annual traffic density level (1 for ≥20 MGT, 0 for <20 MGT) 
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b = parameter coefficients  

 

The estimated parameter coefficients were developed using the maximum likelihood 

method (Agresti 2007). All three variables were found to significantly affect freight-train 

derailment rates (Table 2.3). Although FRA track class is a categorical variable, the preliminary 

data analysis suggested that there was an inverse linear relationship between estimated 

derailment rate and FRA track class, given the other two predictor variables, therefore I treated it 

as a continuous variable in this analysis. A similar treatment of FRA track class was described by  

English et al. (2007).  

 

Table 2.3 

Parameter coefficient estimates of freight-train derailment rates on Class I mainlines, 2005-2009    

 

Parameter Estimate 
Standard 

Error 

Wald 95% 
Confidence 

Limits 
Wald Chi-

Square 
Pr > 

ChiSq 

b0 (Intercept) 0.9201 0.1115 0.7016 1.1386 68.11 <.0001 

btrk (Track Class) -0.6649 0.0341 -0.7318 -0.5981 380.37 <.0001 

bmoo (Method of Operation) -0.3377 0.0974 -0.5286 -0.1469 12.03 0.0005 

bden (Traffic Density) -0.7524 0.0859 -0.9208 -0.5840 76.72 <.0001 

Dispersion 0.0048 0.0062         

 

 

A special case of the negative binomial model is the Poisson model with a dispersion 

parameter of zero (Hilbe 2007). To test whether this was appropriate for our data, I calculated the 

Wald z-score by dividing the estimated dispersion parameter by its standard error. The calculated 

z-score was 0.77 (0.0048/0.0062), which fails to reject the hypothesis of a zero dispersion 

parameter (p = 0.44). This indicated that there is no significant difference between the Poisson 

model and negative binomial model in fitting the data. Thus I used the confidence intervals for 
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the Poisson model (Table 2.2) to estimate the 95% confidence intervals for train derailment rates 

(Figure 2.1 and Table 2.4). It is evident that all three variables are having a substantial effect:  

1) The higher the FRA track class, the lower the train derailment rate  

2) Signaled track has a lower derailment rate than non-signaled track 

3) Track with higher traffic density has a lower derailment rate  

 

The observation that a higher track class is associated with a lower train derailment rate is 

consistent with previous studies (Nayak et al. 1983; Treichel and Barkan 1993; Anderson and 

Barkan 2004). However, in addition to FRA track class, method of operation and traffic density 

both had a strong, significant relationship with derailment rate. As mentioned above, signaled 

track segments have track circuits to detect broken rails, thereby potentially reducing the 

likelihood of derailments due to this cause. Furthermore, given the same track class and method 

of operation, derailment rate is inversely correlated with traffic density level. There are several 

possible explanations for this. As mentioned above rail lines with higher traffic density receive 

more frequent track inspection and maintenance (Zarembski and Palese 2010; Sawadisavi 2010; 

Peng 2011) irrespective of speed (i.e., FRA track class). Busier lines may also have a greater 

number and variety of wayside defect detectors installed (Schlake et al. 2010) thereby reducing 

the incidence of certain infrastructure and equipment-caused train accidents.  
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Table 2.4 
Estimated Class I mainline freight-train derailment rate per billion gross ton-miles, 2005-2009 

(the numbers in the parenthesis represent 95% confidence intervals)  

 
 
Annual 
Traffic 
Density 
(MGT) 

 
 
Method of 
Operation 

 FRA Track Class 

Class 1 Class 2 Class 3 Class 4 Class 5 

<20 Non-Signaled 1.29 0.66 0.34 0.18 *n/a 

  (1.086, 1.534) (0.574, 0.768) (0.295, 0.395) (0.148, 0.209)  

       

 Signaled 0.92 0.47 0.24 0.13 0.06 

  (0.737, 1.151) (0.395, 0.568) (0.208, 0.286) (0.106, 0.147) (0.053, 0.078) 

≥20 Non-Signaled 0.61 0.31 0.16 0.08 0.04 

  (0.495, 0.747) (0.260, 0.376) (0.134, 0.194) (0.067,0.102) (0.033, 0.055) 

       

 Signaled 0.43 0.22 0.11 0.06 0.03 

   (0.361, 0.521) (0.195, 0.255) (0.104, 0.127) (0.053, 0.066) (0.026, 0.035) 

*There were no instances of non-signaled, Class 5 track with less than 20 MGT of annual traffic 

 

 

 
 

Figure 2.1: Estimated Class I mainline freight-train derailment rates by FRA track class, method 

of operation and annual traffic density (error bars represent 95% confidence intervals) 
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2.3.3 Car derailment rate  

2.3.3.1 Estimation of car derailment rate 

In addition to train derailment rate, car derailment rate is also of interest. This is generally 

measured as the number of cars derailed per unit of traffic exposure and represents the likelihood 

that an individual car is involved in a derailment. Anderson and Barkan (2004) estimated average 

car derailment rate by multiplying train derailment rate by the average number of cars derailed 

per derailment: 

* *
* m D

C
M


                (2.5) 

Where: 

C* = estimated car derailment rate per unit of traffic exposure  

m* = estimated train derailment count given traffic exposure  

D* = average number of cars derailed per train derailment  

M = traffic exposure  

 

2.3.3.2 Derailment severity 

The average number of cars derailed in derailment is a metric of its severity (Nayak et al. 1983; 

Saccomanno and El-Hage 1989; Barkan et al. 2003; Anderson and Barkan 2004; Liu et al. 

2013a) and can be calculated using data from the same FRA REA database used to address other 

questions in this chapter. I conducted an analysis of variance to determine if there was a 

relationship between derailment severity and the three explanatory variables being considered. I 

found no significant relationship with method of operation (F statistic = 1.21, degrees of freedom 

= 1, P = 0.27) or traffic density (F statistic = 0.57, degrees of freedom = 1, P = 0.6). However, I 

did find a significant relationship between FRA track class and derailment severity (F statistic = 
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4.78, degrees of freedom = 4, P < 0.01). The higher the FRA track class, the greater the average 

number of cars derailed per derailment. 

 

The lack of a relationship between severity and the first two variables is not surprising 

because, ceteris paribus, neither would be expected to affect the kinetic energy of a derailment 

and consequently its severity, whereas the third one does. Track class is directly related to 

maximum allowable operating speed and previous research has shown a relationship between 

severity and derailment speed, due in part to the greater kinetic energy (Nayak et al. 1983; 

Barkan et al. 2003; Anderson and Barkan 2004) and with FRA track class (Liu et al. 2011).  

Thus, track-class-specific number of cars derailed was estimated and used to estimate car 

derailment rate. 

 

2.3.3.3 Variance in estimated car derailment rate 

I calculated the variance in the car derailment rate estimate by accounting for the uncertainty in 

train derailment rate and number of cars derailed. A general approach to estimate the variance of 

multiple random variables was originally developed in the 1960s (Goodman 1962). Since then, it 

has been used in various studies of highway safety (Lord 2008; Geedipally and Lord 2010) but I 

am unaware of its application to estimation of car derailment rate. Train derailment frequency 

and severity were assumed to be independent variables, and the variance in estimated car 

derailment rate, denoted by Var(C*), was estimated using the following equation (Table 2.5) 

(derived in Appendix A):  

* 2 * * 2 * * *
*

2

[ ( )] ( ) [ ( )] ( ) ( ) ( )
( )

E m Var D E D Var m Var m Var D
Var C

M

 
         (2.6) 
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where: 

Var(C*) = variance of estimated car derailment rate  

E(m*)  = expected value of train derailment count  

Var(m*) = variance of estimated train derailment count  

E(D*)  = expected value of number of cars derailed per derailment  

Var(D*) = variance of estimated number of cars derailed per derailment 

M  = traffic exposure  

 

Table 2.5 
Estimated car derailment rate per billion car-miles, Class I freight-train mainline derailments, 

2005-2009 (Italic numbers in the parentheses represent the standard errors of estimated car 

derailment rates)   

 

Annual Traffic 
Density 
(MGT) 

 
Method of 
Operation  

 FRA Track Class 

1 2 3 4 5 

<20 Non-Signaled 632 446 266 150 *n/a 

  (66) (55) (35) (23)  

       

 Signaled 451 318 189 107 59 

  (57) (43) (25) (16) (10) 

       

≥20 Non-Signaled 298 210 125 71 39 

  (35) (29) (18) (12) (7) 

       

 Signaled 213 150 89 50 28 
    (23) (18) (11) (7) (4) 

*There were no instances of non-signaled, Class 5 track with less than 20 MGT of annual traffic 
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2.4 Results and discussion 

2.4.1 Summary of results  

Multivariate statistical analyses of American train derailment data, combined with information 

on FRA track class, method of operation and traffic density, showed that each of these variables 

had a strong, significant effect on derailment rate. Previous studies had only found an effect of 

track class, but did not consider the other two variables. I also found that average derailment 

severity was unaffected by method of operation or traffic density, but was strongly related to 

FRA track class, consistent with several previous studies (Nayak et al.1983; Barkan et al. 2003; 

Anderson and Barkan 2004). Despite the larger average number of cars derailed in accidents on 

higher track classes, car derailment rate is still lower. This is because the reduction of train 

derailment rate more than offsets the increase in derailment severity.  

 

2.4.2 Discussion  

Accurate calculation of train accident rate has important implications for a number of railroad 

industry safety policy, operating practice, risk management and resource allocation decisions.  It 

is also an important aspect of federal regulatory development, review policies and decision 

making. The first attempt to develop nationwide, track-class-specific accident rates was 

conducted by Nayak et al. (1983) in a study for the U.S. DOT Federal Railroad Administration. 

Railroad train safety had been deteriorating in the years prior to economic deregulation of the US 

rail industry in 1980 and there was interest in understanding the effect of various potential 

contributing factors. Meanwhile, in 1975 the FRA had implemented new train accident data 

recording requirements and Nayak et al. used these data, along with data from other sources, to 

try and understand the quantitative relationship between track class and derailment rate. 
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At the same time, there was increasing interest in the risk associated with rail transport of 

hazardous materials such as toxic-inhalation-hazard materials and flammable gases (Andrews 

1980; Geffen 1980). In the absence of more specific data, these studies relied on an average 

railroad derailment rate. Although such an approach may enable nationwide estimates of average 

risk, most rail transport risk management decisions require greater precision, for example, 

understanding localized differences in risk due to differing track quality or development of risk 

profiles for a route or region. Nayak et al. recognized that both national, and geographically 

specific estimates of train safety and derailment risk required a more fine-grained understanding 

of the key factors affecting risk. Since that time, both the private and public sectors have made 

extensive use of the FRA database, the Nayak et al. statistics, and subsequent revisions and 

refinements of their analyses using track-class-specific derailment rates to conduct safety and 

risk assessments at both the local and national level (Glickman and Rosenfield 1984; CCPS 

1995; STB 2003; Kawprasert and Barkan 2010).  

 

Part of the track-class effects observed in previous studies was likely due to co-variance 

with the other two variables described in this chapter, but even when that is accounted for, FRA 

track class still has a strong effect. However, the results presented in this chapter indicate that 

track class is one of (at least) three different factors that are significantly related to derailment 

rate. In this section, I describe an example of how use of the new, three-factor derailment rate 

model has significant implications for rail safety policy and practice compared to use of the 

earlier single-factor, track-class-specific model.   
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2.4.3 Risk modeling of hazardous materials transportation  

Railroad hazardous materials transportation risk along a route can be defined as the 

multiplication of tank car derailment rate, traffic exposure, conditional probability of release 

(CPR) of a derailed tank car and release consequence (Andrews 1980; Geffen 1980; Nayak et al. 

1983; Glickman and Rosenfield 1984; CCPS 1995):  

 

R  = Z × L × P × C             (2.7) 

where: 

R = hazardous materials transportation risk per carload  

Z = tank car derailment rate per traffic exposure   

L = segment length (miles)   

P = conditional probability of release of a derailed hazardous materials car 

C = release consequence (e.g., number of persons in the affected area)  

 

Based on the analysis described in this chapter, the tank car derailment rate will vary 

depending on three characteristics - FRA track class, method of operation and traffic density. 

Given that a tank car derails, its release probability is dependent on derailment speed and tank 

car safety design (Treichel et al. 2006; Kawprasert and Barkan 2010). The consequence of a 

release incident can be measured using various metrics, such as quantity released, number of 

persons affected, environmental impacts, etc. (Glickman and Rosenfield 1984; Barkan et al. 

1991; Rhyne 1994; CCPS 1995; Nicolet-Monnier and Gheorghe 1996; Anand and Barkan 2006; 

Yoon et al. 2009; Kawprasert 2010).  
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2.4.4 Train derailment rate estimation effect on routing of hazardous materials   

As discussed above, use of average values as parameters in calculation of risk may be a useful 

expedient in certain contexts for simple or high-level assessments. However, in other 

circumstances, it may lead to decisions that are not only incorrect, but may lead to the opposite 

of the desired policy objective. An example is routing of hazardous materials to minimize risk to 

the public.  

 

Somewhat by definition, the majority of rail traffic is routed on high density traffic lines.  

This helps railroads achieve greater economies of scale in terms of infrastructure investment and 

maintenance. In general, these high-density lines travel near or through urban areas where the 

majority of traffic originates or terminates. Higher density lines have more intense design and 

maintenance standards and are more likely to have signalized traffic control systems to maximize 

operating efficiency. For safety reasons, railroads often have operating speed restrictions on 

these lines when they pass through urban areas (Kawprasert and Barkan 2010). Consequently, 

these segments will generally be classified as having a lower FRA track class than adjacent, 

higher-speed sections of the same line; however, this does not mean that most track design and 

maintenance standards on the lower speed sections are less than the higher-speed sections. If 

these low-speed segments are designed and maintained to higher standards than is evident from 

track class alone, it may lead to over-estimation of risk under these circumstances.   

 

The higher estimated accident rate based only on track-class, combined with the high 

population density can result in estimates that these are high-risk locations in the hazardous 

materials transportation network. Conversely, considering routes with higher speeds but less 
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traffic, skirting or avoiding metropolitan areas may result in under-estimation of risk along these 

lines. Circumstances such as these can affect routing, emergency response, and other risk-based 

decisions. In short, the greater the ability to measure and differentiate the accident rates of 

various segments given specified railroad infrastructure and operational characteristics, the more 

reliable the risk-based decision making. 

 

To illustrate this, consider the following example. Assume that there are two alternative, 

20-mile routes through a region (Figure 2.2). Route 1 is signaled, has a maximum operating 

speed of 25 mph (FRA track class 2) and annual traffic of 40 MGT. Route 2 is non-signaled, 

with a maximum speed of 40 mph (FRA track class 3) and an annual traffic density of 15 MGT.  

A hazardous material is being transported through the region in a non-insulated  

DOT 111A100W1 tank car. This car has an average conditional probability of release, given that 

it is derailed in an FRA-reportable accident, of 0.35 (Treichel et al. 2006).  However, the speed-

dependent effect on the car's release probability if derailed is 0.24 on Route 1, and 0.384 on 

Route 2 due to their different operating speeds (Kawprasert and Barkan 2010). The population 

densities differ along the two routes, with 800 people estimated to be affected if there is a release 

along Route 1, compared to 400 people on Route 2.  
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Figure 2.2: Hypothetical alternative routes with different track characteristics and estimated 

release consequences  

 

 

Using the single-parameter FRA track class model, the average tank car derailment rates 

would be 240 and 102 per billion car-miles for track classes 2 and 3, respectively. Using the 

model described in Equation (2.7), risk per carload is 9.22E-04 on the Route 1 and 3.13E-04 on 

Route 2, indicating that the risk on Route 2 is about three times lower than on Route 1.  

 

However, if we use the new, three-factor accident rate model described in this chapter 

with method of operation and annual traffic density accounted for, as well as track class, the 

estimated tank car derailment rates are 150 per billion car-miles on Route 1, and 266 per billion 

car-miles on Route 2. Using these accident rates, the corresponding risk per carload is 5.76E-04 

on Route 1 and 8.17E-04 on Route 2 (Table 2.6).  

 

Route 1 
Track Class 2, Signaled, 40 MGT Annual Traffic Density

Release Consequence 800 People Affected

Origin

Route 2 
Track Class 3, Non-Signaled, 15 MGT Annual Traffic Density

Release Consequence 400 People Affected 

Destination
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 Although this example is hypothetical, it is based on typical circumstances available to 

railroads regarding routing of hazardous materials in metropolitan regions and demonstrates the 

effect of accident rate on risk analysis and the corresponding decision making. The more fine-

grained accident rate estimate leads to a more accurate risk modeling, thereby facilitating more 

reliable safety decisions.  

 

Table 2.6 

Different risk comparison using old and new accident rate estimates    

 

 

 

2.5 Conclusion   

This chapter develops the latest train and car derailment rates on Class I railroad mainline tracks 

in the United States. FRA track class has been the principal factor used to quantitatively assess, 

location-specific derailment rate in railroad transportation safety and risk studies for over three 

decades. The analysis described here accounts for two new factors (method of operation and 

annual traffic density) that also have a strong and significant effect. The methodology and 

statistics presented herein can be used for more accurate train safety and risk analyses, thereby 

enabling more precise estimates of local and route-specific risk, and contributing to development 

of more effective risk reduction strategies to improve rail safety.  

Route 1 (Class 2, 

Signaled, 40 MGT 

Annual Traffic Density)

Route 2 (Class 3, Non-

Signaled, 15 MGT 

Annual Traffic Density)

Route 1 (Class 2, 

Signaled, 40 MGT 

Annual Traffic Density)

Route 2 (Class 3, Non-

Signaled, 15 MGT Annual 

Traffic Density)

Tank Car Derailment Rate per 

Billion Car-Miles, Z

240 102 150 266

Conditional Probability of 

Release of a Derailed Tank 

Car, P

0.24 0.384 0.24 0.384

Release Consequence, C 

(Number of Persons Affected 

per Release Incident)

800 400 800 400

Risk per Carload (Number of 

Persons Affected)

9.22E-04 3.13E-04 5.76E-04 8.17E-04

Old Accident Rate (Account for Track Class Only)

New Accident Rate (Account for Track Class, 

Method of Operation and Traffic Density)
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Chapter 3 
 

Analysis of U.S. Freight-Train Derailment Severity Using Zero-Truncated Negative 

Binomial Regression and Quantile Regression  
 

Adapted from  

Liu, X., Saat, M.R., Qin, X., Barkan, C.P.L. (2013). Analysis of U.S. freight-train derailment 

severity using zero-truncated negative binomial regression and quantile regression.  

Accident Analysis and Prevention 59, 87-93. 

 

3.1 Introduction 

Railways are vital to the U.S. national economy. While society derives significant benefits from 

rail transportation, there are also certain safety risks that must be managed and minimized to a 

feasible extent. Train accidents cause damage to infrastructure and rolling stock, disrupt services, 

and may cause casualties and harm the environment. Derailments accounted for 72% of freight-

train accidents in the United States from 2001 to 2010 (Liu et al. 2012), causing 1,257 casualties, 

$1.8 billion in damages and resulting in 344 hazardous materials cars releasing at least some of 

their contents. Consequently, understanding the causes and preventing train derailments is a high 

priority for the rail industry and government.   

 

 Train derailment likelihood has been studied by previous researchers (e.g., Nayak et al. 

1983; Treichel and Barkan 1993; Dennis 2002; Anderson and Barkan 2004; Liu et al. 2011, 

2012). In addition, understanding the magnitude and variability of derailment severity is also 

important. In this chapter, severity is measured by number of cars derailed. The generic use of 

“cars” refers to all vehicles (including locomotives, railcars and cabooses), unless specifically 

stated otherwise.  

 

 



 

40 

3.2 Literature review  

Simulation and statistical analysis are the two basic approaches used to model train derailment 

severity. Simulation models predict the response of railroad vehicles to specific track and 

environmental conditions. These models are typically based on detailed nonlinear wheel-rail 

interaction models. For example, Yang et al. (1972, 1973) developed a simulation model to 

determine the effect of ground friction, mating coupler moment and brake retarding force on the 

number of cars derailed. They found that the position of the first car involved in the derailment 

(called point-of-derailment, or POD) and derailment speed could affect the number of cars 

derailed (Yang et al. 1972, 1973). In the late 1980s, Yang et al.’s model was extended by 

accounting for coupler failure and independent car motion (Coppens et al. 1988; Birk et al. 

1990). The precision of simulation models are subject to the accuracy of models of train 

derailment dynamics.  

 

In addition to simulation models, derailment severity has also been estimated using 

statistical methods. Saccomanno and El-Hage (1989, 1991) developed a truncated geometric 

model to estimate the mean number of cars derailed as a function of derailment speed, residual 

train length and accident cause. The model was later modified by Anderson (2005) and Bagheri 

(2009). There is interest in considering other factors that may affect derailment severity. Last but 

not least, all previous derailment severity models have focused on the mean number of cars 

derailed. Depending on factors discussed later in this chapter, other distributional statistics may 

also need to be understood, such as quantiles.   
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3.3 Derailment severity  

The number of cars derailed per freight-train derailment on U.S. Class I railroads, from 2001 to 

2010, is plotted in Figure 3.1. On average, a freight-train derailment resulted in approximately 10 

cars derailed, and the median number derailed was six.   

 

 

Figure 3.1: Distribution of number of cars derailed per FRA-reportable freight-train derailment, 

all accident causes combined, U.S. Class I freight railroad mainlines, 2001-2010 

 

 

Derailment severity varies by accident cause (Saccomanno and El-Hage 1989, 1991; Barkan et 

al. 2003; Anderson 2005; Bagheri 2009; Bagheri et al. 2011; Liu et al. 2011, 2012). Broken rails 

were the most common cause of freight-train derailments on U.S. Class I mainlines (Barkan et al. 

2003; Liu et al. 2012). The average broken-rail-caused freight-train derailment severity was 13 

cars, compared to an average of six cars derailed when the cause was bearing failure. Although 

bearing failures sometimes cause severe train derailments, 55% of them caused only a single car 

to derail (Figure 3.2). Because broken rails are likely to pose greater risk than other causes due to 
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their high frequency and severity, this research focuses on this accident cause, but the 

methodology can be adapted to other accident causes as well.   

 

 

                                    (a)                                                                  (b) 

Figure 3.2: Freight-train derailment severity distribution by major accident cause,  

U.S. Class I mainlines, 2001 to 2010 

 

 

3.4 Input data for analysis  

3.4.1 Data source  

Train derailment data came from the Rail Equipment Accident (REA) database maintained by 

the Federal Railroad Administration (FRA) of the U.S. Department of Transportation. The FRA 

REA database contains all accidents that exceeded a specified monetary threshold of damage 

costs to on-track equipment, signals, track, track structures and roadbed. The reporting threshold 

is periodically adjusted for inflation, from $5,700 in 1990 to $9,900 in 2013 (FRA 2013). The 

REA database contains detailed train accident information such as total damage costs, number of 
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cars derailed, track type, train length, derailment speed and others. In some previous studies, 

monetary damage has been used to assess derailment severity. However, the financial cost of a 

derailment is subject to many variables, such as the cost difference between locomotives and 

railcars, or the difference in repairing regular track versus special trackwork. Instead, number of 

cars derailed was used to measure derailment severity (Barkan et al. 2003).  

 

3.4.2 Explanatory variables 

Several factors may affect train derailment severity, including residual train length, derailment 

speed, train power distribution and proportion of loaded railcars in the train. The explanation of 

each variable follows.  

 

Residual train length  

Residual train length is defined as the number of railcars following the point-of-derailment 

(POD) (including the POD), where POD is the position of the first car derailed. Residual train 

length describes the maximum number of cars potentially subject to derailment (Saccomanno 

and El-Hage 1989, 1991). Previous studies have found that all else being equal, a greater residual 

train length is expected to result in more cars derailed (Saccomanno and El-Hage 1989, 1991; 

Anderson 2005; Bagheri 2009; Bagheri et al. 2011). 

 

Derailment speed  

Nayak et al. (1983), Treichel and Barkan (1993), Saccomanno and El-Hage (1989, 1991), Barkan 

et al. (2003), Anderson (2005), Bagheri (2009), Bagheri et al. (2011) and Liu et al. (2011) all 

showed a positive correlation between the mean number of cars derailed and derailment speed.   
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Distributed power  

No previous study has analyzed whether distributed power (i.e. placement of some locomotives 

at the rear and/or middle of the train) affects train derailment severity. In this study, freight-trains 

are classified into two types: (1) non-distributed-power trains with only head-end locomotives 

and (2) distributed-power trains with head-end locomotives and additional locomotives in other 

positions. A binary variable (1 represents a distributed-power train, 0 otherwise) was created to 

examine whether the two types of trains have statistically different derailment severities.  

 

Proportion of loaded cars  

Another new factor considered in this study is the proportion of loaded cars in the train. It is 

defined as the ratio of number of loaded cars, normalized by total number of cars (both empty 

and loaded) in the train. The null hypothesis is that a train carrying a larger proportion of loaded 

cars may derail more cars. A larger proportion of loaded cars in the train may indicate greater 

kinetic energy in the derailment, thereby causing more cars to derail.  

 

Table 3.1 presents some descriptive statistics of the explanatory variables. The Spearman 

correlation coefficients were calculated (Table 3.2). There is a significant correlation between 

train power distribution and the proportion of loaded cars in the train (P < 0.05). It indicates that 

a derailed train having a higher proportion of loaded cars is more likely to be equipped with 

distributed power.  
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Table 3.1  
Descriptive statistics of explanatory variables, broken-rail-caused freight-train derailments,  

U.S. Class I mainlines, 2001 to 2010   

 

 

 

 

Table 3.2 
Spearman correlation coefficients between explanatory variables, broken-rail-caused freight-train 

derailments, U.S. Class I mainlines, 2001 to 2010  

  

    
                                                *P < 0.05 

 

3.5 Zero-truncated negative binomial (ZTNB) model   

3.5.1 Model development  

The number of cars derailed represents non-negative count data, whose mean value can be 

estimated using regression techniques. Poisson regression and negative binomial (NB) regression 

are among the commonly used count data regression methods in accident analyses (e.g., 

Maccullagh and Nelder 1989; Miaou 1994; Hauer 2001; Wood 2002, 2005; Lord et al. 2005; 

Lord and Mannering 2010). The Poisson model is suitable for data whose mean is equal to its 

variance, whereas the NB model assumes that the Poisson mean follows a gamma distribution. 

The NB model has been used for analyzing over-dispersed data (the variance is greater than the 

mean) by previous researchers (e.g., Maccullagh and Nelder 1989; Long 1997; Hauer 2001; Lord 

et al. 2005; Hilbe 2007).  

Variables Mean Standard Deviation Minimum Maximum Type

residual train length 51.1 35.2 1 152 Count 

derailment speed (mph) 28.8 14.1 4 70 Continuous

proportion of loaded cars in the train 0.8 0.3 0 1 Continuous

train power distribution 0.1 0.3 0 1 Binary

derailment 

speed

proportion of 

loading cars

train power 

distribution

residual train length -0.04 -0.03 0.11

derailment speed -0.09 0.05

proportion of loading cars 0.29*
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 Both the Poisson and NB distributions include zeros, so they cannot be directly used to 

analyze data excluding zero counts, such as the data in this study. The minimum number of cars 

derailed is 1. The Poisson or NB probability functions and their respective log-likelihood 

functions need to be modified to account for the exclusion of zeros. Gurmu (1991) and Grogger 

and Carson (1991) discussed methodologies to analyze zero-truncated count data. Compared to 

the traditional count data models (Poisson or negative binomial), the zero-truncated models 

calculate the probability of a positive response variable of count data using Bayes’s Theorem 

(Gurmu 1991; Grogger and Carson 1991; Long 1997; Hilbe 2007). The following equations 

show the probability mass function (Equation 3.1), mean (Equation 3.2), variance (Equation 3.3), 

likelihood function (Equation 3.4) and response surface (Equation 3.5) of a zero-truncated 

negative binomial (ZTNB) model. The comparison of a ZTNB and NB model shows that the 

ZTNB model accounts for exclusion of zeros. A detailed discussion of ZTNB model can be 

found in Gurmu (1991), and Grogger and Carson (1991).   
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Pr(yi|yi>0) = probability mass function of zero-truncated negative binomial distribution  

E(yi|yi>0) = expectation of zero-truncated negative binomial distribution 

Var(yi|yi>0) = variance of zero-truncated negative binomial distribution 

α  = over-dispersion parameter in the zero-truncated negative binomial distribution 

L  = likelihood function  

µi  = estimated derailment severity for the ith observation  

yi  = observed derailment severity for the ith observation  

βk  = parameter coefficient of the kth predictor variable (k = 0 for intercept)   

Xki  = value of the kth predictor variable for the ith observation  

 

A ZTNB model was developed based on 458 broken-rail-caused freight-train derailments 

on Class I mainlines from 2001 to 2010. The model accounts for main effect, higher-order 

components and their interaction terms of explanatory variables. A logarithmic transformation of 

residual train length and derailment speed provided a better fit to derailment severity data in 

Canada (Saccomanno and El-Hage 1989, 1991) and the same was observed in the U.S. data used 

in this study as well. Table 3.3 shows the “final” model using a hierarchical variable selection 

technique based on deviance (Agresti 2007) (the detailed variable selection process is presented 

in Appendix B).  
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Table 3.3 

ZTNB modeling results for broken-rail-caused freight-train derailments, U.S. Class I mainlines, 

2001 to 2010  

 

Variable Coefficient Standard Error P-value 

Intercept 1.38 0.71 0.05 

RL -0.03 0.23 0.91 

DS -0.26 0.17 0.13 

LO -0.57 0.34 0.09 

(RL)2 -0.06 0.02 0.01 

RL×DS 0.24 0.04 0.00 

RL×LO 0.21 0.08 0.01 

 

Notes:  

RL = logarithmic residual train length  

DS = logarithmic derailment speed  

LO = loading factor (proportion of loaded cars in a train)  

 

The train derailment severity model is: 

2exp[1.38 0.03 0.26 0.57 0.06( ) 0.24 0.21 ]Z RL DS LO RL RL DS RL LO              (3.6) 

 

Where, Z = estimated number of cars derailed per broken-rail-caused freight-train derailment on 

Class I mainlines. Using Equation (3.6), the first-order partial-derivative of derailment severity 

with respect to each predictor variable is: 

( 0.03 2 0.06 0.24 0.21 )
Z

Z RL DS LO
RL


      


                     (3.7) 

( 0.26 0.24 )
Z

Z RL
DS


  


             (3.8) 

( 0.57 0.21 )
Z

Z RL
LO


  


             (3.9) 

There are several observations based on Equations (3.7) to (3.9):  
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1) The sensitivity of derailment severity to residual train length is also dependent on 

derailment speed and loading factor. If RL < 2DS+1.75LO-0.25, then 0
Z

RL





 (RL is the 

logarithmic residual train length). This means that derailment severity increases with 

residual train length when it is below a threshold value that is determined by derailment 

speed and loading factor. The greater the speed and/or loading factor, the more likely that 

derailment severity has a positive correlation with residual train length, all else being 

equal. Whereas, given certain values of low speed and/or low loading factor, it is possible 

that derailment severity decreases when residual train length increases. However, the 

latter scenario is rare in historical accident data (4 out of 458, or 0.08%).  

 

2) The sensitivity of derailment severity with respect to derailment speed is dependent on 

residual train length. If RL > 1.1, then 0
Z

DS





. It means that a greater derailment speed 

is associated with more cars derailed. This applies to 99% of observations in historical 

data (453 out of 458). 

 

3) The relationship between derailment severity and loading factor is dependent on residual 

train length as well. When RL > 2.7, 0
Z

LO





. It means that derailment severity increases 

if there is a larger proportion of loaded cars in the train. This applies to the majority of 

observations (394 out of 458, or 86%). Note that the remaining 14% of accidents had 

either short train length or the POD is in the rear end of the train. Note that loading factor 

herein does not provide information regarding the actual position of each loaded car, 
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which may affect train derailment dynamics; however, this information was not available 

for this study.  

 

To summarize, there is a significant interaction between residual train length, derailment speed 

and loading factor. This interaction may be related to the energy accumulation in train accidents. 

Because of the interaction between explanatory variables, caution should be taken when 

interpreting the effect of an individual factor. Future research is needed to better understand the 

train derailment process based on additional possible affecting factors.  

 

3.5.2 Limitations of ZTNB model  

The ZTNB model is suitable for analyzing the data excluding zeros; however, like other 

traditional count data models, it has several limitations:  

1) It analyzes the mean response variable; however, the mean may not fully represent the 

data distribution. For example, the mean derailment severity is 7 for bearing-failure-

caused derailments (Figure 3.2b), while the median is 1. Using the conditional mean may 

over-estimate derailment severity for a large proportion of observations. It raises a 

statistical question, how to analyze other distributional statistics (such as quantiles) in the 

regression?  

 

2) The ZTNB or NB model is based on the homogeneous Bernoulli assumption (Long 1997; 

Hilbe 2007). Whether this assumption is valid in reality may be subject to uncertainty. 

The ZTNB model requires that each car has approximately equal derailment probability 

following the POD. While this assumption is difficult to verify in the field, some previous 
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models adopted this assumption and reported reasonable goodness-of-fit (Saccomanno 

and El-Hage 1989, 1991; Anderson 2005; Bagheri 2009; Bagheri et al. 2011). It is of 

interest to understand whether certain restrictive assumptions regarding the data 

distribution can be relaxed, thus motivating the introduction of quantile regression, which 

is the focus of the remaining sections.  

 

3.6 Quantile regression 

In addition to the mean, additional distributional statistics, specifically quantiles, were analyzed 

in this section. Quantiles are taken from the cumulative distribution function (CDF) of a random 

variable. Let p be a number between 0 and 1, and the p quantile of the distribution of a random 

variable Y is denoted by Q(p).  

( )

( ( )) ( )

Q p

p F Q p f y dy


              (3.10) 

1( ) ( ) inf{ : ( ) }Q p F p y F y p   , 0≤ p ≤1                              (3.11) 

Where: 

F-1(p)  = inverse function of the cumulative distribution function (CDF) 

Inf  = the smallest y that satisfies F(y) ≥ p 

 

Compared to the ZTNB model that analyzes the conditional mean, quantile regression (QR) 

estimates the conditional quantiles (such as the median). QR was originally developed by 

Koenker and Bassett (1978), and it has been applied in various research fields (Taylor 1999; 

Arias et al. 2001; Machado and Mata 2001; Nielson and Rosholm 2001). The few applications of 

QR in transportation safety research include Hewson (2008), Qin et al. (2010), Qin and Reyes 
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(2011), and Qin (2012); however, I am unaware of any previous applications to rail safety 

research. Compared to the ZTNB model, quantile regression provides additional understanding 

of derailment severity. I used the following linear programming proposed by Koenker and 

Bassett (1978) to estimate the parameter coefficients in quantile regression:    

 

( ) ( )

min | ( | ) | (1 ) | ( | ) |
i Y i Y

i Y i Y

y Q p y Q p

p y Q p X p y Q p X
 

 
    

 
        (3.12) 

Where: 

0 1 1log( ( | )) ...Y k kQ p X X X       

 

 To illustrate the concept of quantile regression, consider the following example in which 

I analyze the conditional quantile of derailment severity (number of cars derailed), denoted by 

QY(p|X), based on explanatory variables. It is assumed that the logarithmic transformation of 

QY(p|X) is a linear combination of predictor variables, that is 

0 1 1log( ( | )) ...Y k kQ p X X X      , where X is the main effect, higher-order components or 

interaction terms of predictor variables. In order to determine the “optimal” set of parameter 

coefficients, an objective function is defined in the following way (Koenker and Bassett 1978). 

First, all observations (train derailments) are categorized into two groups based on derailment 

severity relative to a quantile value, which is determined by specific values of explanatory 

variables and corresponding parameter coefficients. In the first group, all train derailments have 

derailment severity greater than the specified quantile value. The other group has derailment 

severity below the quantile. Within each group, we can calculate the total absolute deviation 

between the observation-specific derailment severity and specified quantile value. The objective 
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function is defined as the weighted average of total deviation within each group. The “optimal” 

set of parameter coefficients are estimated by optimizing the objective function. This 

optimization can be performed by various methods such as simplex algorithm, interior point 

method or smooth algorithm (Chen 2005). QR exhibits several advantages over traditional count 

data regression models according to Qin et al. (2010), Qin and Reyes (2011), and Qin (2012): 

 First, QR does not require a specific data distribution, such as a normal or Poisson 

distribution. Therefore, it is suitable for analyzing strongly skewed data.  

 Second, QR is more robust against outliers. Compared to the mean, certain quantiles 

(e.g., median) are less sensitive to skewed data, outliers and multi-modality. 

 QR estimates multiple rates of change on different parts of the response distribution, and 

provides a complete view regarding the effects of predictors.  

 

QR is implemented in several statistical software packages, such as QREG in Stata and 

QUANTREG in SAS. However, none of these standard statistical procedures were designed for 

discrete variables. In terms of count data, the objective function in the optimization is not 

differentiable, making it difficult to model quantiles directly as a continuous function of 

predictor variables (Machado and Silva 2005). Smoothing approaches were used to apply QR to 

count data analysis (Machado and Silva 2005). In this study, I used the jittering method 

developed by Machado and Silva (2005). Machado and Silva’s jittering algorithm was 

implemented in a procedure called QCOUNT in Stata by Miranda (2007). Using the QCOUNT 

in Stata, I developed a quantile regression model based on the freight-train derailment severity 

data. Table 3.4 presents the QR estimates for selected quantiles and the associated standard 

errors. For comparison, I used the same parameters in developing the ZTNB model as shown in 
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Table 3.3. The analysis shows that the relationship between derailment severity and affecting 

factors may differ at different quantiles. There are two principal observations: 

 First, the signs of coefficients for significant parameters are the same at the studied 

quantiles and the mean. So change of a factor may consistently affect train derailments 

for all severities.   

 The parameter coefficient in modeling the mean derailment severity using ZTNB model 

is within the range of coefficients using quantile regression to analyze 20th  and 60th  

percentiles. This is not surprising because the mean is also a special quantile value.  

 

 

Table 3.4 
Estimated coefficients in quantile regression versus ZTNB model, broken-rail-caused Class I 

mainline freight-train derailments, 2001-2010 

 

 

Notes:  

RL = logarithmic residual train length  

DS = logarithmic derailment speed  

LO = loading factor  

 

 

 

 

 

Variables Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value

Intercept 1.90 0.01 1.47 0.00 0.97 0.06 1.38 0.05

RL -0.43 0.11 -0.26 0.04 0.03 0.83 -0.03 0.91

DS -0.25 0.16 -0.25 0.01 -0.21 0.06 -0.26 0.13

LO -0.95 0.01 -0.50 0.10 -0.22 0.45 -0.57 0.09

(RL)
2

-0.02 0.43 -0.04 0.00 -0.07 0.00 -0.06 0.01

RL×DS 0.24 0.00 0.26 0.00 0.24 0.00 0.24 0.00

RL×LO 0.32 0.00 0.21 0.01 0.15 0.05 0.21 0.01

Mean0.2 0.4 0.6
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3.7 Comparison between conditional-mean and conditional-quantile models  

In the last three decades, several statistical models have been developed to analyze count data in 

transportation safety research, and most of them have focused on the conditional mean. 

However, the mean may be insufficient to describe highly skewed or multi-modal data 

distributions (Qin et al. 2010; Qin and Reyes 2011; Qin 2012). For instance, estimating the 

conditional mean may over-estimate train derailment severity for a large proportion of 

derailments if the data are skewed towards low-severity derailments. As an alternative approach, 

quantile regression provides estimates at different quantiles, and it provides additional views in 

analyzing derailment severity distribution. Another advantage of quantile regression is its 

robustness against outliers in the dataset. A few outliers may significantly affect the mean and 

variance, but may not affect certain quantiles. Consequently, quantile regression may be useful in 

analyzing datasets with input errors.  

 

An accurate estimation of derailment severity is important for evaluating the safety 

effectiveness of accident prevention strategies. Quantile regression can be used to better 

understand the effects of explanatory variables on the response variable. Specifically, if an 

explanatory variable has similar parameter estimates at different quantiles, an accident 

prevention strategy affecting this variable may be effective for all derailments regardless of their 

severities. However, if the parameter estimates vary widely at different quantiles, it indicates that 

the accident prevention strategy may affect low-severity derailments differently than high-

severity derailments. To conclude, zero-truncated negative binomial regression analyzes the 

conditional mean, while quantile regression analyzes the quantiles of a response variable. 
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Depending on the questions to address, the two approaches can supplement one another to 

provide rail transportation safety information.  

 

Note that quantile regression has its own limitations. For instance, development of 

quantile regression does not rely on the maximum likelihood method, thereby certain model 

selection criteria (e.g. AIC or BIC) may not directly be used for identifying the “best” model. 

The methodologies for evaluating the goodness-of-fit of a quantile regression model need 

additional research. In addition, quantile regression originates from continuous variable analysis 

and has recently been adapted to count data (Machado and Silva 2005). More work is needed to 

advance the theory and practicability of quantile regression in order to supplement the existing 

count data models.  

 

3.8 Conclusion 

Zero-truncated negative binomial and quantile regression models are developed to analyze the 

distribution of freight-train derailment severity and the effect of influencing factors. A zero-

truncated negative binomial model is used to estimate the mean severity, excluding zeros. A 

quantile regression model is used to estimate a specific quantile value and it is suitable for 

analyzing the entire data distribution accounting for possible data skewness, outliers or when 

certain assumptions are not met. The two models together provide a better understanding of 

freight derailment severity distribution. These methods can be adapted to various other related 

research problems.  
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Chapter 4 

Probability Analysis of Multiple-Tank-Car Release Incidents in  

Railway Hazardous Materials Transportation  

 
Adapted from  

Liu, X., Saat, M.R., Barkan, C.P.L. Probability analysis of multiple-tank-car release incidents in 

railway hazardous materials transportation. Journal of Hazardous Materials (under review). 

 

4.1 Introduction   

There were more than two million carloads of hazardous materials transported by rail in North 

America in 2012 (BOE 2013). Although hazardous materials traffic accounts for only 6% of U.S. 

rail traffic and more than 99% of shipments safely reached destinations, it is responsible for a 

major share of liability and insurance risk (AAR 2013a). There has been growing regulatory and 

public attention to hazardous materials transportation safety in response to rapid growth in this 

traffic and several recent train-accident-caused release incidents.  

 

 Railroad transport of hazardous materials differs from highway transport in several 

important ways. Notably rail transport involves trains of multiple cars, sometimes over 100 in a 

single train. Some or all of these may be tank cars. By contrast, highway transport generally 

involves a single tank trailer. Unlike highway transport, derailment of a hazardous materials train 

may result in releases from multiple tank cars. In the event of a large, multiple-car release 

incident, there is the potential for considerable impact on human health, property, and the 

environment. Furthermore, such releases may be much more challenging for emergency 

response. Several recent multiple-tank-car release incidents, such as the derailments in 

Schellebelle, Belgium in May 2013 and in Lac-Mégantic, Canada in July 2013, underscore the 

importance of preventing multiple-car release incidents.  
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 The number of tank cars releasing per derailment is affected by a number of factors such 

as train length, speed, accident cause, point of derailment (the position of the first car derailed), 

positions of tank cars in the train, and tank car safety design (Nayak et al. 1983; Glickman and 

Rosenfield 1984; Saccomanno and El-Hage 1989, 1991; Glickman et al. 2007; Bagheri 2009; 

Bagheri et al. 2011, 2013). Previous analyses have focused on one or more of these factors under 

specific circumstances. For example, Bagheri et al. (2013) estimated the probability of multiple-

car releases assuming that all tank cars have equal release probability and are grouped together in 

the train. Their assumptions are suitable under certain circumstances (e.g., unit-train shipments); 

however, circumstances in which tank cars have different safety designs and may be distributed 

anywhere throughout the train require a more sophisticated approach.  

 

 In this chapter, I develop a generalized model to estimate multiple-car release probability 

using the Law of Total Probability (Ross 2007). The model is applicable to any type of train 

configuration, tank car safety design and distribution of tank car positions in the train. It extends 

and generalizes previous models. Using this model, I analyze the safety effectiveness of various 

strategies to reduce the occurrence of multiple-tank-car release incidents.  

 

4.2 Literature review  

Hazardous materials transportation risk assessment relies on the estimation of the probability and 

consequences of a release incident (HSE 1991; Erkut and Verter 1995, 1998; Erkut and 

Ingolfsson 2000, 2004; CCPS 2008). Each element in the event chain of a hazardous materials 

release incident (Figure 4.1) has been analyzed in previous studies. In this section, I review these 

studies, identify their applications and limitations.   
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Figure 4.1: Sequence of events leading to a hazardous materials release incident  

 

4.2.1 Freight-train derailment rate 

Most major railroad hazardous materials release incidents occur as a result of train derailments. 

Attempts to relate derailment rate to infrastructure characteristics date back to the early 1980s. 

Nayak et al. (1983) found that higher FRA track classes had lower train derailment rates. A 

subsequent study by Treichel and Barkan (1993) found a similar result and Anderson and Barkan 

(2004) used new data to develop updated estimates. All of these studies found that higher FRA 

track classes had lower derailment rates. Higher track classes are intended for higher operating 

speeds, thus require a variety of more stringent maintenance and engineering safety standards 

(Liu et al. 2011). In addition to FRA track class, Liu et al. (2014) analyzed two additional factors 

– method of operation and traffic density and found that all three factors are strongly correlated 

with train derailment rates. In Canada, Saccomanno et al. (1989) analyzed train derailment rates 

by traffic volume, track type (single track versus multiple tracks), train speed and region and also 

found that train derailment rate varies with track characteristics.  
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4.2.2 Number of cars derailed 

The total number of cars derailed is a metric of derailment severity (Nayak et al. 1983; Barkan et 

al. 2003; Anderson 2005; Bagheri et al. 2011; Liu et al. 2011, 2012, 2013a). It is affected by 

accident cause (Saccomanno and El-Hage 1989, 1991; Barkan et al. 2003; Anderson 2005; Liu et 

al. 2011, 2012, 2013a), train speed (Nayak et al. 1983; Saccomanno and El-Hage 1989, 1991; 

Barkan et al. 2003; Anderson 2005; Liu et al. 2013a), train length (Nayak et al. 1983; 

Saccomanno and El-Hage 1989, 1991; Anderson 2005; Liu et al. 2013a) and point of derailment 

(the position of the first car derailed) (Saccomanno and El-Hage 1989, 1991; Anderson 2005; 

Bagheri et al. 2011; Liu et al. 2013a). 

 

4.2.3 Number of tank cars derailed  

The number of tank cars derailed is related to the total number of cars (both tank and non-tank 

cars) derailed, and the number and placement of the tank cars in the train. Glickman et al. (2007) 

assumed that the number of tank cars derailed follows a hyper-geometric distribution when tank 

cars were randomly placed in the train. Bagheri et al. (2013) estimated the total number of tank 

cars derailed given their positions. Although the effects of tank car safety design and tank car 

position in the train have been considered independently in prior work, to my knowledge, no 

published research has simultaneously accounted for both factors. So one objective of this 

research is to develop a generalized approach to estimate the total number of tank cars derailed 

and their probability of releasing that accounts for type of tank car and its position in a train.  
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4.2.4 Number of tank cars releasing contents  

Not all derailed tank cars release their contents. The Railway Supply Institute (RSI) – 

Association of American Railroads (AAR) Railroad Tank Car Safety Research and Test Project 

has developed a tank car accident database (TCAD) containing information on tank cars 

involved in accidents in the U.S. since 1970. Using this database, Treichel et al. (2006) 

developed logistic regression models to estimate the conditional probability of release for nearly 

all common designs, as well as new designs that incorporate existing design features. Previous 

analyses have used an average release probability (Glickman et al. 2007; Bagheri et al. 2011); 

however, Barkan et al. (2003) and Treichel et al. (2006) found a strong effect of speed on both 

derailment severity and release probability of hazardous materials cars derailed. Kawprasert and 

Barkan (2010) extended Treichel et al.’s analysis by accounting for the effect of derailment 

speed in estimating release probability.  

 

4.2.5 Release consequence 

The consequence of a hazardous material release can be expressed using several metrics, such as 

human impact (e.g., the number of people potentially affected by a release, i.e. evacuees, injuries 

and/or fatalities), monetary units for costs due to property damage, environmental damage, and 

litigation or other forms of financial impact (Barkan et al. 1991; CCPS 2008; Saat 2009; 

Kawprasert 2010). The hazard area of a release incident is affected by a variety of factors 

including chemical properties, quantity released, rate of release, meteorological conditions and 

local terrain. Toxic vapors, pool fires, explosions, soil and groundwater contamination and 

ecological damage are typical hazard types that a hazardous materials release incident may pose 

(Birk et al. 1990; Raj and Turner 1992; Yoon et al. 2009; Kawprasert 2010; Appel et al. 2011; 



 

65 

Marruffo et al. 2012). Previous studies have analyzed the generation, propagation and impact of 

these hazard types using pool fire modeling (Raj and Turner 1992) and Gaussian plume model 

(GPM) for airborne chemicals (Hanna et al. 1993). Based on different hazard types, simulation 

tools have been developed to estimate the impact of a hazardous materials release (e.g., Birk et 

al. 1990; Appel et al. 2011). Based in part on simulation analysis and historical data, the U.S 

Department of Transportation Emergency Response Guidebook recommends first responders’ 

initial isolation and protective action distances for specific chemicals and scenarios of release 

(PHMSA 2012). In addition to human impact, the consequences of a hazardous materials release 

could also include environmental clean-up cost (Barkan et al. 1991), train delay cost and others 

(Saat 2009). Consequence analysis can be conducted using a Geographic Information System 

platform integrated with other databases such as census and track infrastructure data (Zhang et 

al. 2000; Verter and Kara 2001; Verma and Verter 2007).  

 

 The surrounding natural and built environment at an accident location may also affect 

tank car derailment and release probabilities and consequences; however, the effect of these 

factors have not been investigated and therefore were not explicitly incorporated into our risk 

model. 

 

4.3 Methodology  

Equation (4.1) is used to estimate the probability distribution of the number of tank cars releasing 

after a train derailment occurs.  
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Where: 

K = point of derailment    

L = train length (total number of locomotives and railcars) 

XD = number of tank cars derailed  

XR = number of tank cars releasing  

LT = number of tank cars in the train  

 

 In order to estimate the probability distribution of the total number of tank cars releasing, 

the following distributions need to be estimated sequentially. In the following sections, each of 

them will be explained in more detail.  

1) point-of-derailment (POD), the position of the first car derailed in the train  

2) number of cars derailed (include both tank cars and other types of railcars) given a POD 

3) number of tank cars derailed given the total number of cars derailed  

4) number of tank cars releasing given the total number of tank cars derailed  

 

4.3.1 Point of derailment, POD(K) 

Point-of-derailment is the position of the first car derailed. The first vehicle (generally the lead 

locomotive) in the train is frequently the first to derail (Anderson 2005). Previous studies found 

that, ceteris paribus, the nearer the POD is to the front of a train, the more cars derail 

(Saccomanno and El-Hage 1989, 1991; Anderson 2005; Bagheri 2009; Bagheri et al. 2011). Data 

used in this paper were from the U.S. Federal Railroad Administration (FRA) Rail Equipment 

All Types of 
Cars Derailed 

Tank Cars 
Derailed 

Tank Cars 
Releasing 

Point-of-
Derailment 
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Accident (REA) database from 2002 to 2011. The FRA REA database contains all accidents that 

exceeded a specified monetary threshold of damage costs to on-track equipment, signals, track, 

track structures or roadbed. The reporting threshold is periodically adjusted for inflation, from 

$5,700 in 1990 to $9,900 in 2013 (FRA 2013). This research focuses on mainline, freight-train 

derailments on Class I railroads, a group of the largest U.S. railroads accounting for 69% of route 

miles and 88% of carloads transported on U.S. railroads (AAR 2013b). The analysis showed that 

approximately 25% of train derailments had the POD (the first car derailed) in the first ten 

positions of the train (Figure 4.2).  

 

 

Figure 4.2: Distribution of point-of-derailment, Class I mainline freight-train derailments, all 

accident causes combined, 2002-2011 (only a portion of POD distribution is displayed) 

 

 

To account for different train lengths, the normalized POD (NPOD) was calculated by 

dividing POD by train length (Saccomanno and El-Hage 1989, 1991). Several probability 

distributions (Beta, Normal, Logistic, Weibull, Uniform, Gamma) were selected to fit the NPOD 
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data. The goodness-of-fit of a fitted NPOD distribution was evaluated using the Kolmogorov-

Smirnov (K-S) test (Corder and Foreman 2009). The “best-fit” for the NPOD distribution (all 

accident causes combined) is a Beta distribution. This is consistent with prior research based on 

different study periods (Saccomanno and El-Hage 1989, 1991; Anderson 2005). The beta 

distribution is a continuous probability distribution defined on the interval [0, 1] and 

parameterized by two positive shape parameters. In the Kolmogorov-Smirnov (K-S) test, the P-

value evaluates the goodness of fit of empirical data compared to a theoretical distribution. If the 

P-value is larger than 0.05, the distribution chosen to fit the data may be acceptable. Table 4.1 

presents the “best” fitted NPOD distribution for several major derailment causes on U.S. 

railroads based on the FRA REA database. 

 

Table 4.1  
Parameter estimates for fitting NPOD distribution for major derailment causes of freight-trains, 

Class I mainlines, 2002 to 2011  

 

 

 

Given a train length L, the probability that the POD is at the kth position, POD(k), can be 

estimated using the following equation: 

1
( )

k k
POD k F F

L L

   
    

   
                        (4.2) 

Where: 

POD(k) = POD probability at the kth position of a train 

Cause 

Group Description Fitted Distribution P-value Sample Size

08T Broken Rails or Welds Beta (0.5519, 0.8576) 0.15 543

04T Track Geometry (excl. Wide Gauge) Beta (0.8622, 0.7065) 0.23 281

12E Broken Wheels (Car) Beta (1.0497, 0.9372) 0.97 216

10E Bearing Failure (Car) Uniform (0, 1) 0.71 204

09H Train Handling (excl. Brakes) Beta (0.7348, 1.5488) 0.70 184

All Causes Beta (0.6793, 0.8999) 0.48 3,812

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Parametrization
http://en.wikipedia.org/wiki/Shape_parameter
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F()   = cumulative density distribution of the fitted distribution  

L   = train length  

 

 Broken rails and bearing failures are the leading track-related and equipment-related train 

derailment causes on U.S. freight railroads (Barkan et al. 2003; Liu et al. 2012). Figure 4.3 

shows that a broken-rail-caused train derailment is more likely to have the POD in the front of a 

train, whereas the POD is approximately uniformly distributed for a bearing-failure-caused train 

derailment. These POD distributions that differ by accident cause suggest that train accident 

analyses should account for specific causes and will be discussed in the next section.  

 

 
 

Figure 4.3: Comparison of fitted NPOD distributions by major accident causes,  

Class I mainline freight-train derailments, 2002-2011  
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4.3.2 Total number of cars derailed, P(X|K) 

The number of cars derailed in a train derailment has been used as a metric for train derailment 

severity (Saccomanno and El-Hage 1989, 1991; Barkan et al. 2003; Liu et al. 2012). Figure 4.4 

shows the distribution of the number of cars derailed on U.S. Class I mainlines from 2002 to 

2011. Approximately 24% of derailments resulted in a single car derailed. 50% resulted in five-

or-fewer cars derailed, and the average number of cars derailed was approximately nine.  

 

 

Figure 4.4: Distribution of number of cars derailed per train derailment, Class I railroad  

freight-train derailments on mainlines, all accident causes combined, 2002 to 2011 

 

 

Derailment severity varies by accident cause (Nayak et al. 1983; Saccomanno and El-

Hage 1989, 1991; Barkan et al. 2003; Anderson 2005; Liu et al. 2012). Figure 4.5 compares the 

distribution of derailment severity due to broken rails and bearing failures, respectively. The 

average broken-rail-caused freight-train derailment severity was 13 cars, compared to an average 
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of six cars derailed when the cause was bearing failure. Although bearing failures sometimes 

cause severe train derailments, 55% of them resulted in only a single car derailed. The difference 

in accident-cause-specific derailment severity may be due to different POD distributions and 

possibly different derailment dynamics. Broken rails caused more hazardous materials car 

releases than other causes. According to the FRA REA database, 438 hazardous materials cars 

released on U.S. railroads from 2002 to 2011, of which 106 (24%) were caused by broken rails. 

So broken rails are used as an example in this chapter to illustrate the methodology. The 

methodology can be adapted to other accident causes as well.  

 

 
(a) Broken rails or welds  

 

 

Figure 4.5 (cont.) 
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(b) Bearing failures   

 

Figure 4.5: Number of cars derailed in freight-train derailments due to  

(a) broken rails or welds, and (b) bearing failures, Class I mainlines, 2002-2011 

 

The statistical model for estimating train derailment severity was first developed by Saccomanno 

and El-Hage (1989, 1991) and subsequently modified by Anderson (2005) and Bagheri et al. 

(2011). The probability of derailing X cars can be estimated using the following equation (model 

derivation is presented in Appendix C):  

 

1

1

exp( ) 1
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 
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                    (4.3) 

 

 Where, Z = a + b × ln(S) + c × ln(Lr) + d × Ld. The notations for S, Lr and Ld are 

presented in Appendix C. Based on the POD distribution (POD(K)) and the number of tank cars 

derailed given the POD (P(X|K)), the distribution of the total number of cars can be estimated. 
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Next, I analyze the number of tank cars derailed given the total number of all types of cars 

derailed.  

 

4.3.3 Tank car derailment, P(XD|X) 

Depending on the placement and total number of tank cars in a train, a derailment may result in a 

number of tank cars derailing. Glickman et al. (2007) assumed that tank cars were uniformly 

distributed throughout the train and have the same release probability. They used a  

hyper-geometric distribution to calculate the probability distribution of tank car derailment. I 

extended Glickman et al.’s analysis by accounting for the derailment of different types of tank 

cars (different types of tank cars may have different release probabilities (Treichel et al. 2006; 

Saat 2009)) using a multivariate hyper-geometric distribution. I adopt the same assumption as 

Glickman et al. (2007) that tank cars are uniformly distributed throughout the train. The 

multivariate hyper-geometric distribution of number of tank cars derailed has the following 

expression:  
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Where: 

XDm = number of the mth type of tank cars derailed  

m = types of tank cars in the train  

X = total number of cars (both tank and non-tank cars) derailed  

Tm = number of the mth type of tank cars in the train  

L = train length  
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4.3.4 Tank car release, P(XR|XD) 

The conditional probability of release (CPR) of a derailed tank car depends on its design 

characteristics and derailment speed (Treichel et al. 2006; Barkan 2008; Saat 2009; Kawprasert 

and Barkan 2010; Saat and Barkan 2011). Based on Kawprasert and Barkan (2010)’s results, Liu 

et al. (2013b) presented a linear regression model to estimate speed-dependent CPR for tank cars 

most commonly used to transport hazardous materials. Table 4.2 presents the minimum tank car 

safety design required by the USDOT (more tank car specification information can be found in 

Saat (2009)). In the linear model, the slope parameter A represents the change in CPR in 

response to a 1 mph change in derailment speed. For example, for a non-insulated 111A100W1 

tank car, the speed-dependent CPR function is 0.0096S, where S is derailment speed in mph. At 

25 mph, the CPR for this tank car is 0.0096 × 25 = 0.24. Different tank car safety designs could 

have different release probabilities. For example, at the same derailment speed, the CPR of a 

derailed 111A100W1 tank car is higher than that of a 112J340W tank car by a factor of five. 

This difference in tank-car-design-specific release probability must be taken into account in 

estimating the number of tank cars releasing.  

 

Table 4.2 

Estimated speed-dependent CPR, grouped by CPR function  

 

 
         “S” represents derailment speed in mph 

 

Head Thickness 

(inch)

Shell Thickness 

(inch) Jacket Bottom Outlet

Test Pressure 

(psig)

111A100W1 0.4375 0.4375 No Optional 100 0.0096S

111A100W3 0.4375 0.4375 Yes Optional 100 0.0096S

111A100W2 0.4375 0.4375 No No 100 0.0096S

211A100W1 0.4375 0.4375 No Optional 100 0.0096S

111A100W5 0.4375 0.4375 No No 100 0.0096S

112J340W 0.6875 0.6875 Yes No 340 0.0018S

105J300W 0.6875 0.6875 Yes No 300 0.0018S

112J400W 0.6875 0.6875 Yes No 400 0.0018S

105J400W 0.6875 0.6875 Yes No 400 0.0018S

105J500W 0.6875 0.6875 Yes No 500 0.0012S

Stenciled 

Specification

Minimum Tank Car Design

Speed-Dependent 

CPR (A×S)
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Tank car release probability is a Bernoulli variable. The sum of Bernoulli variables with different 

probabilities follows a Poisson binomial distribution (Wang 1993):   

1( | ,..., ) (1 )
C

k

R D Dm i j

A F i A j A

P X k X X P P
  

 
    

 
                                            (4.5)                                                                                                  

Where: 

XR = number of tank cars releasing per train derailment  

XDm = number of the mth type of tank cars derailed 

Fk = the set of all subsets of k integers selected from {1,2,3,..., XD1+…+XDm } 

A = subset of Fk 

Ac = the complement of set A (i.e., Ac = {1,2,3,..., XD1+…+XDm}\A) 

Pi = the conditional probability release of a specific type of tank car   

 

The probability mass function (PMF) of a Poisson binomial distribution can be derived using 

discrete Poisson approximation (Le Cam 1960), recursive formulae (Barlow and Heidtmann 

1984), normal approximation (Volkova 1996) or Fourier transformation (Fernández and 

Williams 2010). A summary of the Poisson binomial distribution can be found in Hong (2013). 

 

4.4 Numerical example  

In this section, I present a numerical example to illustrate the application of the methodology for 

assessing the probability distribution of the number of tank cars releasing per train derailment. 

Figure 4.6 shows the analytical procedure.  
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Figure 4.6: Procedure for assessing the distribution of the number of tank cars releasing  

per train derailment  

 

 

 

In this example, I assumed that the train has two head-end locomotives and eighty loaded cars, 

among which five are 111A100W1 tank cars and five are 112J340W tank cars. I also assumed 

that the train was derailed due to a broken rail, at a speed of 40 mph. Figure 4.7 shows the 

estimated distribution of the number of tank cars derailing and releasing based on these 

assumptions.  
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(a) Tank cars derailing 

 

 

 
(b) Tank cars releasing  

 

Figure 4.7: Estimated probability distribution of the number of tank cars derailing and releasing 

per broken-rail-caused train derailment for an 82-car train with 10 hazardous materials cars  
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In this example, the probability of no tank car releasing is 0.64, the probability of releasing one 

tank car is 0.25 and the probability of more than one car releasing is 0.11.  

 

 In the following sub-sections, I evaluate the effectiveness of several strategies, 

individually and in combination, to reduce the occurrence of multiple-tank-car release incidents. 

For comparison, the train operational information in the numerical example section above is used 

as the baseline scenario.  

 

4.4.1  Train speed reduction   

Train speed has a two-fold effect on the number of tank cars releasing. First, on average, lower 

speed derailments result in fewer cars derailed (Nayak et al. 1983; Saccomanno and El-Hage 

1989, 1991; Barkan et al. 2003; Anderson 2005). Second, as already discussed, lower derailment 

speed results in a lower release probability of a derailed tank car (Barkan et al. 2003; Treichel et 

al. 2006; Kawprasert and Barkan 2010). Figure 4.8 compares the distribution of tank car releases 

by derailment speed. The train above derailing at 40 mph has a probability of releasing two-or-

more tank cars of 0.12 and a mean number of tank cars releasing of 0.51. When the speed of 

derailment is 25 mph, the probability of a multiple-tank-car release incident reduces to 0.04 (a 

67% reduction), and the mean number of tank cars releasing reduces to 0.25 (a 51% reduction). 

Note that although a higher speed track segment may have a larger number of tank cars releasing 

in a derailment (and also have greater release quantities), the derailment rate may be lower due to 

higher track quality required for higher speed operation (Nayak et al. 1983; Treichel and Barkan 

1993; Anderson and Barkan 2004; Kawprasert and Barkan 2010). Addressing all of the trade-

offs regarding the safety effects of train speed reduction is beyond the scope of this chapter; 
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however, it is important to consider them in the larger risk management framework in future 

applications of the methodology.  

 

 

Figure 4.8: Estimated probability distribution of the number of tank car releasing per broken-

rail-caused derailment by derailment speed for an 82-car train with 10 hazardous materials cars  

 

 

4.4.2 Tank car safety design improvement  

Tank car safety design improvement has been recognized as a risk reduction strategy (Barkan et 

al. 1991; Barkan 2008; Saat 2009; Saat and Barkan 2011). A 112J340W tank car is thicker and 

has a jacket, head shields, top fittings protection, and no bottom fittings, thus its estimated 

release probability is 81% lower than that of a non-insulated 111A100W1 tank car at the same 

derailment speed (Table 4.2). Figure 4.9 compares the number of tank cars releasing if all five 

111A100W1 are replaced by 112J340W cars. The probability of a multiple-tank-car release 
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declines from 0.12 to 0.017 (an 86% reduction). The average number of cars releasing declines 

from 0.51 to 0.16, a 69% reduction.  

 

 

Figure 4.9 Probability distribution of the number of tank car releasing per broken-rail-caused 

derailment by tank car specification for an 82-car train with 10 hazardous materials cars  

 

Note: The baseline scenario is that a train contains five 111A100W1 tank cars and five 

112J340W tank cars. The upgraded scenario means that the same train carries ten 112J340W 

tank cars 

 

Note that using more robust tank cars may reduce the tank cars’ lading capacity. Consequently, 

this may increase the number of shipments required to meet the same traffic demand, thereby 

potentially increasing train derailment occurrences (Barkan 2008). However, the enhanced safety 

performance of the heavier, more damage-resistant tank cars, more than offsets the increased 

exposure (Barkan et al. 1991).  
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4.4.3 Change of tank car position  

 

Previous studies have suggested that tank car derailment probability is affected by its position in 

the train. Thus, changing tank car placement was identified as a potential risk reduction strategy 

(Bagheri 2009; Bagheri et al. 2011). In the baseline scenario, I assumed that tank cars were 

randomly distributed throughout the train. To understand the effect of tank car placement, I 

analyzed the following alternative tank car placement scenarios: 

 worst-case: tank cars are in the positions that are the most prone to derailment 

 best-case: tank cars are in the positions that are the least prone to derailment  

 

 In order to estimate the number of tank cars released in the worst (or best) tank car 

placement scenario, I developed a derailment profile, which is the conditional probability of 

derailment by position-in-train after a train derailment occurs (Saccomanno and El-Hage 1989, 

1991) (Figure 4.10). For an eighty-two-car train derailing at 40 mph due to a broken rail, the car 

in the 28th position is the most prone to derail with a probability of 0.293. By comparison, the 

last car in the train has the lowest derailment probability, 0.043.  
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Figure 4.10: Derailment profile for a broken-rail-caused train derailment for an 82-car train with 

10 hazardous materials cars  

  

  

 For each tank car in the train, its derailment probability is a Bernoulli variable. As stated 

in Section 4.3.4, the sum of Bernoulli variables with different probabilities follows a Poisson 

binomial distribution (Appendix D). Figure 4.11 compares the distributions of the number of 

tank cars releasing by different tank car placement scenarios. The “random” represents the 

baseline scenario in which tank cars are randomly distributed in the train and modeled by a 

multivariate hyper-geometric distribution. In the “best-case” scenario, the probability of a 

multiple-tank-car release (two-or-more cars releasing) is only 0.01, compared to 0.14 in the 

“worst-case” scenario. Overall, the mean number of tank cars releasing per derailment ranges 

from 0.19 to 0.66, depending on tank car placement.  
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Figure 4.11: Probability distribution of the number of tank cars releasing per broken-rail-caused 

train derailment by tank car placement for an 82-car train with 10 hazardous materials cars  

 

 

 

The actual placement of tank cars is subject to regulatory, operational and engineering 

constraints (FRA 2005). A comprehensive cost-benefit analysis of “optimal” tank car marshaling 

strategy should account for these effects on transportation safety and efficiency.  

 

4.4.4 Integrated strategies for reducing the number of tank cars releasing per derailment  

 

In addition to analyzing the marginal effect of each strategy, it is also important to evaluate their 

combined safety benefit in terms of reducing the number of tank cars releasing per derailment. 

Table 4.3 shows that when all three strategies are applied, the probability of a multiple-tank-car 

release reduces from 0.115 (baseline scenario) to 0.001. The mean number of tank cars releasing 

reduces from 0.51 to 0.036.  
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Table 4.3 
Safety effectiveness of integrated strategies to reduce the number of tank cars releasing per train 

derailment  

 

 
Notes: 

1) “Y” means that a strategy is implemented  

2) “Speed reduction” means that train speed reduces from 40 mph to 25 mph  

3) “Tank car upgrade” means that all five 111A100W1 tank cars are replaced by 112J340W cars  

4) “Tank car placement” means that all tank cars are in the positions that are the least likely to 

derail   

 

 

 Note that these risk reduction strategies, individually or in combination, have associated 

safety benefits and costs. When combined with cost information, the methodology presented here 

can be further developed and incorporated into a larger risk management framework to optimize 

the integration of multiple risk management options in the most cost-efficient manner (Liu et al. 

2013c).  

 

 

4.5 Conclusion  

I develop a generalized model to evaluate the probability distribution of the number of tank cars 

releasing in a train derailment accounting for specified operational characteristics. The analysis 

shows that reducing train speed, improving tank car safety design and changing tank car 

placement all have the potential to reduce the number of tank cars releasing per derailment. In 

addition, there are interactive effects among different risk reduction strategies. This analysis 

accounts for a variety of factors affecting the probability of a multiple-tank-car release incident. 

Scenario

Speed 

Reduction

Tank Car 

Upgrade

Tank Car 

Placement No Release

Single Car 

Release

Multiple Car 

Releases

Mean Number of 

Cars Releasing
1 0.640 0.245 0.115 0.510
2 Y 0.792 0.171 0.037 0.250
3 Y 0.851 0.131 0.018 0.160
4 Y 0.827 0.159 0.014 0.190
5 Y Y 0.926 0.069 0.005 0.079
6 Y Y 0.908 0.088 0.004 0.096
7 Y Y 0.930 0.068 0.002 0.073
8 Y Y Y 0.964 0.035 0.001 0.036

Strategies  Probability of Number of Tank Cars Releasing
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The model can potentially aid development of better-informed, more effective risk management 

policies and practices to improve hazardous materials transportation safety.   

 

4.6 Future research   

This study presents the first step in a systematic approach to railway hazardous materials 

transportation risk management. Several areas require further study:  

 

1) Tank cars releases from multiple train derailments. The next step of this work is to 

incorporate the rate or total number of train derailments (Glickman and Rosenfield 1984) 

and evaluate total number of tank cars released from multiple train derailments.  

 

2) Consequence modeling. Consequence modeling of hazardous materials release incidents 

is beyond the scope of this research, but it is an important element of a more 

comprehensive approach to risk assessment. Further research is needed to better evaluate 

the consequences of hazardous materials release incidents, thereby facilitating a more 

fine-grained risk analysis.  

 

3) Other accident causes. Further analysis is needed to account for other types of accident 

causes, such as mechanical failure and human factors (Liu et al. 2013d). The model 

developed herein can be adapted to evaluate the impact of current and emerging 

technologies and possible safety regulations.  
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4) Evaluate cost-efficiency of risk reduction strategies. The next step is to evaluate the 

cost-effectiveness of these strategies individually and in combination. Ultimately, a 

decision support system will be developed to address which strategies to invest in and the 

optimal way to allocate resources under various conditions and circumstances.  
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Chapter 5 

Risk Analysis of Multiple-Tank-Car Release Accidents 

 

5.1 Introduction   

U.S. petroleum crude oil production has increased significantly in part attributed to advances in 

hydraulic fracturing and horizontal drilling technologies. This has resulted in a considerable 

increase in rail shipments of petroleum crude oil. For example, U.S. Class I railroads originated 

9,500 carloads of petroleum crude oil in 2008, compared to 234,000 carloads in 2012, a 2,400% 

increase (AAR 2013). Most of this traffic is shipped in unit trains, or large blocks of cars in 

trains. This has raised new questions about the safety implications of large, consolidated groups 

of tank cars transporting hazardous materials. There is particular concern regarding flammable 

liquids because of the potential for large-quantity releases, and possible interactive effects with 

other cars if there is a fire, such as occurred in the accident in Lac-Mégantic, Canada in July 

2013. Consequently, there is interest in understanding the risk of transporting petroleum crude 

oil in unit trains.  

 

 Most previous analyses have focused on the consequences of hazardous materials 

releases from one or a few cars, although there are a few exceptions (Glickman and Rosenfield 

1984; Glickman et al. 2007; Bagheri et al. 2013). Glickman and Rosenfield (1984) were the first 

to consider the risk of large, catastrophic tank car release incidents; however, their work did not 

account for the effect of point of derailment (POD), speed or accident cause on tank car 

derailment probability. Bagheri et al. (2013) considered POD, speed and accident cause in 

modeling tank car derailment probability, but did not account for tank car safety design and 
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speed in the estimation of tank car release probability. Furthermore, previous analyses have not 

accounted for localized differences in train derailment probability accounting for multiple 

infrastructure features, such as FRA track class (Nayak et al. 1983; Treichel and Barkan 1993; 

Anderson and Barkan 2004), method of operation and traffic density (Liu et al. 2014a).  

 

In this chapter, I develop a new multiple-car release risk model that extends and 

generalizes previous models by simultaneously accounting for factors including FRA track class, 

method of operation, traffic density, train length, speed, point of derailment, accident cause, 

number and placement of tank cars, tank car safety design and population density. 

 

This model is applicable to any train configuration, in which unit trains are a special case. 

The unit-train risk model is developed to evaluate the risk of mainline shipments of flammable 

liquids. The purpose of this study is to understand the risk of multiple-car release incidents and 

gain insight into the effectiveness of strategies to mitigate this risk.  

 

The exposition of this chapter is as follows. First, I develop a methodology to estimate 

the risk of multiple-car release incidents. Second, I use this methodology to estimate the national 

risk of flammable liquid transportation. Third, I analyze the effect of tank car safety design 

improvement on risk reduction, especially prevention of multiple tank car releases. Finally, I 

highlight primary findings, discuss uncertainties in the risk analysis, and propose future research 

directions.  
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5.2 Methodology 

Most major railroad hazardous materials release incidents occur as a result of train derailments. 

Derailment probability is affected by FRA track class (Nayak et al. 1983; Treichel and Barkan 

1993; Anderson and Barkan 2004), method of operation and traffic density (Liu et al. 2014a). 

After a train is derailed (train derailment probability is denoted by Pi(TD)), the probability 

distribution of the number of tank cars releasing (Pi(XR|TD)) can be estimated using the model 

developed by Liu et al. (2014b). Based on train derailment probability and the number of cars 

releasing per derailment, the distribution of the number of tank cars releasing per train shipment 

can be estimated using the Law of Total Probability (Ross 2007):  

 

 
1

( ) ( ) ( | )
N

R i i R

i

P X P TD P X TD


              (5.1) 

where: 

P(XR)  = probability distribution of the number of tank cars releasing per 

   train shipment on a route  

Pi(TD)  = probability of a train derailment prior to the i+1 track segment   

Pi(XR|TD) = probability distribution of the number of tank cars releasing if a train derails 

                           prior to the i+1 track segment   

N  = total number of track segments on the route  

 

The probability that a train derails prior to the i+1 segment is the product of the probability that 

there is no derailment on the prior segments and the derailment probability on the ith segment  

(Erkut et al. 2007; Kawprasert 2010): 
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 
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where: 

Pi = probability of a train derailment on the ith segment  

 

Train derailment rate is sufficiently small (on the order of 10-6 per train-mile) (Nayak et al. 1983; 

Treichel and Barkan 1993; Anderson and Barkan 2004; Liu et al. 2014a), thus derailment 

probability on a segment is approximately equal to the product of derailment rate and segment 

length (Kawprasert 2010):  

1 exp( )i i i i iP Z L Z L                 (5.3) 

where: 

Zi = train derailment rate per train-mile 

Li = segment mileage  

 

Furthermore, because segment-specific derailment probability is sufficiently small,  

 
1

1

1 1
i

j

j

P




                            (5.4) 

 

Based on Equations (5.2) to (5.4), train derailment probability is approximately equal to the 

product of train derailment rate and segment length:  

( )i i iP TD Z L                (5.5) 
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Train derailment rate (Zi) was developed by Liu et al. (2014a), and the number of tank cars 

releasing per train derailment, P(XR|TD), was developed by Liu et al. (2014b). Based on these 

results, the number of tank cars releasing per train shipment on a route can be estimated using the 

following equation:  

 

min( , ) 1

1 0 0 1

( ) ( | ) ( | ) ( | ) ( )
T

D

L XN L K L

R i i i R D i D i i

i X X K
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      

      
           (5.6)           

Where: 

P(XR)  = probability distribution of the number of tank cars releasing per shipment 

N  = number of track segments on the route  

Zi  = train derailment rate per train-mile on the ith segment  

Li  = length of the ith segment (miles)  

K  = point of derailment (the position of the first car derailed)    

L  = train length (total number of locomotives and railcars) 

X  = number of cars (tank and non-tank cars including locomotives) derailed  

XD  = number of tank cars derailed  

XR  = number of tank cars releasing  

LT  = number of tank cars in the train  

PODi(K) = probability distribution of point of derailment  

Pi(X|K) = probability distribution of the number of cars derailed given point of derailment  

Pi(XD|X) = probability distribution of the number of tank cars derailed given total number  

                           of all types of cars derailed  

Pi(XR|XD) = probability distribution of the number of tank cars releasing given the number  
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                           of tank cars derailed 

 

Figure 5.1 illustrates the analytical procedure to estimate the number of tank cars releasing per 

train shipment. The model accounts for a variety of track-related, rolling-stock-related and 

operational characteristics. The occurrence of a train derailment was assumed to follow a Poisson 

process (Glickman and Rosenfield 1984; Kawprasert 2010). The point of derailment (POD) was 

assumed to follow a Beta distribution (Anderson 2005). Given the POD, the number of all types 

of cars derailed was assumed to follow a truncated geometric distribution (Saccomanno and El-

Hage 1989, 1991). If tank cars were randomly distributed throughout a train, the number of tank 

cars derailed given the number of cars derailed was assumed to follow a multivariate  

hyper-geometric distribution (Liu et al. 2014b). Finally, given the number of different types of 

tank cars derailed, the number of tank cars releasing was assumed to follow a Poisson binomial 

distribution (Liu et al. 2014b). The integration of all these probability distributions was used to 

estimate the probability distribution of the number of tank cars releasing per train shipment.  

 

The model is applicable to any train configuration on any route. A special case of this 

model was used for unit-train transportation risk analysis. In the next section, I develop a 

numerical example to illustrate the application of the methodology to nationwide flammable 

liquid transportation risk assessment.  
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Figure 5.1: Analytical procedure for estimating multiple-car release probability distribution 

 

 

5.3 Case study  

5.3.1 Introduction  

The purpose of this case study is to assess railroad transportation risk of flammable liquids in the 

United States. Due to data constraints, a number of assumptions were made based on the 

information available to develop a high level, preliminary risk assessment. In the following 

subsections, I introduce the input parameters and assumptions used in this study. These 

assumptions are applicable to a national average risk assessment. If route-specific information is 
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available, it can be used to develop more accurate national, regional or route-specific estimates 

using this risk model.    

 

5.3.2 Rail network information  

U.S. Class I mainline rail network information was obtained from National Transportation Atlas 

Database. For each segment on this network, I identified its FRA track class and method of 

operation using railroad-provided infrastructure information. Approximately 83,000 route miles 

(41,704 segments) owned or operated by U.S. Class I railroads were analyzed in this case study 

(Table 5.1).  

 

Table 5.1 
Route mileage distribution by FRA track class and method of operation, U.S. Class I mainlines  

 

 

Note: 18,371 route miles (18% of national network) have unknown information regarding FRA 

track class and/or method of operation, thus were excluded from this analysis. 

 

5.3.3 Unit train information  

The makeup of the unit train analyzed in the case study was as follows. It consisted of five head-

end locomotives and eighty non-insulated DOT 111A100W1 tank cars. I assumed that all cars 

were fully loaded and optimized for the product they were transporting and has a gross rail load 

of 263,000 pounds each. Each locomotive was assumed to weigh 187 tons (AAR 2009). Track-

class-average train derailment speed was calculated based on FRA-reportable freight-train 

derailment data from 2002 to 2011 (Figure 5.2).  

Method of 

Operation 1 2 3 4 5 Total

Non-Signaled 4.3% 9.0% 9.8% 8.8% 0.1% 32.0%

Signaled 0.9% 3.2% 10.4% 40.5% 12.9% 68.0%

Total 5.1% 12.2% 20.3% 49.4% 13.0% 100.0%

FRA Track Class
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Figure 5.2: Average derailment speed by FRA track class,  

U.S. Class I mainline FRA-reportable freight-train derailments, 2002 to 2011 

 

 

5.3.4 Population density information  

I assumed that each flammable liquid release would result in a fire event. The U.S. Emergency 

Response Guide (ERG) recommends a corresponding 0.5-mile evacuation distance. Based on the 

ERG recommendation, I created a 0.5-mile spatial buffer along each segment and overlaid it on 

the U.S. census tract map to estimate the route mileage distribution of different population 

densities ranging from remote (< 20 persons per square mile), up to extremely high (> 10,000 

persons per square mile) along Class I mainlines (Table 5.2 and Figure 5.3).  
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Table 5.2 
Route mileage distribution by population density along Class I mainlines   

 

 

 

 

Figure 5.3: Distribution of population density along Class I mainlines 

 

5.4 Flammable liquid transportation risk  

Based on the input information above and using Equation (5.6), I estimated the probability 

distribution of multiple-car release incidents per unit-train mile (Table 5.3). Detailed calculation 

is presented in Appendix E.  

 

 

Population Class

Population Density 

(persons per square mile)

Route 

Mileage Percentage

Remote <20 23,565 28.5%

Rural 20-100 23,788 28.7%

Suburban 100-1,000 24,308 29.4%

Urban 1,000-3,000 7,901 9.5%

High 3,000-10,000 3,014 3.6%

Extremely High >10,000 218 0.3%

Total 82,794 100.0%
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5.4.1 Probability distribution of multiple-car release incidents   

Table 5.3 presents the probability distribution of multiple-car release incidents per unit-train mile 

on Class I mainlines. For example, the probability of at least 10 tank cars released is 

approximately 1.51 in 100 million in areas with extremely high population density (> 10,000 

persons per square mile).  

 

Table 5.3 
Probability distribution of multiple-car release incidents by population density 

 

 
 

Note: The “average” row represents national average probability of multiple-car release 

incidents, irrespective of population density  

 
 

 

I compared the multiple-car release risk in a remote area versus an area with extremely 

high population density (Figure 5.4). The analysis shows that although a high population area 

appears to have a higher probability of releasing one or two cars, it is less likely to have a large 

release incident.  

Population 

Class

Population Density 

(persons per 

square mile) ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10
Remote <20 9.80E-07 6.10E-07 4.10E-07 2.88E-07 2.07E-07 1.52E-07 1.13E-07 8.43E-08 6.35E-08 4.82E-08

Rural 20-100 1.18E-06 7.02E-07 4.56E-07 3.09E-07 2.16E-07 1.54E-07 1.12E-07 8.21E-08 6.07E-08 4.51E-08

Suburban 100-1,000 1.23E-06 7.10E-07 4.53E-07 3.04E-07 2.11E-07 1.50E-07 1.08E-07 7.87E-08 5.79E-08 4.29E-08

Urban 1,000-3,000 1.30E-06 6.86E-07 4.20E-07 2.77E-07 1.90E-07 1.34E-07 9.58E-08 6.96E-08 5.10E-08 3.77E-08

High 3,000-10,000 1.41E-06 6.87E-07 3.98E-07 2.53E-07 1.69E-07 1.16E-07 8.19E-08 5.87E-08 4.26E-08 3.13E-08

Extremely High >10,000 1.81E-06 6.57E-07 3.09E-07 1.72E-07 1.05E-07 6.74E-08 4.49E-08 3.07E-08 2.14E-08 1.51E-08

Average 1.16E-06 6.76E-07 4.36E-07 2.96E-07 2.08E-07 1.49E-07 1.08E-07 7.95E-08 5.90E-08 4.40E-08

Number of Tank Cars Releasing per Unit-Train Mile
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Figure 5.4: Risk profile in different population densities   

 

For safety reasons, the trackage in high population areas typically has speed restrictions 

and corresponding lower FRA track class based on the maximum operating speed. Given all else 

equal, lower track classes have been found to have higher derailment rates (Nayak et al. 1983; 

Treichel and Barkan 1993; Anderson and Barkan 2004; Liu et al. 2014a). However, this does not 

mean that most track design and maintenance standards on the lower speed sections are less than 

the higher-speed sections. If these low-speed segments are designed and maintained to higher 

standards than is evident from track class alone, it may lead to over-estimation of derailment 

likelihood under these circumstances (Liu et al. 2014a). Although a higher population area may 

not actually have a higher derailment rate due to many other factors (particularly traffic density) 

(Liu et al. 2014a), I did not have the data needed for this case study to account for them. This 

uncertainty may lead to over-estimation of the risk in a high population area (similarly, the risk 

in a remote area may be under-estimated).  
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5.4.2 Interval between occurrences of multiple-car release incidents  

Using multiple-car release probabilities, I used national traffic level data to estimate the interval 

between occurrences of release incidents of various magnitudes. In 2012, there were 530,000 

tank carloads of petroleum crude oil and Alcohols N.O.S. originated in the United States (BOE 

2013). For purposes of illustration, I assumed that all these carloads were in unit trains consisting 

of eighty non-insulated DOT 111A100W1 tank cars with an average shipment distance of 1,000 

miles. Finally, I assumed that the distribution of route characteristics of flammable liquid 

corridors was the same as the overall Class I mainline network. These assumptions were made to 

illustrate a preliminary nationwide risk assessment methodology and preliminary risk estimates. 

A more refined analysis would use detailed route information.  

 

 I estimated a total of 6.6 million unit-train miles on Class I mainlines in 2012. The traffic 

exposure (measured in unit-train miles) for each population density was estimated based on route 

mileages in different population densities (Table 5.4).  For example, remote areas have 28.5% of 

route miles in the national network. The estimated unit-train miles in remote areas were 1.89 

million (6.6 × 28.5%). 

 

Table 5.4  
Traffic exposure by population density on Class I mainlines  

 

 

Population Class

Population Density 

(persons per square mile)

Traffic Exposure (million 

unit-train miles)

Remote <20 1.89

Rural 20-100 1.90

Suburban 100-1,000 1.95

Urban 1,000-3,000 0.63

High 3,000-10,000 0.24

Extremely High >10,000 0.02

Total 6.63
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 I next estimated the expected interval (measured in years) between occurrences of 

multiple-car release incidents (Table 5.5 and Figure 5.5). For example, I estimated an average of 

42 years (based on 2012 traffic) between ten-or-more-car-release events in urban areas (1,000 to 

3,000 persons per square mile). By comparison, the interval in remote areas for a similar 

magnitude event is 11 years. The occurrence interval for multiple-car release incidents is longer 

in high population areas than in low population areas. Evaluation of the risk analysis indicates 

that this is due to relatively low exposure to urban or higher population density levels (13%) and 

the lower operating speeds in these areas, resulting in the lower probability of tank car 

derailment and release.  

 

Table 5.5 
Estimated interval between occurrences of multiple-car-release incidents on U.S. Class I 

mainlines, assuming 80 non-insulated, DOT 111A100W1 tank cars in a unit train  

 

 
 

Note: The “average” row represents expected interval between releases, irrespective of 

population 

 

 

 

 

 

 

 

 

 

 

Population 

Class

Population 

Density (persons 

per square mile) ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10

Remote <20 0.5 0.9 1.3 1.8 2.6 3.5 4.7 6.3 8.3 11.0

Rural 20-100 0.4 0.7 1.2 1.7 2.4 3.4 4.7 6.4 8.7 11.6

Suburban 100-1,000 0.4 0.7 1.1 1.7 2.4 3.4 4.8 6.5 8.9 12.0

Urban 1,000-3,000 1.2 2.3 3.8 5.7 8.3 11.8 16.5 22.7 31.0 42.0

High 3,000-10,000 2.9 6.0 10.4 16.4 24.6 35.7 50.6 70.6 97.2 132.7

Extremely High >10,000 31.6 87.2 185.2 333.2 546.7 849.9 1,275.9 1,867.3 2,679.8 3,787.7
Average 0.1 0.2 0.3 0.5 0.7 1.0 1.4 1.9 2.6 3.4

Number of Tank Cars Releasing 
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(a) Remote area (<20 persons per square mile) 

 

 
(b) Rural area (20 to 100 persons per square mile) 

 

 
(c) Suburban area (100 to 1,000 persons per square mile) 

 

Figure 5.5 (cont.) 
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(d) Urban area (1,000 to 3,000 persons per square mile) 

 

 

 
(e) High population area (3,000 to 10,000 persons per square mile) 

 

 

 
(f) Extremely high population area (>10,000 persons per square mile) 

 

Figure 5.5: Estimated interval between occurrences of multiple-car release incidents  

by population density  
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5.5 Tank car safety design improvement for risk reduction  

The conditional probability of release of a derailed tank car is dependent on its safety design 

(Treichel et al. 2006; Barkan 2008; Saat 2009; Saat and Barkan 2011) and derailment speed 

(Treichel et al. 2006; Kawprasert and Barkan 2010). The DOT 111A100W1 is the most common 

type of tank car used for transporting flammable liquids in the United States (BOE 2013). Of 

interest is understanding the possible reduction in risk when certain design modifications are 

made to this type of tank car.  

  

In 2011, the Association of American Railroads (AAR) petitioned the Pipeline and 

Hazardous Materials Safety Administration to adopt more stringent requirements for DOT-111 

tank cars used to transport packing group I and II materials. That petition, P-1577, proposed a 

series of safety improvement options, such as top fittings protection, reclosing pressure relief 

valve, thicker tank car shell and head, and head shields (AAR 2011). Subsequently, AAR 

adopted an interchange standard (CPC-1232) with the same requirements applicable to tank cars 

ordered after October 1, 2011.    

 

The CPC-1232 standard requires either a thicker tank shell and head; or a jacket. Both 

types of CPC-1232 compliant cars are required to be equipped with top fittings protection and a 

minimum half-inch, half height head shield (AAR 2011). In this section, I analyze the 

effectiveness of the following four types of tank cars in reducing the risk of multiple-car release 

incidents (Table 5.6).  
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Table 5.6 
Minimum design specifications of tank cars   

 

Note: Conditional probability of release was estimated based on the method described in 

Treichel et al. (2006). 

 

 

 Treichel et al. (2006) developed a series of regression analyses to estimate CPR for most 

common designs of tank cars. Based on their work, Kawprasert and Barkan (2010) subsequently 

developed an approach to estimate speed-dependent CPR of a derailed tank car. Using 

Kawprasert and Barkan’s results, I analyzed the relationship between CPR and speed by tank car 

safety design (Figure 5.6).  

 

Figure 5.6: Speed-dependent conditional probability of release by tank car design  

Conventional     

Non-Jacketed 

1111A100W1

Conventional 

Jacketed  

111A100W1

Non-Jacketed 

CPC-1232 

Compliant Car

Jacketed      

CPC-1232 

Compliant Car

Head Thickness (inch) 0.4375 0.4375 0.5 0.4375

Shell Thickness (inch) 0.4375 0.4375 0.5 0.4375

Jacket No Yes No Yes

Head Shields None None Half Height Full Height

Top Fittings Protection No No Yes Yes

Bottom Fittings Yes Yes Yes Yes

Average Conditional Probability of Release 0.35 0.21 0.24 0.15

y = 0.0096x

y = 0.0066x

y = 0.0041x

y = 0.0058x

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70

C
o

n
d

it
io

n
a

l 
P

ro
b

a
b

il
it

y
 o

f 
R

e
le

a
s

e
 

Derailment Speed (mph)

Conventional Non-Jacketed

Non-Jacketed CPC-1232 

Jacketed CPC-1232 

Conventional Jacketed



 

110 

The CPR of a conventional non-jacketed, DOT-111 tank car is expected to decrease by 31 

percent if it is replaced by a non-jacketed CPC-1232 car, and by 57 percent if it is changed to a 

jacketed CPC-1232 car.  

  

Using the risk analysis model I developed, I estimated the interval between occurrences 

of multiple-car release incidents if different tank car designs are used (Table 5.7 and Figure 5.7). 

The analysis shows that use of jacketed CPC-1232 compliant cars can substantially reduce the 

likelihood of large, multiple-car release incidents. For example, in urban areas, there is an 

average of 10-or-more-cars release incident every 40 years using the conventional non-jacketed, 

DOT 111A100W1 tank car. The interval for a similar magnitude event is 800 years if all the 

conventional, non-jacketed cars were replaced by jacketed CPC-1232 cars.  
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Table 5.7 
Estimated interval between occurrence of multiple-car-release incidents on U.S. Class I 

mainlines, enhanced tank car safety designs, assuming 80 tank cars in a unit train  

 

 

(a) conventional jacketed DOT 111A100W1 

 

 

 

(b) non-jacketed CPC-1232 compliant cars  

 

 
 

(c) jacketed CPC-1232 compliant cars  

 

Note: The “average” row represents expected interval between releases, irrespective of 

population 

 

 

 

Population 

Class

Population Density 

(persons per 

square mile) ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10

Remote <20 0.7 1.2 2.1 3.4 5.4 8.4 13.0 19.8 30.2 46.1

Rural 20-100 0.5 1.1 1.9 3.3 5.4 8.7 13.7 21.5 33.6 52.7

Suburban 100-1,000 0.5 1.1 1.9 3.3 5.5 8.9 14.1 22.2 34.8 54.7

Urban 1,000-3,000 1.5 3.4 6.5 11.4 19.0 30.8 49.3 78.0 122.8 193.5

High 3,000-10,000 3.8 9.3 18.7 33.8 57.9 95.8 155.0 247.1 391.0 617.0

Extremely High >10,000 43.2 149.4 371.0 765.9 1,436.8 2,548.2 4,356.6 7,265.7 11,924.6 19,395.2

Average 0.2 0.3 0.6 1.0 1.6 2.6 4.0 6.3 9.8 15.2

Number of Tank Cars Releasing 

Population 

Class

Population Density 

(persons per 

square mile) ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10

Remote <20 0.6 1.1 1.8 2.9 4.4 6.5 9.6 14.1 20.7 30.1

Rural 20-100 0.5 1.0 1.7 2.7 4.3 6.6 10.0 15.1 22.6 33.7

Suburban 100-1,000 0.5 0.9 1.7 2.7 4.3 6.7 10.3 15.5 23.3 34.9

Urban 1,000-3,000 1.4 3.1 5.6 9.3 15.0 23.4 35.9 54.4 82.0 123.2

High 3,000-10,000 3.5 8.2 15.8 27.5 45.3 72.2 112.2 171.9 260.5 392.9

Extremely High >10,000 39.5 128.7 305.7 606.7 1,094.7 1,868.7 3,074.8 4,930.5 7,765.5 12,088.0

Average 0.2 0.3 0.5 0.8 1.3 2.0 3.0 4.4 6.6 9.8

Number of Tank Cars Releasing 

Population 

Class

Population Density 

(persons per 

square mile) ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10

Remote <20 0.8 1.7 3.2 5.9 10.6 18.7 32.7 57.2 101.0 180.7

Rural 20-100 0.6 1.5 3.0 5.9 10.9 19.9 36.0 65.2 118.9 220.0

Suburban 100-1,000 0.6 1.5 3.0 5.9 11.1 20.5 37.2 67.6 123.8 229.5

Urban 1,000-3,000 1.8 4.8 10.4 20.5 38.8 71.7 131.0 238.8 437.8 812.5

High 3,000-10,000 4.6 13.3 30.3 62.2 120.4 225.5 415.2 759.4 1,392.1 2,575.4

Extremely High >10,000 54.9 226.8 643.8 1,504.6 3,188.6 6,391.1 12,391.7 23,596.7 44,639.6 84,656.1

Average 0.2 0.4 0.9 1.7 3.2 5.8 10.5 18.8 34.0 62.2

Number of Tank Cars Releasing 
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(a) Remote area (<20 persons per square mile) 

 

 

 
 (b) Rural area (20 to 100 persons per square mile) 

 

 
(c) Suburban area (100 to 1,000 persons per square mile) 

 

Figure 5.7 (cont.) 
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(d) Urban area (1,000 to 3,000 persons per square mile) 

 

 

 
(e) High population area (3,000 to 10,000 persons per square mile) 

 

 

 
(f) Extremely high population area (>10,000 persons per square mile) 

 

Figure 5.7: Estimated interval between occurrence of multiple-car release incidents  

by tank car safety design  
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Based on the estimated interval between occurrences of multiple-car release incidents for 

the conventional, non-jacketed DOT 111A100W1 tank car (Table 5.5) and the intervals for 

enhanced tank car designs (Table 5.7), I calculated the increase in the interval for enhanced tank 

car designs compared to the baseline case (Table 5.8).  

 

The analysis shows that tank car safety design improvement has a substantial, 

multiplicative effect on prevention of large, multiple-car release incidents. For example, if 

conventional, non-jacketed DOT 111A100W1 tank cars are replaced by jacketed, CPC-1232 

cars, the expected interval between occurrences of one-or-more-car-release incidents increases 

by 50%. However, the same tank car upgrade strategy results in an 18-fold increase in the 

interval between occurrences of 10-or-more-car release incidents. Tank car safety design 

improvement reduces the occurrence of hazardous materials release incidents of all magnitudes, 

but this effect is more substantial for large, multiple-car release incidents. 

 

It should be pointed out that an assumption in this analysis is that the release probability 

of each tank car in a given accident is independent, but this may be violated due to circumstance-

specific factors (e.g., the interaction between tank cars and infrastructure at the accident location) 

that are not accounted for in the CPR estimation. Further research is needed to better understand 

the validity of the assumption of independence of different cars' CPRs in multiple-car release 

incidents.  
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Table 5.8 
Increase in the interval between occurrences of multiple-car release incidents for various 

enhanced tank car designs compared to the baseline case  

 

(a) Conventional jacketed car versus conventional non-jacketed, DOT 111A100W1  

 

 

(b) Non-jacketed CPC-1232 car versus conventional non-jacketed, DOT 111A100W1  

  

 

(c) Jacketed CPC-1232 car versus conventional non-jacketed, DOT 111A100W1  

  

 

 

Population Density 

(persons per square 

mile) ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10

<20 1.2 1.4 1.6 1.9 2.1 2.4 2.8 3.1 3.6 4.2

20-100 1.2 1.4 1.7 1.9 2.2 2.5 2.9 3.4 3.9 4.5

100-1,000 1.2 1.5 1.7 2.0 2.3 2.6 3.0 3.4 3.9 4.6

1,000-3,000 1.3 1.5 1.7 2.0 2.3 2.6 3.0 3.4 4.0 4.6

3,000-10,000 1.3 1.5 1.8 2.1 2.4 2.7 3.1 3.5 4.0 4.7

>10,000 1.4 1.7 2.0 2.3 2.6 3.0 3.4 3.9 4.4 5.1

Average 1.2 1.5 1.7 1.9 2.2 2.5 2.9 3.3 3.8 4.4

Number of Tank Cars Releasing

Population Density 

(persons per square 

mile) ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10

<20 1.1 1.3 1.4 1.6 1.7 1.9 2.0 2.2 2.5 2.7

20-100 1.1 1.3 1.4 1.6 1.8 1.9 2.1 2.4 2.6 2.9

100-1,000 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.6 2.9

1,000-3,000 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.6 2.9

3,000-10,000 1.2 1.4 1.5 1.7 1.8 2.0 2.2 2.4 2.7 3.0

>10,000 1.2 1.5 1.7 1.8 2.0 2.2 2.4 2.6 2.9 3.2

Average 1.2 1.3 1.4 1.6 1.8 1.9 2.1 2.3 2.6 2.9

Number of Tank Cars Releasing

Population Density 

(persons per square 

mile) ≥1 ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9 ≥10

<20 1.4 1.9 2.5 3.2 4.1 5.3 6.9 9.1 12.1 16.4

20-100 1.4 2.0 2.6 3.5 4.5 5.9 7.7 10.2 13.7 18.9

100-1,000 1.5 2.0 2.7 3.5 4.6 6.0 7.8 10.4 13.9 19.2

1,000-3,000 1.5 2.1 2.8 3.6 4.7 6.1 7.9 10.5 14.1 19.3

3,000-10,000 1.6 2.2 2.9 3.8 4.9 6.3 8.2 10.8 14.3 19.4

>10,000 1.7 2.6 3.5 4.5 5.8 7.5 9.7 12.6 16.7 22.4

Average 1.5 2.0 2.6 3.4 4.4 5.8 7.5 9.9 13.3 18.2

Number of Tank Cars Releasing
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5.6 Discussion 

5.6.1 Risk uncertainties   

The parameters in this model represent the “average” accident circumstances. Therefore, there 

may be uncertainty using this model to analyze an extraordinary release incident such as the Lac-

Mégantic accident. That accident was extremely rare in terms of both the kinetic energy of the 

derailed train itself, and the quantity of flammable and combustible product released. In that 

accident, 63 tank cars out of 72 tank cars and one boxcar were derailed. Figure 5.8 is an analysis 

of derailment severity as measured by number of cars derailed per accident in freight train 

derailments on U.S. Class I railroads in the interval 2002 to 2011. The Lac-Mégantic derailment 

is in the 99.9th percentile in terms of number of cars derailed.  

 

 In addition, the parameters in the risk model I used were estimated based on all accident 

causes combined. Previous studies have found that train derailment probability, POD and 

derailment severities may vary by accident cause (Saccomanno and El-Hage 1989, 1991; 

Anderson 2005; Bagheri 2009; Bagheri et al. 2011; Liu et al. 2011, 2012, 2013b). The next stage 

in this research is to quantify multiple-car release risk associated with major accident causes, 

such as a broken rail or bearing failure. This would enable a better understanding of the causal 

effects in hazardous materials transportation risk analysis, as well as the reduction in risk 

associated with different approaches to derailment prevention.  
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Figure 5.8: Number of cars (including locomotives) derailed per FRA-reportable freight-train 

derailment, all accident causes combined on U.S. Class I railroad mainlines, 2002 to 2011 

 

 

5.6.2 Risk reduction strategies   

In addition to tank car safety improvement, it is also important to evaluate other potential risk 

reduction strategies, particularly approaches to derailment prevention. Detailed cost-benefit 

analysis of these risk reduction strategies is beyond the scope of this chapter; however, in the 

following subsections, I identify certain promising approaches.   

 

5.6.2.1 Accident prevention     

It is important to identify major accident causes and prioritize accident prevention initiatives. 

Track and equipment-related accident causes accounted for over 70 percent of Class I mainline, 

freight-train derailments (Barkan et al. 2003; Liu et al. 2012). In particular, broken rails caused 

more hazardous materials car incidents and the corresponding releases than any other individual 

cause group (Liu et al. 2013a; Liu et al. 2014c). Therefore, broken rail prevention appears to be a 

promising risk reduction strategy. Liu et al (2014c)’s study developed a single-car release risk 
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model (CCPS 1995; Kawprasert and Barkan 2008, 2010; Saat 2009), but I am unaware of any 

study analyzing the effect of broken rail prevention on prevention of multiple-car release 

incidents.  

 

Another approach to derailment prevention is use of wayside defect detectors to prevent 

equipment-related accident causes (Ouyang et al. 2009; Schlake and Barkan 2011). However, no 

prior research quantified the effect of wayside defect detector implementation on reduction of 

hazardous materials transportation risk. Further research is needed to evaluate how effectively 

wayside defect detectors could prevent train accidents, and the corresponding impact on risk.  

 

5.6.2.2 Speed reduction  

Train speed has a two-fold effect on the number of tank cars releasing. First, lower speed 

derailments may result in fewer cars derailed (Saccomanno and El-Hage 1989, 1991; Anderson 

2005; Bagheri et al. 2011; Liu et al. 2011). Second, lower derailment speed results in a lower 

average tank car CPR (Kawprasert and Barkan 2010). The model developed in this chapter can 

be used to simultaneously account for both of these effects of derailment speed on multiple-car 

release incidents.  

 

5.7 Conclusion 

In this chapter, I develop a preliminary nationwide risk analysis of flammable liquid 

transportation on U.S. railroads. The analysis shows that the interval between occurrences of 

multiple-car release incidents is lower in high population areas than in low population areas. 

Tank car safety design improvement has a more substantial, multiplicative effect on prevention 
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of large, multiple-car release incidents. Use of CPC-1232 standards can significantly reduce the 

probability of a large, catastrophic release incident.  
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Chapter 6 

 

Integrated Risk Reduction Framework to Improve Railway Hazardous Materials 

Transportation Safety  

 

Adapted from  

Liu, X., Saat, M.R., Barkan, C.P.L. (2013). Integrated risk reduction framework to improve 

railway hazardous materials transportation safety. Journal of Hazardous Materials 260, 131-140. 

 

6.1 Introduction   

Approximately 2 million carloads of hazardous materials are shipped by rail in North America 

each year (BOE 2013). Although the majority of these shipments (over 99.99%) safely reach 

their destinations, the risk of a hazardous materials release incident remains a major safety 

concern to the rail industry, government and public. For example, the release of chlorine gas 

from a train collision in Graniteville, South Carolina in January 2005 resulted in 9 fatalities, 

hundreds of injuries, an evacuation of about 5,400 people and economic loss exceeding $6.9 

million (NTSB 2005). There has been growing interest and intensifying regulatory pressure to 

further improve the safety of rail transport of hazardous materials. Improvements have focused 

on enhancing packaging and tank car safety design (Barkan et al. 1991; Saat and Barkan 2005; 

Barkan et al. 2007; Tyrell et al. 2007; Barkan 2008; Saat 2009; Saat and Barkan 2011), 

deploying wayside inspection technologies (Resor and Zarembski 2004; Tournay and Cummings 

2005; Ouyang et al. 2009; Kalay et al. 2011), upgrading track infrastructure (Kawprasert and 

Barkan 2010; Liu et al. 2011a, 2011b), routing (Glickman 1983; Glickman and Rosenfield 1984; 

Abkowitz et al. 1989; Erkut et al. 2007; Kawprasert and Barkan 2008), reducing train speed 

(Kawprasert 2010) and improving emergency response practices (CCPS 2008). Each strategy has 

a direct effect on hazardous materials transportation risk, and different strategies may also have 

interactive effects.  
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However, how to optimize the integration of different risk reduction strategies in the most 

cost-efficient manner is not well understood. In this chapter, I develop an integrated risk 

reduction framework, accounting for the cost-effectiveness of individual risk reduction 

strategies, their interactive effects and optimal integration. The chapter is structured as follows. 

First, I formulate hazardous materials transportation risk management as a multi-attribute 

decision analysis problem. Then, I develop a Pareto-optimality approach to determine the lowest 

risk that can be achieved at a specific level of investment. Understanding the risk-and-cost 

relationship can lead to development of a decision model to determine the “optimal” investment. 

To illustrate the methodology, I analyze the cost-effectiveness of broken rail prevention, tank car 

safety design enhancement and their optimal combination given a budgetary constraint. Although 

the model implementation was based on U.S. data, the methodology can be adapted to the rail 

systems in other regions.   

 

6.2 Multi-attribute model for hazardous materials transportation risk management 

Hazardous materials transportation risk management can be formulated as a multi-attribute 

decision problem. It is assumed that certain risk reduction strategies are implemented to reduce 

the baseline risk (R0) to a lower level (R). The associated implementation cost is I. Given a 

specific investment Ii, there is an optimal combination of risk reduction strategies so as to 

achieve the lowest risk. Let R*(Ii) represent the lowest risk given investment Ii. For rational 

decision making, additional investment should not reduce safety, that is: 

If Ij > Ii,  Then R*(Ij) ≤ R*(Ii)             (6.1)  
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 In Equation (6.1), the equality holds when the additional investment (Ij – Ii) does not 

result in additional safety benefit. Figure 6.1 illustrates the relationship between R*(I) and I. This 

relationship is called Pareto-optimality (Fudenberg and Tirole 1983). In the context of hazardous 

materials transportation risk management, Pareto-optimality means that the safety cannot be 

further improved without additional investment. When Pareto-optimality is used in a multi-

attribute decision analysis model, the “optimal” investment (I**) and the corresponding risk (R**) 

can be determined.  

Cost of risk 

reduction 

strategies

Risk

Baseline risk

low to high

lo
w

 t
o

 h
ig

h

Pareto optimality

Dominated Non-Dominated 

 

Figure 6.1: Schematic illustration of Pareto-optimality  

in hazardous materials transportation risk management 

 

 

In decision analysis, the value function is a general approach to account for the decision 

maker’s preference and trade-off between multiple attributes (such as the risk and cost) (Dyer 

and Sarin 1979). The linear value function has been used in prior research (Glickman et al. 

2007). A value function V(R,I) is defined based on the risk and the investment to reduce the 

baseline risk to a lower level of risk.  

http://en.wikipedia.org/wiki/Jean_Tirole
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( , ) R IV R I W R W I                (6.2) 

Where: 

V(R, I) = value function of risk and investment  

R = proportion of baseline risk (R = 100% for baseline risk)  

I = investment for reducing the baseline risk (R0) to a lower level of risk R 

WR  = first-order partial derivative of the value function with respect to risk 

WI = first-order partial derivative of the value function with respect to investment 

 

On the Pareto-optimality frontier, the minimum risk can be estimated as a function of 

investment, denoted as R = g(I). Equation (6.2) can be re-written as:  

( , ) ( )R IV R I W g I W I               (6.3) 

 

The optimal investment (I**) is determined by solving the following equation:  

** **

** **

( , ) ( )
0R I

V R I g I
W W

I I

 
  

 
                       (6.4)      

Equation (6.4) can be re-written as :  

**

**

( ) I

R

Wg I

I W


 


              (6.5) 

 

If the optimal investment (I**) exceeds the budget (Imax), the optimal decision may be 

either no investment (I** =0) or using all the budget (I** = Imax), depending on the value function. 

In order to optimize the allocation of investment, we need to estimate the safety effectiveness 

and cost of a risk reduction strategy. In the next section, I introduced a railroad hazardous 

materials transportation risk model.  
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6.3 Railroad hazardous materials transportation risk analysis model  

Railroad hazardous materials transportation risk is defined as a multiplication of derailment rate 

of a hazardous materials car, traffic exposure, conditional probability of release (CPR) of a 

derailed hazardous materials car and the consequence of a release (Anand et al. 2005; 

Kawprasert and Barkan 2008, 2010; Saat 2009; Kawprasert 2010; Liu et al. 2011b, 2013)   

 

R= Z × M × P × C              (6.6) 

Where: 

R = hazardous materials transportation risk  

Z = hazardous materials car derailment rate per billion car-miles  

M = traffic exposure (e.g., billion car-miles) 

P  = CPR of a derailed hazardous materials car  

C = consequences of a car release (e.g., number of people affected) 

 

Hazardous materials car derailment rate is defined as the number of cars derailed per unit 

of traffic exposure. Car derailment rates vary by track characteristics (Nayak et al. 1983; Treichel 

and Barkan 1993; Anderson and Barkan 2004). The CPR of a hazardous materials car reflects its 

safety performance. The majority of railroad hazardous materials shipments (72%) and the 

largest quantities are in tank cars (BOE 2013), thus tank car safety design improvement has been 

a priority for the U.S. rail industry and government. Treichel et al. (2006) developed logistic 

regression models to estimate the CPR of a derailed tank car given its configuration. Kawprasert 

and Barkan (2010) extended Treichel et al’s model by accounting for derailment speed 

(Kawprasert and Barkan 2010). The consequences of a release can be measured by several 
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metrics, including property damage, disruption of service, environmental impact, human impact 

(e.g., number of people potentially affected by a release), litigation or other types of impacts 

(Barkan et al. 1991; Saat 2009; Kawprasert 2010). Among the consequence measures, population 

in the affected area of a release incident is often used (CCPS 2008; Saat 2009; Kawprasert 2010). 

The hazard exposure model provided in the U.S. Department of Transportation (U.S. DOT) 

Emergency Response Guidebook (ERG) can be used to estimate the affected area based on the 

material and scenario of release (fire, spill, daytime, nighttime) (PHMSA 2012). Once the 

affected area is determined, the number of people affected can be estimated by multiplying the 

affected area of each segment by the corresponding average population density. The assessment 

of release consequence can be conducted using a Geographical Information System (GIS) 

platform (Kawprasert 2010).  

 

Figure 6.2 illustrates two basic strategies to reduce tank car release risk: (1) reduce the 

likelihood of a hazardous materials release incident; (2) reduce release consequences. This study 

focuses on the former – reducing the likelihood of a release incident. Reducing the likelihood of 

a hazardous materials car release incident (tank cars are used as an example in this chapter) can 

be achieved by reducing tank car derailment probability and/or reducing the CPR of a derailed 

tank car. For illustration, I consider two potential risk reduction strategies, broken rail prevention 

to reduce tank car derailment probability and tank car safety design enhancement to reduce its 

release probability.  
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Figure 6.2: Hierarchy of risk reduction strategies in this chapter 

 

In the next section, I analyze the cost-effectiveness of broken rail prevention and tank car safety 

design enhancement, respectively, for risk reduction.   

 

6.4 Cost-effectiveness of risk reduction strategies  

6.4.1 Broken rail prevention  

6.4.1.1 Broken-rail-caused car derailment rate  

Broken rails are among the most common and severe accident causes on U.S. railroads (Barkan 

et al. 2003; Liu et al. 2012, 2013a). I use the number of all types of railcar derailment as a proxy 

to evaluate the safety effectiveness of broken rail prevention. This approach assumes that the 

proportional reduction of hazardous materials car derailments is equal to other types of railcars 

due to broken rail prevention (Liu et al. 2013b), since a broken rail can derail any type of railcar, 
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regardless of whether it is transporting hazardous materials. I assumed that the number of 

broken-rail-caused cars derailed follows a Poisson distribution: 

k
-λλ

P(Y=k)= e
k!

              (6.7) 

Further, the Poisson mean (λ) is assumed to follow a gamma distribution (Hilbe 2007): 

1( )
( )

m

p m m e

 
 

  

 
 
  


             

(6.8)                  

 

It can be shown that the marginal distribution of broken-rail-caused derailment count follows a 

negative binomial distribution (Hilbe 2007):  

( )
( | ) ( | , )

! ( )

y

y
Poi y Gamma d

y


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    
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         (6.9) 
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 
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 
                        (6.10) 

Where: 

µ = expected broken-rail-caused car derailment count  

βp = pth parameter coefficient  

Xp = pth explanatory variable  

M = traffic exposure (gross ton-miles)  

η = gamma parameter (also called inverse dispersion parameter)  

 

Equations (6.7) to (6.10) represent the widely used Poisson-gamma (negative binomial) 

regression model for estimating accident rates (Hilbe 2007). In this chapter, I use annual rail 
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maintenance (including rail repair and renewal) cost per track mile (adjusted to dollars in year 

2008) as an explanatory variable to estimate the rate of broken-rail-caused car derailments. The 

accident data were from the Rail Equipment Accident (REA) database from the Federal Railroad 

Administration (FRA) of U.S. Department of Transportation (DOT). This database contains 

information regarding all accidents that exceed a monetary threshold of damages to on-track 

equipment, signals, track, structures, and roadbed (FRA 2011). In this chapter, I focus on Class I 

freight railroads (Class I railroads are defined as those having operating revenue that exceeded 

$378.8 million in 2009). They accounted for approximately 69% of route miles and 88% of 

carloads transported on U.S. railroads in 2012 (AAR 2013).  

 

Annual rail maintenance cost and traffic exposure data were from Class I railroad’s 

annual report to the U.S. Surface Transportation Board (STB 2002-2008). Based on the negative 

binomial regression model, the expected broken-rail-caused car derailment rate on Class I 

mainlines (Zbr) is estimated as follows:  

exp(-0.1868-0.3356 )brZ C                       (6.11) 

where: 

Zbr = expected broken-rail-caused car derailment rate per billion gross ton-miles  

C = annual rail maintenance cost per track-mile (thousand dollars)  

 

The goodness-of-fit of the regression model is evaluated by a statistic called Deviance, 

which asymptotically follows a Chi-squared distribution (Hilbe 2007). Based on this criterion, 

the model exhibits an overall acceptable fit (Deviance = 37.2, degrees of freedom = 33, P = 0.28 

> 0.05). Appendix F presents the original data for the statistical analysis. In addition to 
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normalizing annual rail maintenance cost per mile, some railroads may have information 

regarding annual rail maintenance cost per tonnage. The two variables (cost per mile and cost per 

ton) are highly correlated (Pearson correlation coefficient is 0.96), therefore using either 

explanatory variable could fit the data well. Appendix G presents the regression results when 

using rail maintenance cost per ton as the predictor variable in lieu of the cost per mile as shown 

in Table 6.1.  

 

Table 6.1  
Regression analysis of broken-rail-caused car derailment rate, U.S. class I mainlines,  

2002 to 2008  

Parameter Estimate Standard Error Pr > ChiSq

Intercept -0.1868 0.3053 -0.7852 0.4115 0.5405

Annual Rail Maintenance Cost per 

Track Mile (Thousand Dollars) -0.3356 0.1101 -0.5514 -0.1198 0.0023

Dispersion Parameter (1/η) 0.3682 0.0857 0.2333 0.5811

Deviance = 37.2 (Degrees of Freedom = 33)

P = 0.28 > 0.05

 95% Confidence Limits

 

 

Table 6.1 shows that the expected broken-rail-caused car derailment rate declines when 

rail maintenance cost increases, all else being equal. The probability distribution of the number 

of broken-rail-caused cars derailed given traffic exposure and rail maintenance cost can be 

estimated using a negative binomial distribution:  

2.7159 y

Γ(y+2.7159) 2.7159 exp(-0.1868-0.3356C)M
P(y)=

y!Γ(2.7159) 2.7159+exp(-0.1868-0.3356C)M 2.7159+exp(-0.1868-0.3356C)M

   
   
   

   (6.12)     

(2.7159 ≈ 1/0.3682)                        

Where: 

P(y) = probability that there are y broken-rail-caused cars derailed given traffic M 

M = traffic exposure (billion gross ton-miles)  
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C = annual rail maintenance cost per track-mile (thousand dollars)  

 

Figure 6.3 shows the distribution of the annual number of broken-rail-caused cars 

derailed assuming that annual rail maintenance cost (C) is $2,000 per track-mile or $4,000 per 

track-mile, respectively, on the 160,240 track miles of U.S. Class I railroad mainlines (AAR 

2011). Annual traffic exposure (M) is 3,446 billion gross ton-miles (AAR 2011). The analysis 

shows that the higher the rail maintenance cost per track-mile, the smaller the expected number 

of broken-rail-caused cars derailed given traffic exposure. This may be because improved rail 

maintenance reduces rail failure rate, thereby reducing the probability of broken-rail-caused 

derailments (Dick et al. 2003).  
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Figure 6.3: Probability distribution of annual number of broken-rail-caused car derailments by 

annual rail maintenance cost, U.S. Class I mainlines, annual traffic exposure is 3,446 billon gross 

ton-miles (only a portion of the entire distribution is displayed) 
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The percent reduction in broken-rail-caused car derailment rate is an exponential function of 

additional rail maintenance cost (proof is in Appendix H):  

1 exp(-0.3356 )brZ C                          (6.13) 

Where: 

ΔZbr = percent reduction in broken-rail-caused car derailment rate per billion ton-miles  

ΔC = increment of annual rail maintenance cost per track-mile (thousand dollars) 

 

The relationship between ΔZbr and ΔC is illustrated in Figure 6.4 using Equation (6.13). 

It shows that when the investment for broken rail prevention increases to a certain level, the 

percent reduction of car derailment rate levels off.  
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Figure 6.4: Percent reduction of broken-rail-caused car derailment rate  

by increasing annual rail maintenance cost per track-mile  
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 This chapter focuses on the overall effect of broken rail prevention, without accounting 

for a specific broken rail prevention technique. Further analysis is needed to analyze the 

variability in cost and effectiveness of different broken rail prevention techniques, such as rail 

grinding or advanced rail defect detection technologies.  

 

6.4.1.2 Proportion of broken-rail-caused car derailment 

The analysis above is related to the percent reduction of broken-rail-caused car derailments by 

increasing rail maintenance cost. In order to assess the effect of broken rail prevention on the 

overall accident rate, I estimate the proportion of car derailments caused by broken rails versus 

other causes.  

 

Figure 6.5 shows the total number of freight cars derailed due to primary accident cause 

for FRA-reportable freight-train derailments on Class I mainlines from 2001 to 2010. It shows 

that broken rails or welds accounted for 23% of railcars derailed.  
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Figure 6.5: Railcar derailment frequency by accident cause,  

Class I mainline freight-train derailments, 2001 to 2010 (Liu et al. 2013b) 

 

The proportion of broken-rail-caused car derailments may vary by track characteristics. 

In this analysis, each car derailed is assumed to be caused by either a broken rail or another 

cause. The probability that a car derailment is caused by a broken rail can be estimated using a 

logistic regression model (Liu et al. 2013b):  

|

exp( )

1 exp( )

k k

k
b a

k k

k

X

P

X













                       (6.14) 

Where: 

Pb|a = probability that a car derailment is due to broken rails 

βk = parameter coefficient 
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Xk = explanatory variables  

 

The following factors are considered. The selection of these variables is based on prior research 

(Dick et al. 2003; Schaffer 2008; Liu et al. 2013b), and communication with railway engineering 

professionals.  

 TrkClas (ordinal variable) 

This variable represents FRA track class (1, 2, 3, 4 and 5). FRA track class is a proxy of 

railroad track quality by U.S. federal regulations. The higher the FRA track class, the 

greater the allowable maximum operating speed, and correspondingly more stringent 

engineering standards apply.   

 MOO (dummy variable) 

MOO=1 indicates a signaled track territory; 0 otherwise.  

 MGT (dummy variable) 

It represents annual traffic density level, measured in million gross tons (MGT). “MGT 

=1” represents annual traffic density greater than 20 MGT (threshold for high-density 

track defined by the Associated of American Railroads (AAR 2011)), 0 otherwise.  

 Season (dummy variable) 

“Season = 1” represents a train derailment occurred in colder period between   

 September and February, 0 otherwise. 

 

Table 6.2 presents the significance of each variable using likelihood ratio (LR) test (Hilbe 

2007). It shows that FRA track class (TrkClas) is not significant given the other variables. 

Traffic density (MGT) has a minor effect on the probability that a car derailment is caused by 
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broken rails. Whereas, both method of operation (MOO) and climate (Season) are significant. 

Table 6.3 presents 95% confidence interval of the estimated proportion of broken-rail-caused car 

derailments by track characteristics. It shows that non-signaled track has a greater proportion of 

broken-rail-caused car derailments than signaled track, probably due to the absence of track 

circuits to detect broken rails in non-signaled track territories. In addition, a car derailment is 

more likely to be caused by broken rails during colder seasons (September to February), 

probably because of thermal stress in rails (Dick et al. 2003).  

 

Table 6.2  

Statistical significance of explanatory variables  

 

Variable Chi-Square Pr > ChiSq

TrkClas 1.21 0.8773

MGT 3.79 0.0516

MOO 24.38 <.0001

Season 28.4 <.0001  

 

Table 6.3 

Estimated probability that a car derailment is due to broken rails, by method of operation, annual 

traffic density and season, Class I mainlines, 2001 to 2010  

Method of 

Operation

Annual Traffic 

Density Season Mean Lower Bound Upper Bound

Non-Signaled <20MGT March to August 0.2862 0.2281 0.3523

Non-Signaled <20MGT September to February 0.4779 0.4088 0.5478

Non-Signaled ≥20MGT March to August 0.2254 0.1689 0.2943

Non-Signaled ≥20MGT September to February 0.3992 0.3245 0.4789

Signaled <20MGT March to August 0.1455 0.1063 0.1961

Signaled <20MGT September to February 0.2799 0.2169 0.3531

Signaled ≥20MGT March to August 0.1100 0.0858 0.1400

Signaled ≥20MGT September to February 0.2201 0.1833 0.2619

95% Confidence Interval

 

*Sample contains 6,383 broken-rail-caused car derailments out of 27,516 cars derailed by all 

causes (including all types of empty or loaded railcars) 
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6.4.2 Tank car safety design improvement  

An alternative risk reduction strategy is to reduce the release probability of a derailed tank car. 

This can be achieved by improving tank car safety design (Barkan et al. 1991; Saat and Barkan 

2005; Barkan et al. 2007; Tyrell et al. 2007; Barkan 2008; Saat 2009; Saat and Barkan 2011), 

Treichel et al. (2006) used a logistic regression model to estimate the CPR for common tank car 

designs as well as hypothetical configurations based on design elements currently in use. This 

model has been used by Barkan (2008) and Saat (2009) to develop optimized tank car safety 

design models. Table 6.4 shows the CPR of two types of tank cars transporting ethanol, a 

common hazardous materials transported by rail in North America (BOE 2013). The enhanced 

tank car is thicker and has head protection. Thus, it is expected to have a lower release 

probability (0.2947 for the baseline tank car versus 0.2412 for the enhanced car).  

 

Table 6.4  

Conditional probability of release by tank car safety design  

 

 

 

Saat (2009) developed a financial model to estimate the capital and operational cost for 

upgrading the baseline tank car fleet. In this chapter, I used his model to quantify the  

cost-effectiveness of tank car design enhancement for risk reduction. The cost for upgrading the 

baseline tank car fleet was estimated based on the following information:  

 29,013 ethanol baseline tank cars in the fleet in the U.S. (BOE 2012) 

 317,370 annual tank car shipments (BOE 2012) 

 Average shipment distance is 926 miles (STB 2009) 

Design

Head Thickness 

(inch)

Shell Thickness 

(inch) Headshield

Capacity 

(gallon)

Conditional Probability 

of Release (CPR)

Baseline 0.4375 0.4375 None 32,000 0.2947

Enhanced 0.5000 0.5000 0.5 inch Half Height 31,186 0.2412
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 The capital cost is $80,485 and $84,494 (dollars in year 2008) for a baseline tank car and 

an enhanced tank car, respectively using Saat’s model (Saat 2009) 

 Life cycle of a tank car is assumed to be 40 years (Saat 2009) 

 Annual discount rate is 5% (OMB 2008) 

 

Using Saat’s model,  the annualized cost over a 40-year period is approximately $9.7 

million if the entire ethanol baseline tank car fleet is replaced by the enhanced tank cars at once. 

Correspondingly, the average CPR is expected to be reduced by 18.2%  

([0.2947-0.2412]/0.2947=18.2%). Thus, on average, $1 million annual investment for tank car 

fleet upgrade is expected to yield 1.9% reduction of release probability, all else being equal 

(18.2%÷9.7=1.9%). Therefore, the percent reduction of average release probability of baseline 

tank car fleet is a function of annual cost:  

 

ΔCPR = minimum (1.9%×C, 18.2%)         (6.15) 

Where: 

ΔCPR = percent reduction of average CPR of baseline tank car fleet  

C = annual cost for upgrading baseline tank car fleet (million dollars) 

 

Using Equation (6.15), the relationship between percent CPR reduction and annual cost 

for tank car fleet upgrade is shown in Figure 6.6.  
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Figure 6.6: Percent reduction of average CPR by annual cost for upgrading tank car fleet  

 

6.5 Pareto-optimality between risk and cost  

The analysis above shows the cost-effectiveness of different risk reduction strategies. The 

following optimization model is developed to determine the “optimal” portfolio of risk reduction 

strategies given budgetary constraint (derived in Appendix I). 

Objective function:  

u

b

P
maximize -(1-em) (1-b)+

P
b

   
  
   

                                                                 (6.16) 

Subject to:  

ln(1 )
160.240 9.7

0.3356

e
b Budget


                  (6.17) 

0 1e               (6.18) 

0 1b               (6.19) 
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The objective function is to maximize the national average percent risk reduction. The 

decision variables are the proportion of broken-rail-caused car derailments to prevent (e), and the 

proportion of the tank car fleet to upgrade (b). The first constraint is that total implementation 

cost cannot exceed the budget. The other constraints require that the decision variables are 

between 0 and 1.  

 

I applied this optimization model to the 160,240 track miles on the U.S. Class I mainline 

rail network (AAR 2011). On average, 23% of cars derailed were due to broken rails  

(m = 0.23) (Liu et al. 2012). The CPR of a baseline and an enhanced tank car are 0.2947 and 

0.2412, respectively. A sensitivity analysis was conducted varying annual budget from $0 to 

$200 million, in increments of $2 million. Given this budget, the optimization model was solved 

using the software called General Algebraic Modeling System (GAMS) with its built-in solver 

MINOS. The relationship between the minimum risk level and annual budget constructs a 

Pareto-optimality frontier (Figure 6.7).  
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Figure 6.7: Pareto-optimality of implementation of integrated risk reduction strategies  

 

This chapter aims to address “what strategies to invest” rather than “how to implement”. 

For example, I estimate that 23% of broken-rail-caused car derailments should be prevented 

without specifying how to achieve this objective. The next step of this research is to develop an 

operational model to determine what technologies to implement and extent of implementation to 

prevent major accident causes.  

 

6.6 Optimal investment  

The risk-and-investment relationship in Figure 6.7 is fitted by the following step-wise function: 

R = g(I) =  {    1- 0.0184×I                                          If I≤ 9.7 

                      0.8198exp(-0.0004×I) }                         Otherwise  
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Recall that the value function is ( , ) R IV R I W R W I  . If maximum annual budget does not 

exceed $ 9.7 million (Imax ≤ 9.7), the optimal investment (I**) is either $0 or $9.7 million, 

depending on the ratio of WI to WR. Specifically,  

 

If  WI/WR > 0.0184,      I**=9.7 

If  WI/WR ≤ 0.0184,    I**=0 

 

If annual investment exceeds $ 9.7 million, the risk decreases as an exponential function of 

investment. The optimal investment is determined by Equation (6.5): 

**

**

( ) I

R

Wg I

I W


 


 

 

g(I) = 0.8198exp(-0.0004×I) for I > 9.7 , thus,                   

**
**

**

( )
0.8198exp( 0.0004 )( 0.0004) I

R

Wg I
I

I W


    


        (6.20) 

Therefore, **

ln
0.8198 0.0004

0.0004

I

R

W

W
I

 
 

 


              (6.21) 

 

If I** exceeds the budget (Imax), the optimal investment is either $0, $9.7 million or the 

maximum budget, depending on the value function. In the multi-attribute value function, WI/WR 

is numerically equal to the monetary value of one percent risk reduction. For example, if the 

decision maker is willing to invest 32 million dollars annually to achieve 1% baseline risk 

reduction, WI/WR is equal to 0.000313 (1% ÷ 32). Using Equation (6.21), the optimal investment 
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(I**) is 120 million dollars. It means that the decision maker is willing to invest $120 million 

annually in the rail network for safety improvement. Figure 6.7 has shown that this investment, if 

used in a cost-efficient manner, is expected to reduce the baseline risk by approximately 22%. 

Figure 6.8 shows that the optimal investment varies by the monetary value of risk reduction. It 

illustrates that the greater monetary value per unit of risk reduction, the more investment the 

decision maker is willing to spend for risk reduction.   
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Figure 6.8: Illustrative example of optimal investment by  

monetary value of one percent risk reduction   

 

6.7 Conclusion 

This chapter develops a framework model to optimize the integration of multiple risk reduction 

strategies to reduce the risk in the most cost-efficient manner. Broken rail prevention represents 

an accident prevention strategy to reduce tank car derailment probability, while tank car safety 

design enhancement affects the probability that a derailed car releases. The interactive effects 

among multiple risk reduction strategies are taken into account in evaluating the combined safety 
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effectiveness of these strategies. The methodology presented in this chapter is the first step 

towards a larger, integrated risk management framework under development. The method can be 

further developed and applied to a broader set of risk reduction strategies.  

 

6.8 Future research   

The intent of this research is to identify the strategic options for risk reduction, without detailing 

specific techniques or practices to achieve the safety goal of a specific risk reduction strategy. 

Further research is needed to better understand the cost-effectiveness of various risk reduction 

measures within the same strategy (for example, rail grinding or rail inspection for broken rail 

prevention). Additionally, railroads may need to prioritize the track segments for safety 

improvement based on the trade-off between risk and cost, resource available, and operational 

characteristics. Implementation and prioritization of integrated risk reduction framework are 

based on extensive data. Each railroad should use their enterprise-specific data to optimize the 

allocation of risk reduction resources.  

 

The next stage in this research is to implement integrated risk reduction strategies on 

representative hazardous materials routes. When extending the analysis to a rail network 

involving multiple routes, network-specific optimization models can be developed to 

simultaneously determine the optimal routing and cost-efficient infrastructure and rolling stock 

improvement (Lai et al. 2011). 

 

In addition to the risk while traversing main lines between terminals, the risk in 

classification yards is also important (Glickman and Erkut 2007; Cozzani et al. 2007). Other risk 
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reduction strategies, such as hazardous materials car marshaling, can be incorporated into an 

integrated risk reduction framework (Bagheri et al. 2011). Ultimately, the risks of different 

transportation modes will be evaluated and optimized to facilitate a risk-informed decision 

related to multimodal transportation of hazardous materials (Paltrinieri et al. 2009).  

 

In addition, some researchers considered risk aversion in hazardous materials 

transportation risk management accounting for the decision maker’s avoidance toward 

catastrophic consequences (Erkut and Ingolfsson 2000). Use of utility (or disutility) model (Pratt 

1964) might be useful in the group decision making involving multiple stakeholders. 
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Chapter 7 

Future Research 

 

7.1 Introduction 

In this chapter I highlight the needs for future research related to the topics in this dissertation. 

More specific points related to future research are also discussed in chapters 4, 5 and 6. 

 

7.2 Future research    

7.2.1 Trend of accident rates  

The analysis of train derailment probability and severity in this dissertation was based on 

aggregated accident data within the study period. This approach enabled a larger sample size, but 

may also introduce uncertainty if there are substantial temporal effects. The next step will be to 

investigate possible trends in train and car derailment rates on U.S. railroads using appropriate 

statistical models (Evans 2007, 2010; Silla and Kallber 2012). This would provide insights 

regarding possible changes in rail safety performance in different periods.  

 

7.2.2 Consequence of a multiple-tank-car release incident  

This dissertation analyzes the probability of a multiple-tank-car release incident. Future work is 

needed to analyze the consequences (e.g., population affected) of such releases. Statistical and 

engineering models may be developed to analyze the relationship between release consequences 

and the number of tank cars releasing using a geographical information system (GIS) platform.  
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7.2.3 Route-specific flammable liquid transportation risk analysis   

In chapter 5, I focused on nationwide risk analysis of unit-train shipments of hazardous 

materials. The next stage of this work is to perform risk analysis on key corridors transporting 

flammable liquids accounting for localized differences in infrastructure and operating practices, 

and their consequent effect on tank car derailment and release probabilities and exposed 

population densities. In addition, the effectiveness of various risk reduction strategies, 

individually and in combination needs to be analyzed.  

 

7.2.4 Risk comparison under parameter uncertainty  

Single-point risk estimates have often been used to evaluate and compare route-specific risk. 

These do not account for the uncertainty in the estimation of input parameters in the risk 

analysis, such as accident rate, tank car release probability and affected population. Future 

research needs to develop an approach to assess the variance in risk estimates and to analyze 

whether the differences between them on different routes are statistically significant. This 

method would facilitate a better understanding of the reliability of risk estimation and could aid 

decision makers in identifying the most appropriate hazardous materials routes.  

 

7.2.5 Disutility function in risk analysis    

The majority of traditional hazardous materials transportation risk models assume that decision 

makers are risk-neutral. i.e., they are indifferent between different probability distributions of 

release consequences, if expected value of consequences are the same. However, previous 

studies suggest that human beings often exhibit risk aversion when dealing with low-frequency-

high-consequence (LFHC) events (Evans and Erlanger 1997; Erkut and Ingolfsson 2000). This 
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risk-neutrality assumption will be relaxed in the future research by accounting for a decision 

maker’s risk attitudes. A disutility-based model should be developed to understand how different 

risk attitudes may change decisions related to hazardous materials transportation risk 

management.  

 

7.2.6 Other risk reduction strategies  

This dissertation focused on broken rail prevention and tank car safety design improvement as 

potential risk reduction strategies. The next step is to consider additional risk reduction 

strategies, such as implementation of wayside inspection technologies, track quality upgrade 

(increased track inspection and maintenance standards), traffic control system upgrades, high 

performance rolling stock components (wheels, axles, bearings) and rerouting. The preliminary 

integrated risk reduction framework developed in this dissertation can be modified to account for 

the safety benefits and costs of these risk reduction strategies, individually and in combination, in 

order to address the trade-off between transportation safety and efficiency.  
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Appendix A 

Variance in car derailment rate 

 

Average car derailment rate can be estimated by multiplying train derailment rate by average 

number of cars derailed per derailment (Anderson and Barkan 2004).  

* *
* m D

C
M


               (A.1) 

Where: 

C* = estimated car derailment rate per traffic exposure  

m* = estimated train derailment count given traffic exposure  

D* = average number of cars derailed per train derailment  

M = traffic exposure  

 

The variance in estimated car derailment rate is denoted by Var(C*). Assuming that estimated 

train derailment count and estimated derailment severity are independent, Var(C*) is calculated 

using the model developed by Goodman (1962):  

* 2 * * 2 * * *
*

2

[ ( )] ( ) [ ( )] ( ) ( ) ( )
( )

E m Var D E D Var m Var m Var D
Var C

M

 
                                        (A.2) 

 

The higher the FRA track class, the greater the average number of cars derailed. It is 

probably due to the greater maximum allowable operating speeds on higher track classes (Table 

A.1). Track-class-specific average number of cars derailed per derailment was calculated and 

used to estimate car derailment rate, measured by number of cars derailed per billion gross ton-

miles.  
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Table A.1 
Average number of cars derailed per freight-train derailment on Class I railroad mainlines, 2005 

to 2009  

 FRA Track Class 

 1 2 3 4 5 

Average Number of Cars 

Derailed per Derailment 
5.3 7.3 8.5 9.3 10.0 

      

Standard Error 0.3 0.7 0.9 1.2 1.4 

      

Maximum Operating Speed 

(mph) of Freight-Trains 

 

10 

 

25 

 

40 

 

60 

 

80 

 

 

The traffic volumes provided by railroads are in gross ton-miles (GTM). A railroad-

specific conversion factor was developed to project car-mile data, for converting car derailment 

rate per billion gross ton-miles to car derailment rate per billion car-miles. The conversion factor 

(91.61) was developed based on the gross ton-miles and car-miles statistics on Class I mainlines 

(AAR 2005-2009). The results of estimated car derailment rate per billion car-miles were 

presented in Table 2.5.  
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Appendix B  

Variable selection of zero-truncated negative binomial model 

 

Table B.1 

Hierarchical variable selection based on deviance  

 

 
  

The final model is as below (Table 3.3) 

 

Variable Coefficient Standard Error P-value 

Intercept 1.38 0.71 0.05 

RL -0.03 0.23 0.91 

DS -0.26 0.17 0.13 

LO -0.57 0.34 0.09 

(RL)2 -0.06 0.02 0.01 

RL×DS 0.24 0.04 0.00 

RL×LO 0.21 0.08 0.01 

 

Notes:  

RL = logarithmic residual train length  

DS = logarithmic derailment speed  

LO = loading factor  

 

 

 

 

 

 

 

 

Model Predictors

log-

likelihood 

Number of parameters 

(including intercpt)

Model 

Comparison

Deviance 

Difference

1 RL+DS+LO+PO -1367.4 5

2 RL+DS+LO -1367.4 4 (2)-(1) 0.002 (df =1)

3 RL+DS+LO+(RL)2+(DS)2+(LO)2 -1361.8 7 (3)-(2) 11.187 (df=3)

4 RL+DS+LO+(RL)2 -1363.1 5 (4)-(3) 2.61 (df=2)

5 RL+DS+LO+(RL)2+RL×DS+RL×LO+DS×LO -1348.2 8 (5)-(4) 29.9 (df=3)

6 RL+DS+LO+(RL)2+RL×DS+RL×LO -1348.2 7 (6)-(5) 0.006 (df=1)

7 RL+DS+LO+(RL)2+RL×DS+RL×LO+(RL)2×DS+(RL)2×LO -1348.1 9 (7)-(6) 0.20 (df=2)
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Appendix C 

Truncated geometric model for derailment severity 

 

The model assumes that the number of cars derailed follows a truncated geometric distribution 

(Saccomanno and El-Hage 1989, 1991) 

 
1(1 )

( )
1 (1 ) r

x

L

p p
PN x

p




 
             (C.1) 

 

Where, PN(x) represents the probability of derailing x cars (including locomotives) in a train 

derailment. The probability of each car derailment (P) is affected by derailment speed and 

residual train length (number of cars following the POD, including the POD):  
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The mean number of cars derailed per derailment is: 

1

(1 )1
( ) ( )
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rr
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L
x

L p
E x PN x x

p p


  
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           (C.4) 

 

Where: 

PN(x)  = probability of derailing x cars in a train derailment 

x  = number of cars derailed  

Lr= L–POD+1 = residual train length (number of cars following the POD) 

L   = train length (total number of cars in a train) 

S  = derailment speed (mph)  

a, b, c  = parameter estimates (dependent on accident cause) 

 

In addition to the two variables (speed and residual train length) considered in previous 

studies, I considered a new factor – loading status of the first car derailed. The loading status of 

POD (variable name Ld) was treated as a dummy variable (loading = 1 represents a loaded POD, 

empty otherwise). Parameter coefficients were estimated using a nonlinear regression on the 

mean number of cars derailed (Anderson 2005). Table C.1 presents the parameter estimates for 

modeling broken-rail-caused number of cars derailed.  
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Table C.1 
Parameter estimates for modeling the number of cars derailed per broken-rail-caused freight-

train derailment, Class I mainlines, 2002 to 2011 

 
 

 

Figure C.1 compares the empirical and predicted distributions of train derailment severity. The 

Kolmogorov-Smirnov (K-S) test shows that the two distributions are statistically identical (Ksa = 

0.93; P = 0.35). It indicates that the truncated geometric model has a reasonable fit for modeling 

broken-rail-caused train derailment severity.   

 

 
Figure C.1: Comparison of empirical and predicted train derailment severity distribution, 

broken-rail-caused Class I railroad freight-train mainline derailments, 2002 to 2011 

 

 

 

 

 

 

 

 

 

 

 

Parameter Estimate Standard Error

a (intercept) 1.2153 0.3762 0.4761 1.9545

b (speed) -1.2064 0.0689 -1.3417 -1.0711

c (residual train length) 0.0039 0.0856 -0.1643 0.1721

d (loading status of POD) -0.3124 0.0668 -0.4436 -0.1813

95% Confidence Interval
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Appendix D 
Tank car derailment probability by position-in-train 

 

I used the worst-case placement scenarios of all five DOT 111A100W1 tank cars as an example. 

The conditional derailment probability of these cars are 0.29295, 0.29284, 0.29283, 0.29252 and 

0.29250, respectively (Figure 4.10). The derailment probability of each car in a specific train 

position is a Bernoulli variable. The sum of Bernoulli variables with heterogeneous probabilities 

follows a Poisson binomial distribution (Wang 1993). Therefore, the probability of derailing a 

certain number of 111A100W1 tank car is calculated using the algorithm implemented in R 

(Hong 2013) (Figure D.1). 

 

 
 

Figure D.1: Probability distribution of the number of 111A100W1 tank cars derailed  

per train derailment 

 

R codes 

install.packages('poibin', repos='http://cran.us.r-project.org')  

library(poibin)  

kk1=0:5 

pp1=c(0.29295,0.29284,0.29283,0.29252,0.29250) 

CDF=ppoibin(kk=kk1, pp=pp1, method ="RF",wts=c(1,1,1,1,1)) 
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Appendix E 

Probability of multiple-car release incidents 

 

Using Equation (5.6), I estimated the probability distribution of the number of tank cars releasing 

per unit-train mile given FRA track class and method of operation (Table E.1). For example, in 

signaled, track class 4, the estimated probability of releasing 10 tank cars is 1.17 in 100 million 

per unit-train mile.  

 

 

Table E.1 
Probability distribution of the number of tank cars releasing per unit-train mile by FRA track 

class and method of operation  

 

 

 
Note: the probabilities of 11-or-more-car release incidents were also estimated but not displayed 

in this table 

 

 

Each population density (e.g., remote areas) has its distribution of FRA track class and method of 

operation (Table E.2).  

 

 

Table E.2 
Route miles in remote areas by FRA track class and method of operation 

 

  
 

 

The average probability distribution of the number of tank cars releasing per unit-train mile in a 

specific population density can be calculated using the following equation: 

 

Method of 

Operation

FRA Track 

Class 1 2 3 4 5 6 7 8 9 10

Non-Signaled 1 2.00E-06 4.02E-07 8.47E-08 1.83E-08 4.04E-09 9.00E-10 2.02E-10 4.57E-11 1.04E-11 2.34E-12

Non-Signaled 2 1.67E-06 7.93E-07 3.93E-07 1.99E-07 1.02E-07 5.27E-08 2.74E-08 1.43E-08 7.47E-09 3.90E-09

Non-Signaled 3 7.36E-07 4.55E-07 2.95E-07 1.95E-07 1.30E-07 8.79E-08 5.96E-08 4.06E-08 2.77E-08 1.89E-08

Non-Signaled 4 2.98E-07 2.07E-07 1.51E-07 1.13E-07 8.52E-08 6.49E-08 4.97E-08 3.82E-08 2.95E-08 2.28E-08

Non-Signaled 5 9.15E-08 6.64E-08 5.09E-08 3.98E-08 3.15E-08 2.52E-08 2.02E-08 1.63E-08 1.32E-08 1.07E-08

Signaled 1 1.09E-06 2.18E-07 4.60E-08 9.96E-09 2.20E-09 4.89E-10 1.10E-10 2.48E-11 5.62E-12 1.27E-12

Signaled 2 8.33E-07 3.95E-07 1.95E-07 9.88E-08 5.07E-08 2.62E-08 1.36E-08 7.12E-09 3.72E-09 1.94E-09

Signaled 3 3.77E-07 2.33E-07 1.51E-07 9.96E-08 6.66E-08 4.50E-08 3.05E-08 2.08E-08 1.42E-08 9.69E-09

Signaled 4 1.53E-07 1.06E-07 7.75E-08 5.78E-08 4.37E-08 3.32E-08 2.54E-08 1.96E-08 1.51E-08 1.17E-08

Signaled 5 6.60E-08 4.79E-08 3.67E-08 2.87E-08 2.27E-08 1.82E-08 1.46E-08 1.18E-08 9.53E-09 7.73E-09

Number of Tank Cars Releasing per Unit-Train Mile

Method of 

Operation 1 2 3 4 5 Total

Non-Signaled 558 1,601 2,267 2,721 35 7,181

Signaled 41 229 1,351 8,359 6,404 16,383

Total 598 1,830 3,618 11,080 6,439 23,565

FRA Track Class
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            (E.1)  

 

 

Where: 

Pi = probability of i tank cars releasing per unit-train mile 

Pijk = probability of i tank cars releasing per unit-train mile given FRA track class j and     

               method of operation k 

Mjk = route miles for trackage with FRA track class j and method of operation k 

 

 

Based on Tables E.1 and E.2 and using Equation (E.1), I calculated the weighted average 

probability distribution of the number of tank cars releasing in remote areas and other population 

densities (Table E.3).  

 

 

Table E.3 
Probability distribution of the number of tank cars releasing per unit-train mile by population 

density  

 

 
 

Note: the probabilities of 11-or-more-car release incidents were also estimated but not displayed 

in this table 

 

 

Based on Table E.3, I estimated the probability of at least a certain number of cars releasing per 

unit-train mile for each population density. The results were presented in Table 5.3.  

 

 

 

 

 

 

 

 

Population Class

Population 

Density 

(persons per 

square mile) 1 2 3 4 5 6 7 8 9 10

Remote <20 3.70E-07 1.99E-07 1.23E-07 8.07E-08 5.54E-08 3.91E-08 2.82E-08 2.07E-08 1.54E-08 1.15E-08

Rural 20-100 4.76E-07 2.47E-07 1.46E-07 9.30E-08 6.19E-08 4.25E-08 2.99E-08 2.14E-08 1.56E-08 1.14E-08

Suburban 100-1,000 5.15E-07 2.57E-07 1.49E-07 9.33E-08 6.14E-08 4.18E-08 2.92E-08 2.08E-08 1.50E-08 1.10E-08

Urban 1,000-3,000 6.13E-07 2.66E-07 1.43E-07 8.70E-08 5.63E-08 3.79E-08 2.62E-08 1.86E-08 1.33E-08 9.72E-09

High 3,000-10,000 7.22E-07 2.88E-07 1.46E-07 8.41E-08 5.24E-08 3.43E-08 2.32E-08 1.61E-08 1.14E-08 8.19E-09

Extremely High >10,000 1.16E-06 3.47E-07 1.37E-07 6.71E-08 3.74E-08 2.25E-08 1.42E-08 9.31E-09 6.26E-09 4.30E-09

Average 4.81E-07 2.40E-07 1.40E-07 8.86E-08 5.90E-08 4.05E-08 2.86E-08 2.05E-08 1.50E-08 1.10E-08

Number of Tank Cars Releasing per Unit-Train Mile
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Appendix F 

Data for modeling broken-rail-caused car derailment rate  

Table F.1 

Input data for regression analysis  

 

 
 

 

 

 

 

 

Number of Broken-Rail-

Caused Car Derailments Railroad Indicator Year

Annual Rail Maintenance & 

Repair Cost per Track-Mile ($) Billion Gross Ton-Miles

53 A 2002 2,194 959

334 B 2002 1,729 469

23 C 2002 1,405 38

35 D 2002 2,443 373

277 E 2002 2,560 1,086

155 A 2003 2,331 1,003

310 B 2003 2,179 488

37 C 2003 1,019 37

126 D 2003 2,443 380

449 E 2003 2,395 1,109

270 A 2004 2,614 1,110

165 B 2004 3,636 510

34 C 2004 711 44

59 D 2004 2,915 408

280 E 2004 2,434 1,130

200 A 2005 2,609 1,162

148 B 2005 3,421 504

36 C 2005 535 54

160 D 2005 3,080 417

352 E 2005 2,751 1,141

316 A 2006 2,986 1,228

237 B 2006 3,560 513

20 C 2006 880 56

133 D 2006 3,424 419

134 E 2006 2,991 1,175

77 A 2007 3,031 1,231

219 B 2007 3,618 496

52 C 2007 1,388 55

153 D 2007 3,397 401

234 E 2007 3,265 1,155

83 A 2008 3,432 1,237

150 B 2008 4,153 487

53 C 2008 2,773 54

93 D 2008 2,956 393

155 E 2008 3,224 1,119
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Appendix G 

Broken-rail-caused car derailment rate by maintenance cost per ton 

 

Table G.1 

Broken-rail-caused car derailment rate on U.S. Class I mainlines, 2002 to 2008  

 

 

Compared to Table 6.1, using either rail maintenance cost per mile or rail maintenance cost per 

ton as the predictor variable would fit the data well, because of the significant correlation 

between these two variables (Pearson correlation coefficient is 0.96, P < 0.001). Depending on 

the data available to the railroads, they may use the most appropriate predictor to estimate 

broken-rail-caused car derailment rate on their routes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Estimate Standard Error Pr > ChiSq

Intercept -0.0676 0.2859 -0.6279 0.4928 0.8132

Annual Rail Maintenance Cost per 

Million Gross Tons (Thousand Dollars) -0.0056 0.0015 -0.0086 -0.0027 0.0002

Dispersion Parameter (1/η) 0.3307 0.0772 0.2093 0.5225

Deviance = 36.7 (Degrees of Freedom = 33)

P = 0.30 > 0.05

 95% Confidence Limits
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Appendix H 

Car derailment rate reduction by increased maintenance cost 

 

Let C1 and C2 represent annual rail maintenance cost per track mile (thousand dollars), 

respectively. It is assumed that C2 > C1. Let ΔC= C2-C1. The percent broken-rail-caused car 

derailment rate reduction is:  

 

1 2

1

( ) ( )

( )

br br
br

br

Z C Z C
Z

Z C


              (H.1) 

 

From Equation (6.11), broken-rail-caused car derailment rate is an exponential function of rail 

maintenance cost C:  

 

1 1( ) exp(-0.1868-0.3356C )brZ C             (H.2) 

2 2( ) exp(-0.1868-0.3356C )brZ C                        (H.3) 

 

 

From Equations (H.1) to (H.3), 

2 11 exp[ 0.3356( )] 1 exp( 0.3356 )brZ C C C          

 

So proof of Equation (6.13) is completed.  
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Appendix I 

Derivation of optimization model 

 

Let ΔR denote the percent risk reduction by preventing broken rails and enhancing tank car 

safety design. Let Z, M, C represent the national average car derailment rate per traffic exposure, 

traffic exposure and average release consequence, respectively. Let Pb and Pu represent the CPR 

of the baseline tank car and the enhanced tank car, respectively.  

 

Broken rail prevention and tank car design enhancement affect tank car derailment rate and 

conditional probability of release, respectively. By definition, we have  

 

b new new

b

ZMP C Z MP C
R

ZMP C


                                       (I.1) 

 

It is assumed that the proportion of the baseline tank car fleet to upgrade is b, so the weighted 

average of CPR in the mixed tank car fleet (baseline tank car and enhanced tank car) is:  

 

(1 )new b uP P b P b                             (I.2) 

 

It is assumed that the proportion of broken-rail-caused car derailments to prevent is e. In 

addition, the proportion of broken-rail-caused car derailments among all accident causes is m. 

Therefore, the overall tank car derailment rate after implementation of broken rail prevention is 

estimated as:  

 

Znew = Z(1-em)                (I.3) 

              

From Equations (I.1) to (I.3),  

 

(1 )[ (1 )]b u b

b

ZMPC Z em P b P b MC
R

ZMPC

   
                             (I.4) 

 

Equation (I.4) is simplified as: 

1 (1 ) (1 ) u

b

P
R em b b

P

 
      

 

                        (I.5)

                    

To maximize percent risk reduction,  

1- (1- ) (1- ) (1- ) (1- )u u

b b

P P
Maximize em b b Maximize em b b

P P

         
         

         

                   (I.6) 

 

From Equation (6.13), 1 exp( 0.3356 )brZ C       

Let ΔZbr = e (percent reduction of broken-rail-caused car derailment rate):  

 

ln(1 )

0.3356

e
C


 


                          (I.7) 
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ΔC is the increment of annual rail maintenance cost per track-mile, measured by thousand 

dollars. So total increment of annual rail maintenance cost over 160,240 track miles of U.S. 

Class I rail network is:  

 

160240

1000
rail

C
C

 
  (measured by million dollars)                      (I.8) 

 

Also, if the entire baseline tank car fleet is upgraded, the total annual cost is $9.7 million. 

Assuming that the proportion of baseline tank cars to upgrade is b, the corresponding cost is Ctank 

= 9.7b. 

 

The total annual cost for broken rail prevention and tank car upgrade does not exceed the budget, 

that is: 

 

Crail + Ctank ≤ Budget                          (I.9) 

 

Equation (I.9) is re-written as: 

 

                      (I.10) 

 

The optimization model is derived.   
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