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ABSTRACT 

INCREASING RAILWAY EFFICIENCY AND CAPACITY 
THROUGH IMPROVED OPERATIONS, CONTROL  

AND PLANNING 
 

Yung-Cheng Lai, Ph.D. 
Department of Civil and Environmental Engineering 

University of Illinois at Urbana-Champaign 
Christopher P. L.Barkan, Ph.D., Advisor 

 

The focus of my dissertation is to increase railway efficiency and capacity through 

improved operations, control and planning.  Various analytical approaches were 

developed and carried out using operations research techniques, and capacity analysis 

methodologies for optimization of the aerodynamic efficiency of intermodal freight trains 

and railway capacity planning.  

 

Intermodal freight recently surpassed coal to become the largest source of revenue 

for US freight railroads.  However, intermodal trains are among the least fuel efficient 

types of freight trains operated.  This is due to a combination of the physical constraints 

imposed by the loads and railcar designs, which tend to have poor aerodynamics, and the 

high operating speeds required for this traffic.  The importance of intermodal freight and 

these fuel efficiency characteristics suggest that investigation of options to improve 

aerodynamic efficiency has important economic and environmental implications for this 

segment of rail freight traffic.  
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In chapter 2, I consider basic options for improving the energy efficiency of 

intermodal trains.  It is concluded that slot utilization, slot efficiency, and filling empty 

slots all have beneficial effects.  A train can be more efficiently operated if loads are 

assigned not only based on slot utilization but also better matching of intermodal loads 

with cars, which we term “slot efficiency”.  I then develop the Aerodynamic Loading 

Assignment Model (ALAM), an integer programming (IP) model that incorporates 

aerodynamic characteristics of loads and railcar combinations to enable optimization of 

loading patterns to maximize fuel efficiency (chapter 3).  Several policy 

recommendations regarding railway intermodal operations are also developed in chapter 

3 based on a series of scenario analyses.   The potential annual savings in fuel 

consumption through use of ALAM by one large railroad on one of its major intermodal 

routes is estimated to be approximately 15 million gallons with a corresponding value in 

2007 of 29 million dollars.   

 

ALAM was further developed to optimize multiple trains simultaneously if advance 

information about outgoing trains and loads is available.  In chapter 4, I present static 

and dynamic aerodynamic efficiency models for the loading of multiple intermodal trains 

with a rolling horizon scheme for continuous train terminal operations.  Numerical 

results show that the rolling horizon scheme significantly reduces the adjusted gap length 

compared to current practice, thereby leading to further improvement in the aerodynamic 

efficiency of intermodal trains.  Correspondingly greater savings in fuel, emissions and 

expense are possible if this methodology is applied to all North American intermodal 

trains. 
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Railways around the world are facing capacity constraints.  In North America, 

railway freight traffic has increased nearly 30% over the past 10 years, and this demand is 

projected to increase another 88% by 2035.  It is clear that network capacity must be 

increased using various engineering options to upgrade the infrastructure, but the 

question is how railroads can allocate these investments in the best possible way to 

maximize network capacity. 

   

In chapter 5, I develop a new decision support framework to help capacity planners 

determine how to optimize the allocation of capital investment for capacity expansion 

projects.  This framework has three stand-alone tools: (1) an “Alternatives Generator” 

that enumerates possible expansion options along with their cost and capacity effects; (2) 

an “Investment Selection Model” that determines which portions of the network (at the 

subdivision level) need to be upgraded with what kind of capacity improvement options; 

and (3) an “Impact Analysis Module” that evaluates the tradeoff between capital 

investment and delay cost.  Based on network characteristics, estimated future demand, 

and available budget, the proposed decision support framework can successfully 

determine the optimal solution regarding which subdivisions need to be upgraded and 

what kind of engineering options should be conducted.   This will help railroads 

maximize their return from capacity expansion projects and thus be better able to provide 

reliable service to their customers, and return on shareholder investment.  Such a 

decision support framework can be used to optimize the efficiency and effectiveness of 

railroad capacity expansion programs.  
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CHAPTER 1 

 

INTRODUCTION 

Railways uniquely combine energy efficiency with high speed overland transport of 

heavy freight (Hay, 1977).  The combination of a low friction guided pathway provided 

by railroad tracks allows low rolling resistance and the formulation of trains which 

reduce rolling resistance and aerodynamic resistance respectively.  Furthermore, the 

strong roadbed allows heavy loads enabling high capacity vehicles and therefore 

substantial economies of scale (Hay, 1982).  Nevertheless, competitive and 

environmental pressures mean that further improvement is needed (UIC, 2003).   

 

Researching energy efficiency is particularly timely in light of recent increases in 

fuel prices and their impact on industry operating costs, and the need to conserve energy.  

Class I railroads spent more than $8 billion on fuel in 2006 making it their largest 

operating expense and fuel cost continues to increase (AAR, 2007); from 2002 to 2005, 

North American railroad fuel cost doubled, and since 1999 it is up by nearly a factor of 

three.  This trend is impacting railroads all over the world, consequently fuel efficiency 

is more important than ever (Stodoloski, 2002; UIC, 2004; BNSF, 2004).  The sharp 

increase in energy costs, combined with railways' growing interest in improving their role 

as an environmentally sustainable transport mode has stimulated renewed interest in 

research on all aspects of energy efficiency (Smith, 2003; Wierderkehr, 2004).  This 
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includes investigation of technologies to improve the efficiency of motive power, recover 

kinetic energy of moving trains, energy efficient design of railway vehicles, more 

efficient operations, prevention of fuel spillage and various approaches to reducing train 

resistance (Stodoloski, 2002; UIC, 2004; Barkan, 2004).  

 

The North American railroad industry is increasingly experiencing capacity 

problems, and these directly impact transportation efficiency.  Many railroad mainlines 

are currently at or near capacity, and the future demand is projected to increase by 88% 

by 2035 (AASHTO, 2007).  This would not be as important if alternative modes were 

able to handle the traffic but highway construction is not keeping up with the growth in 

demand, either.  Furthermore, much of rail traffic is not economically transported by 

truck even if the capacity was available.  Rail is also safer, more land-use and energy 

efficient, and has less environmental impact than highway transport.  Therefore, public 

officials increasingly see rail as an alternative transport mode needed to handle the 

increasing freight traffic that will accompany sustained economic growth (TRB, 2006; 

ASSHTO, 2007).  This raises the question, how can railroads handle additional traffic 

on a network that is already experiencing constrained capacity in many locations. 

 

The focus of my dissertation research is investigation of how to increase railway 

efficiency and capacity through improved operations, control and planning.  Analyses 

using operations research (OR) techniques, and capacity analysis methodologies were 

conducted for optimizing the aerodynamic efficiency of intermodal (IM) freight trains 

(Chapter 2, 3, & 4), and railway capacity planning (Chapter 5).  
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OR techniques have been applied to capacity planning research in various fields 

(Ordonez, 2004) including electric utilities (Murphy and Weiss, 1990), telecommunication 

(Balakrishnan et al., 1995; Riis and Andersen, 2004), manufacturing (Eppen et al., 1989), 

inventory management (Hsu, 2002), and transportation (Magnanti and Wong, 1984; 

Minoux, 1989).  Problems in different domains can generally be formulated as network 

flow models with additional decision variables to determine whether or where to increase 

arc capacities.  Although the basic structures are similar, the real elements within the 

models often differ.   

 

Among the key elements that make railroads unique are that they are a single degree 

of freedom system (i.e. trains can move only forward or backward).  Traffic is generally 

handled over discrete, fixed elements in the network called blocks and trains can pass only 

at specific locations.  The benefits of a one degree of freedom system are its high capacity 

and safety, but the drawback is its inflexibility (Department for Transport, 2001).  As a 

result, the interactions among trains, infrastructure, and operational strategies must be 

highly structured and make railway problems different and more complicated compared to 

many other network systems.  Consequently, it is essential to understand these similarities 

and differences across different domains.  

 

1.1 Motivation 

IM freight recently surpassed coal to become the largest source of revenue of US 

railroad freight transportation (Gallamore, 1998; AAR, 2005).  However, IM trains are 
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the least fuel efficient trains due to the physical constraints imposed by the combination 

of loads and railcar design (Engdahl et al., 1987).  Ironically, IM trains are typically the 

fastest freight trains operated.  This calls for investigation of the aerodynamic effects 

and options to improve aerodynamic efficiency, which have important economic and 

environmental implications for rail freight transportation (AAR, 1981; Smith, 1987). 

 

Railroads are approaching the limits of practical capacity, and estimated future 

demand is substantial.  Railway line capacity can generally be improved through 

operations and/or engineering options.  Operations options should be considered first 

because they are generally less expensive and more quickly implemented than building 

new infrastructure.  However, the considerable increase in demand is unlikely to be 

satisfied by changing operating strategies alone.  Hence, railway capacity must be 

increased by upgrading the infrastructure through multiyear capacity expansion projects.   

 

The North American railroad industry generally relies on experienced personnel and 

simulation software to identify bottlenecks and propose alternatives to reduce congestion 

(HDR, 2003; CN, 2005; Vantuono, 2005).  Experienced railroaders often identify good 

solutions, but this does not guarantee that all good alternatives have been evaluated or that 

the best one has been found.  Furthermore, the aging demographics of the railroad 

industry means that many experienced capacity analysts will soon retire.  Simulation can 

model a section of the network in great detail but it is not suitable for network capacity 

planning.  Instead of solving the real problem, solutions based on corridor-based 

simulation analyses may move bottlenecks to other places in the network.  The emphasis 
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of my work is to look at the network as a whole.  I account for each link as well as the 

whole network, and account for different capacity upgrade options, their relative cost 

effectiveness, and possible budget constraints to determine a set of optimal solutions.  

 

1.2 Objectives of Study 

I intend to achieve the following objectives in my study.  

1. Optimizing the aerodynamic efficiency of intermodal (IM) freight trains:  

a) Investigate options for improving the energy efficiency of IM trains 

b) Establish a scoring system to quantify the loading efficiency of IM trains 

c) Develop a loading assignment model to minimize the aerodynamic 

resistance of IM trains and hence their fuel consumption 

d) Develop a rolling horizon scheme to optimize multiple trains 

simultaneously for continuous terminal operations 

2. Optimizing railway capacity planning: 

a) Review of capacity analysis methodologies 

b) Develop a framework for evaluating railway capacity expansion projects 

i. Establish the decision support framework of railway capacity 

planning  

ii. Develop an, Alternatives Generator (AG) tool, to automatically 

generate possible capacity expansion options for each link and 

estimate the corresponding cost and capacity improvement 
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iii. Develop an, Investment Selection Model (ISM), that uses 

optimality techniques to determine the best set of investment 

options at the network level  

iv. Develop a sensitivity analysis procedure, the Impact Analysis 

Module (IAM), to evaluate the benefit of upgrading infrastructure 

 

1.3 Contribution Summary 

I summarize the potential contributions of my dissertation work below:  

1. Contributions to Civil (Railroad) Engineering 

a) A loading assignment model that helps terminal managers make up more 

fuel efficient intermodal trains,   

b) A scoring system to monitor and determine the efficiency of the loading 

patterns of intermodal trains,  

c) An enhanced capacity evaluation tool that can be used for strategic 

planning, 

d) A new decision support framework to determine the best strategy for 

network capacity expansion.  

2. Contributions to Capacity Research 

a) A review of railway capacity analysis methodologies to determine the 

appropriate model for the specific task,  

b) A complete parametric model that is able to generate possible capacity 

expansion options for each subdivision, 
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c) A sensitivity analysis procedure to evaluate the tradeoff between capital 

investment and delay cost.  

3. Contributions to Operations Research 

a) First application of optimization techniques to improve the energy 

efficiency of intermodal trains,  

b) A new rolling horizon method to simultaneously optimize the energy 

efficiency of multiple IM trains for continuous terminal operations,  

c) A new investment selection model to determine the optimal set of 

investment options for railway capacity expansion projects.  

 

1.4 Dissertation Organization 

This dissertation is designed as a series of chapters, four of which are intended as 

individually publishable papers.  As a result, each chapter may cover some material 

discussed in previous chapters.  Chapters 2–5 form the core of the dissertation.  Chapter 6 

presents a summary of findings, and identifies additional research needs. 

 

Chapter 1: Introduction 

This chapter presents the motivation, objectives, and summary of this dissertation.  

 

Chapter 2: Options for Improving Energy Efficiency of IM Trains 

This chapter investigates options to improve the energy efficiency of intermodal trains. 

Three options for improving intermodal train energy efficiency were evaluated; slot 

utilization, slot efficiency, and filling empty slots.  All of them have a beneficial effect.  
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Slot efficiency, in which intermodal loads are matched with cars of an appropriate length 

reduces the gap length between loads, thereby improving airflow.  Compared to slot 

utilization, maximizing slot efficiency offers additional potential to reduce fuel 

consumption and intermodal train operating costs.  Filling empty slots with empty 

containers or trailers also reduces aerodynamic resistance thereby improving energy 

efficiency.  Despite the additional weight penalty and consequent increase in bearing and 

rolling resistance that would accrue, the reduction in aerodynamic resistance more than 

offsets at the speeds intermodal trains typically operate.  Depending on the particular train 

configuration, I found that train resistance can be reduced by as much as 27% and fuel 

savings of approximately 1 gal per mile per train are possible.   

 

This chapter was published as: Lai, Y.C., and Barkan, C.P.L. (2005)  Options for 

Improving the Energy Efficiency of Intermodal Freight Trains, Transportation Research 

Record, Vol 1916, 47–55. 

 

Chapter 3: Optimizing the Aerodynamic Efficiency of IM Freight Trains 

This chapters presents an aerodynamic loading assignment model (ALAM) for 

intermodal freight trains based on an integer-programming framework to help terminal 

managers make up more fuel-efficient trains.  This is the first use of optimization 

modeling to address the aerodynamics and energy efficiency of railroad intermodal trains.  

The model developed in this research can be adapted to a variety of other intermodal train 

loading assignment problems through modification of the objective function.  This is a 

novel contribution to the literature and enhances its generality because the formulation can 
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be solved efficiently and thus serve as a basis for other intermodal load assignment 

problems.   

 

There are substantial potential fuel and cost savings benefits that railroads can achieve 

thorough implementation of ALAM at intermodal terminals.  These benefits can be 

further enhanced through several additional steps including: (a) better matching of railcars 

and loads for international intermodal trains; (b) simultaneous optimization of multiple 

trains to take greater advantage of the potential to improve the energy efficiency of 

intermodal trains through use of more aerodynamic loading patterns; and (c) uncoupling 

empty railcars from the end of loaded intermodal trains when practical.  The potential 

annual savings in fuel consumption through use of ALAM by one large railroad on one of 

its major intermodal routes is estimated to be approximately 15 million gallons with a 

corresponding value in 2007 of 29 million dollars.  Correspondingly larger savings in fuel, 

emissions and expense are possible if the methodology described in this chapter were 

applied to all North American intermodal trains. 

 

This chapter was published as: Lai Y.C., Barkan CPL, and Önal H. (2007)  

Optimizing the Aerodynamic Efficiency of Intermodal Freight Trains, Transportation 

Research Part E, doi:10.1016/j.tre.2007.05.011. 
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Chapter 4: Optimizing the Aerodynamic Efficiency of IM Freight Trains with 

Rolling Horizon Operations 

In this chapter, ALAM was further developed to allow simultaneous optimization of 

multiple trains when advance information about outgoing trains and loads is available.  In 

this research, I first developed a static model to optimize load placement on a sequence of 

intermodal trains that have scheduled departure times.  This model applies when full 

information on all trains and loads is available.  Then, a dynamic model is developed to 

account for the realistic situation in a stochastic environment in which complete 

information on future trains and incoming loads may not be available.  This study seeks 

ways to balance between: (i) the advantage from optimizing multiple trains together; and 

(ii) the risk of making suboptimal decisions due to incomplete future information.  A 

rolling horizon scheme was developed to address this challenge, where exponentially 

decreasing weights are assigned to the objective functions of future trains.  Numerical 

results based on empirical data show significant aerodynamic efficiency benefits can be 

obtained using these optimization models. 

 

This chapter was published as: Lai, Y.C., Ouyang, Y., and Barkan, C.P.L. (2008)  A 

Rolling Horizon Model to Optimize Aerodynamic Efficiency of Intermodal Freight 

Trains with Uncertainty, Transportation Science, Accepted.  

 

Chapter 5: Optimizing Railway Capacity Planning 

This chapter demonstrates a new decision support framework to help capacity 

planners determine how to optimize the allocation of capital investment for capacity 
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expansion projects.  This framework has three stand-alone tools: (1) an “Alternatives 

Generator” that enumerates possible expansion options along with their cost and capacity 

effects; (2) an “Investment Selection Model” that determines which portions of the 

network (at the subdivision level) need to be upgraded with what kind of capacity 

improvement options; and (3) an “Impact Analysis Module” that evaluates the tradeoff 

between capital investment and delay cost.  Based on network characteristics, estimated 

future demand, and available budget, the proposed decision support framework can 

successfully determine the optimal solution regarding which subdivisions need to be 

upgraded and what kind of engineering options should be conducted.  The decision 

support framework can help railroads maximize their return from capacity expansion 

projects and thus be better able to provide reliable service to their customers, and return on 

shareholder investment. 

 

Chapter 6: Conclusions and Future Research 

This chapter provides a summary of chapters 2–5, and proposed future research topics 

following by my research work in this dissertation.   
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CHAPTER 2 

 

OPTIONS FOR IMPROVING THE ENERGY EFFICIENCY 

OF INTERMODAL TRAINS 

Intermodal (IM) freight is among the largest segments of the US railroad freight 

transportation, and is definitely the fastest growing portion (nearly 80% in last 15 years) 

(Gallamore, 1998; AAR, 2005).  However, intermodal trains are the least fuel efficient 

trains.  This inefficiency is due to the physical constraints imposed by the combination 

of loads and the railcar design (Engdahl et al., 1987).  The pair of photographs (Figure 

2.1) contrasts the close spacing of the hopper cars with the much larger gaps due to the 

empty slots in the intermodal train.  The aerodynamic drag of the IM train is thus higher 

than that of the fully loaded coal train by 25%, and this difference increases exponentially 

with speed.  It is particularly ironic given that intermodal trains are typically the fastest 

freight trains operated. 

 

(a) 

 

(b) 

Figure 2.1:  Pictures of (a) general coal cars (b) trailers on spine cars 
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At intermodal terminals, containers or trailers are assigned to available well, spine or 

flat cars (UP, 2004).  Although computer software (Optimization Alternatives Ltd Inc, 

2006) is often used by terminal managers to assist in this task, it is still a largely manual 

process.  The principal metric used to measure the efficiency of loading is “slot 

utilization” (Buriss, 2003).  Although the details vary depending upon the particular 

combination of intermodal load and car being considered, slot utilization is basically a 

metric used to measure the percentage of the spaces (a.k.a. slots) on intermodal cars that 

are used for loads.  For example, Figure 2.2a is an example of a 5-unit well car with 

100% slot utilization because all 10 slots are filled with containers whereas the railcar in 

Figure 2.2b has 80% slot utilization.  

 

 

(a) 

 

(b) 

Figure 2.2:  (a) 100% slot utilization (b) 80% slot utilization 

 

Slot utilization does not take into account the size of the space compared to the size 

of the load.  Although perfect slot utilization indicates maximal use of spaces available, 

it is not intended to, nor does it ensure, that intermodal cars are loaded to maximize the 

energy efficient operation of intermodal trains.  Two trains may have identical slot 
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utilization, but different loading patterns and consequent aerodynamic resistances.  For 

instance, both railcars in Figure 2.3 have 100% slot utilization but the railcar in Figure 

2.3a is more aerodynamically efficient than the railcar in Figure 2.3b due to the shorter 

gap lengths.   

 

 

(a) 

 

(b) 

Figure 2.3:  (a) Loads match slots’ capability (b) loads do not match slots’ capability 

 

During the 1980’s, a number of studies focused on technologies to reduce train 

resistance and therefore reduce fuel costs (AAR, 1981; Smith, 1987).  Aerodynamic 

drag was known to be a major component of the total tractive resistance particularly at 

higher speeds, so the Association of American Railroads (AAR) supported research on 

wind tunnel testing of rail equipment, including large-scale intermodal car models 

(Gielow and Furlong, 1988; Engdahl, 1987).  The results were used to develop the 

Aerodynamic Subroutine of the AAR’s Train Energy Model (TEM) (Drish, 1992).  

 

From these wind tunnel tests, it was found that the lead locomotive experienced the 

highest drag and this decreased until about the 10th unit or car in the train, after which, 

drag remained roughly constant per unit for the remainder of the train.  They also found 
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that closely-spaced containers or trailers behave as one long load.  Conversely, as shown 

in Figure 2.4, loads spaced equal to or greater than 12’ behave as distinct objects on 

whose surfaces boundary layers are reinitialized (Engdahl et al., 1987).  Consequently, 

Engdahl et al (1987) suggested that filling empty slots with empty containers might have 

potential advantages; however, this suggestion did not consider the effect of the increased 

weight of the additional loads.   
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Figure 2.4:  Critical gap length of well cars 

 

Improving the loading patterns of intermodal trains has the potential to improve 

railroad fuel efficiency and reduce emissions.  Maximizing slot utilization will enhance 

energy efficiency, but matching intermodal loads with appropriate length intermodal car 

slots can further reduce gap length between loads, and thus improve airflow.  Filling 
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empty slots with empty containers or trailers also reduces aerodynamic resistance; 

however, the additional weight penalty generates more bearing and rolling resistance.  

In this chapter, we conducted a series of analyses to compare both the relative and 

absolute effects of different loading patterns and operating practices on train make-up and 

energy efficiency. 

 

2.1 Train Resistance Calculation 

Several approaches are considered to maximize intermodal train energy efficiency: 

slot utilization, improved equipment matching, and use of empty intermodal loads to 

improve train aerodynamics.  Train resistance and the aerodynamic coefficient are 

computed for a series of different train scenarios using TEM (Drish, 1992) and the 

Aerodynamic Subroutine (Furlong, 1988).  Train resistance is the sum of the forces 

opposing the movement of a train (Hay, 1982).  The greater the resistance, the more 

energy is required to move the train.  Therefore, it is a major factor affecting fuel 

economy. 

 

The general expression for calculating train resistance is (Hay, 1982): 

2R A BV CV= + +                                      (2.1) 

Where:   

R  = Train resistance (lbs) 

V  = Train speed (mph) 

A = Bearing and rolling resistance independent of train speed (lbs) 
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B = Coefficient used to define train resistance dependent on train speed 

(lbs/mph) 

C  = Aerodynamic coefficient (lbs/mph2) 

 

The B term is generally small and sometimes ignored (Gielow and Furlong, 1988; 

AREMA, 2001).  The C term can be computed from the Aerodynamic Subroutine by 

specifying a train consist.  For bearing and rolling resistance, the equations in TEM 

were used.  TEM requires input regarding bearing type and condition, and truck design 

and condition.  Based on information from railroads and intermodal equipment 

engineering personnel (TTX, 1999), we made the following assumptions in our analyses: 

• 50% of the bearings are manufactured by Timken and the other 50% by 

Brenco 

• 50% of the bearings are worn and the other 50% new 

• 50% of the trucks are worn three-piece and the other 50% are new 

three-piece 

• Ambient temperature is 60 oF 

• No side wind effect (yaw angle = 0o) 

 

According to these assumptions, the bearing resistance is calculated as follows 

(Drish, 1992): 

Bk k BkR n C=               (2.2) 

0.201946.2334Bk kC W= ×             (2.3) 
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Where:  

  k  = Ordinal number of vehicle in consist 

  RBk  = Bearing resistance acting on vehicle k (lbs) 

  nk  = Number of axles on vehicle k 

  CBk  = Bearing resistance coefficient for vehicle k (lbs/axle) 

  Wk = Total weight for vehicle k (tons) 

 

And the rolling resistance is computed as (Drish, 1992): 

0.0005Rk k RkR w C=              (2.4) 

Where:  

  RRk  = Rolling resistance acting on vehicle k (lbs) 

  CRk  = Rolling resistance coefficient for vehicle k (lbs/ton) 

  wk  = Total weight for vehicle k (lbs) 

 

If k kw γ<  

[ ]2.25 2.25 k k
RK

k k

wC τλ
γ τ
⎡ ⎤−

= − − ⎢ ⎥−⎣ ⎦
          (2.5) 

Otherwise ( k kw γ≥ ) 

RkC λ=                (2.6) 
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Where: 

kγ  = Gross rail load for vehicle k (lbs) 

kτ  = Vehicle k tare weight (lbs) 

λ  = Loaded rolling resistance coefficient for vehicle k (lbs/ton) (λ is 2.13 

lbs/ton for three-piece worn truck and 1.57 lbs/ton for three-piece new truck.) 

 

As a result, the resistance equation in this study can be represented as:  

2
Bk RkR R R CV= + +             (2.7) 

 

2.2 Matching Intermodal Loads with Cars 

A typical intermodal train has 3 locomotives and 80 to 120 units.  Therefore, a train 

of 3 locomotives and 100 units (20 5-unit cars) was chosen as suitably representative for 

our analyses.  The capacity of well and spine cars is usually constrained by the length of 

the loads.  For example, a 5-unit articulated double stack well car with a 40-foot well 

cannot handle containers greater than 40 feet long in the bottom position, whereas a 

5-unit car with a 48-foot well can handle containers up to 48 feet in length.  Similarly, a 

5-unit articulated spine car with 48-foot slots cannot handle containers or trailers greater 

than 48 feet, while a 5-unit car with 53-foot slots is able to handle trailers of any length 

up to 53 feet (UP, 2004; BNSF, 2004; TTX, 1999; Armstrong, 1998).  Consequently, 

cars with longer slots are more flexible; however, if loaded with trailers or containers less 

than the maximum they allow, then the gaps between loads are correspondingly larger, 
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and less aerodynamically efficient.  We conducted the following analyses to illustrate 

the potential differences in resistance for different train loading configurations. 

 

In the case of the well car, a 40-foot container can be assigned to a car with either 

40-foot or 48-foot wells; however, only use of a car with 40-foot wells would result in the 

shortest gap and the best aerodynamics.  In this example, the gap between two double 

stack 40-foot containers would increase by 8 ft if 48-foot-well cars were used (Figures 

2.5a, 2.5b).   

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.5:  (a) Double stack 40’ containers in a 48-foot-well car; (b) double stack 40’ 

containers in a 40-foot-well car; (c) 48’ trailers in a 53-foot-slot spine car; (d) 48’ trailers 

in a 48-foot-slot spine car 
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For a train of 20 cars with 40-foot double stack containers, the aerodynamic 

coefficient increases from 4.82 to 5.05 lbs/mph2 when 48-foot-well cars are used instead 

of 40-foot.  We calculated the resistance for these two train configurations for speeds up 

to 70 mph.  As expected the train with 40-foot-well cars had lower resistance at all 

speeds (Figure 2.6a).  The difference in resistance for the 40-foot-well car with 40-foot 

containers, compared to the 48-foot-well car with 40-foot containers (Figure 2.6b), 

increases from 1.03% to 2.96% as speed increases to 70 mph.  

 

Similarly, a 48-foot trailer can be placed on a spine car with either 48-foot or 53-foot 

slots.  The gaps between trailers are shortest when using cars with 48-foot-slots (Figures 

2.5c, 2.5d).  For a train made up of 20 spine cars with 48-foot trailers, the aerodynamic 

coefficient increases from 5.90 to 9.12 lbs/mph2 when 53-foot-slot cars are used instead 

of 48-foot-slot cars.  The difference in resistance ranges from 0.07% to 26.72% 

depending on speed (Figures 2.7a, 2.7b).   

 

In the analyses above, each datum represents the effect on train resistance at a 

specific speed; however, a train’s speed will actually vary as it traverses a route.  In 

addition to resistance, the power to ton ratio, route characteristics, and train schedule will 

all affect fuel consumption.  Therefore, the distribution of speed profiles and throttle 

setting is needed to more accurately estimate fuel saving.  TEM was used to compute 

and compare the fuel consumption for each case using a representative rail line.  A 

typical intermodal route in the Midwest was chosen for this analysis.  It is 103-miles in  
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length with gently rolling topography, grades generally under 0.6% and curves less than 3 

degrees.  
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Figure 2.6:  (a) Resistance of 40’ containers on 48-foot-well cars or 40-foot-well cars; (b) 

the benefit of using 40-foot-well cars 
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Figure 2.7:  (a) Resistance of 48’ trailers on 53-foot-slot spine cars or 48-foot-slot spine 

cars; (b) the benefit of using 48-foot-slot spine cars 
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In the first case, placing 40-foot double stack containers on cars with 40-foot wells 

would save 13 gallons of fuel per train on this route compared to cars with 48-foot wells.  

In the second case, placing 48-foot trailers in spine cars with 48-foot slots would save 

over 100 gallons of fuel per train.  The resultant fuel savings in the first case is 0.13 

gal/mile, and in the second is over 1 gal/mile.  The reason for the difference is because 

in the first case the gaps are reduced in length, whereas in the latter case the gaps are 

almost completely eliminated. 

 

2.3 Slot Utilization vs. Equipment Matching 

Maximizing slot utilization has a positive effect on train energy efficiency because it 

eliminates empty slots and the consequent large gaps that would otherwise occur.  

However, as should be evident from the prior example in which all the trains considered 

had 100% slot utilization there is still the potential for substantial improvement in 

efficiency depending on the specific load-and-car combinations that are used.  Simply 

maximizing slot utilization does not ensure that the lowest aerodynamic resistance is 

achieved, whereas proper matching of intermodal loads with cars can.  Consequently, 

matching is a better metric for energy efficiency than slot utilization.  

 

For example, the aerodynamic coefficient for a train of 20 48-foot-well cars loaded 

with 40-foot containers will be reduced by 23% if slot utilization is improved from 90% 

to 100% (Figure 2.8).  However, if the 48-foot-well cars are replaced with 40-foot-well  
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cars, the aerodynamic coefficient would be reduced by another 5%.  Note that in both 

cases, slot utilization is 100%.     

 

Similarly, the aerodynamic coefficient decreases by 3% if slot utilization is increased 

from 90% to 100% for a train of 20 53-foot-slot spine cars with 48-foot trailers (Figure 

2.8).  Replacing 53-foot-slot spine cars with 48-foot-slot spine cars reduces the 

aerodynamic coefficient by another 36%.  
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Figure 2.8:  The aerodynamic coefficient of 90% slot utilization (SU), 100% slot 

utilization or equipment matching for double stack containers on well cars and trailers on 

spine cars 
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Accordingly, a train can be more efficiently operated if loads are assigned not only 

based on slot utilization but also better matching of intermodal loads with cars, which we 

term “slot efficiency” (Milhon, 2004).  This effect will be especially pronounced for the 

units in the front of the train where the aerodynamic effect is greater.  Therefore, I 

proposed to use “slot efficiency” to evaluate the loading efficiency of IM train; it 

represents the difference between the actual and ideal loading configuration given the 

particular set of railcars in the train and the loads available.  The slot efficiency of each 

slot is calculated as follows:    

   
   

   100%Length of Actual Load
Length of Ideal Load

Slot Efficiency = ×           (2.7) 

 

For example, the slot efficiency of a 45-ft trailer on a 53-ft-slot spine car unit is 85%, 

whereas placement of a 53-ft trailer on a 53-ft-slot spine car unit generates the lowest 

aerodynamic resistance and thus the highest score (100%) for this size slot.  Slot 

efficiency is similar to slot utilization except that it also factors in the energy efficiency of 

the load/slot combination.  

 

2.4 Filling Empty Slots with Empty Loads 

We recorded the load configuration of over 30 intermodal trains on a high density 

intermodal route of a Class 1 railroad and observed that empty slots usually occur as a 

single container on a well car, or an empty slot on a spine car.  Therefore, three different 

loading combinations were analyzed in three scenarios to evaluate the effect of placing 

empty loads in empty slots (Figure 2.9).  They are double stack containers on well cars, 
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trailers on spine cars and containers on spine cars.  For each scenario, the “baseline” 

case represents empty slots, and the “alternative” case represents filling empty slots with 

empty intermodal loads.   

 

 Both the number of empty slots and train speed affect the train resistance 

computation.  In the following analysis of three scenarios train speed was held constant 

at 50 mph.  Resistance values were computed for each case by changing the number of 

discrete empty slots.  We restricted these changes to the last 90 units of the train to avoid 

the complicating effects of factoring in the different aerodynamic effects characteristic of 

the front of the train (Gielow and Furlong, 1988).  In this respect, our results understate 

the potential benefits to a small extent because the aerodynamic benefit of improvements 

in the front of the train is slightly higher. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.9:  (a) Containers on 5-unit articulated well car (scenario 1); (b) trailers on 

5-unit articulated spine car (scenario 2); (c) containers on 5-unit articulated spine car 

(scenario 3) 
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2.4.1  Scenario 1: Double-Stack Containers on Well Cars 

In scenario 1, the train consists of 20 5-unit articulated 48-foot-well cars with 

48-foot double stack containers and from one to ten empty slots.  A single empty slot in 

a 5-unit well car is shown in Figure 2.9a.  We compared the baseline condition with 

empty slots to the alternative condition, in which empty containers are placed in the 

previously empty slots (Figure 2.10).   
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Figure 2.10:  Resistance of placing or not placing empty containers on empty slots in 

well cars 

 

In the baseline case, the greater the number of empty slots, the higher the train 

resistance despite the reduction in train weight.  This is due to the increased number of 

large gaps and the consequent greater turbulence.  In the alternative case, empty 
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containers are placed in the open slots.  The results in a small increase in bearing and 

rolling resistance due to the extra weight, but this resistance is more than offset by the 

reduction in aerodynamic resistance.  This result is an inverse relationship between 

resistance and the number of empty slots filled with empty containers because of both the 

lighter train and improved aerodynamics.  The benefit is the difference between the 

baseline and alternative cases, and it increases with the number of empty slots filled with 

empty containers.  For all the conditions, the alternative method results in a reduction in 

resistance (Figure 2.11).   
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Figure 2.11:  The benefit of placing empty containers on empty slots in well cars, 

placing empty trailers on empty slots in spine cars, and placing empty containers on 

empty slots in spine cars 
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2.4.2  Scenario 2: Trailers on Spine Cars 

In scenario 2, the train consists of 20 5-unit articulated 48-foot-slot spine cars with 

48-foot trailers. As in scenario 1, the number of cars with empty slots was varied from 

one to ten (an example of a car with a single empty slot is shown in Figure 2.9b).  The 

resistance of the baseline condition is compared to the alternative in which empty trailers 

are placed on empty slots on spine cars (Figure 2.12).   
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Figure 2.12:  Resistance of placing or not placing empty trailers on empty slots in spine 

cars 

 

The resistance of the baseline case increases and that of alternative declines with the 

greater number of empty slots, and the overall benefit increases with number of empty 

slots filled with empty trailers.  As in scenario 1, the alternative method reduced 

resistance for all the conditions (Figure 2.11).  The values are consistently higher than 
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for comparable numbers of empty slots in scenario 1.  As discussed above, this is 

because the spacing between trailers on spine cars is closer than the spacing between 

containers in well cars, consequently the difference in the aerodynamics is greater 

between the baseline and alternative conditions.  In fact, it is possible to space trailers so 

closely as to appear as one continuous body.  

 

2.4.3  Scenario 3: Containers on Spine Cars 

In scenario 3, the train consists of 20 5-unit articulated 48-foot-slot spine cars with 

48-foot containers.  The number of empty slots is varied as in the previous scenarios 

(Figure 2.9c).  Again, the resistance of the baseline case increases and that of alternative 

case decreases as the number of empty slots goes up (Figure 2.13).   
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Figure 2.13:  Resistance of placing or not placing empty containers on empty slots in 

spine cars 
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In this scenario, the corresponding benefits are even higher than in scenarios 1 & 2 

(Figure 2.11).  There is more benefit from filling empty slots with empty containers on 

spine cars compared to the other two train configurations.  This is not only because the 

spacing between containers on spine cars is closer than on well cars; but also because 

closely-spaced containers can be regarded as a single long box. By contrast even closely 

spaced trailers create drag due to the presence of the hitch, trailer landing gear, and 

wheels below the floor of the trailer.  

 

2.4.4  Effect of Speed  

The scenario analyses demonstrated the effect of the number of empty slots at a 

single speed (50 mph).  The aerodynamic term in the train resistance model is a squared 

function of speed.  Consequently, we expect a greater aerodynamic benefit at higher 

speeds.  Conversely at lower speeds the relative benefit is expected to be smaller.  We 

conducted sensitivity analyses on the effect of train speed on resistance while holding the 

number of empty slots constant (Figures 2.14 & 2.15). 

 

We first consider a train configured as in scenario 1 with 20 double stack well cars 

and five empty slots in the train.  Figure 2.14 compares the resistance of the train in the 

baseline and alternative conditions as a function of speed.  The resistance in both 

increases exponentially with speed and the difference between them also increases.  If 

the number of empty slots in the train is increased to ten, the resistance and 

corresponding benefit is also greater (Figures 2.15, 2.16a, 2.16d).  There is no benefit 
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when the speed is less than 10 mph because the reduction in aerodynamic resistance is 

not enough to offset the increase in bearing and rolling resistance due to the extra weight 

of the empty intermodal loads.  However, above this speed, there is a net benefit that 

increases with speed so that at 70 mph, filling five empty slots with containers results in a 

4% reduction in train resistance, and filling ten empty slots reduces train resistance by 

8%.  

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

-10 0 10 20 30 40 50 60 70 80

Speed (mph)

Tr
ai

n 
Re

si
st

an
ce

 (l
bs

) Baseline

Alternative

 

Figure 2.14:  Sensitivity analysis of speed in resistance of placing or not placing empty 

containers on five empty slots in well cars 

 

Similar analyses were conducted on trains configured as in scenarios 2 and 3, with 

similar results.  Figures 2.16b and 2.16e show the effect of placing empty trailers on five 

empty slots and ten empty slots respectively.  For the spine cars with trailers, the trend is 

the same as for containers on the well cars but the benefit is greater.  At 70 mph, filling 



 34

five empty slots with trailers, reduced train resistance by 5%, and filling ten empty slots 

reduced train resistance by 9%.  The greatest benefit comes from placing empty 

containers on empty slots in spine cars, with a benefit for filling five empty slots at 70 

mph of 10%, and 18% for filling ten empty slots (Figures 2.16c, 2.16f).  
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Figure 2.15:  Sensitivity analysis of speed in resistance of placing or not placing empty 

containers on ten empty slots in well cars 

 

In conclusion, the practice of loading empty intermodal equipment in empty slots 

will generally have a beneficial effect on train resistance.  Use of this practice for 

containers on spine cars offers the greatest benefit, followed by trailers on spine cars and 

then containers on well cars.   
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Figure 2.16:  The benefit of placing (a) empty containers on five empty slots in well cars; 

(b) empty trailers on five empty slots in spine cars; (c) empty containers on five empty 

slots in spine cars; (d) empty containers on ten empty slots in well cars; (e) empty trailers 

on ten empty slots in spine cars; (f) empty containers on ten empty slots in spine cars 

 

2.4.5  Fuel Consumption Computation 

Four trains were analyzed for each of the three scenarios representing the baseline 

and alternative cases with five or ten empty slots each (Table 2.1).  Simulations using 

TEM were conducted for each train configuration over the same 103-mile route described 

above.  Filling five empty slots with loads resulted in a savings of about 22 gallons of 

fuel per train in scenario 1 (double stack containers on well cars), 24 gallons of fuel in 

scenario 2 (trailers on spine cars) and 68 gallons of fuel in scenario 3 (containers on spine 

cars) (Table 2.1).  Filling ten empty slots with loads would save 47 gallons of fuel in 
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scenario 1, 53 gallons of fuel in scenario 2 and 104 gallons of fuel in scenario 3.  The 

fuel savings ranged from 0.21 gal/mile to 1.01 gal/mile.   

 

Table 2.1:  Fuel consumption of baseline and alternative cases for double stack 

containers on well cars (scenario 1), trailers on spine cars (scenario 2), and  

containers on spine cars (scenario 3) 

Baseline Alternative Baseline Alternative

(gallons) (gallons) (gallons) (gal/mile) (gallons) (gallons) (gallons) (gal/mile)

Scenario 1 765 743 22 0.21 787 740 47 0.46

Scenario 2 786 762 24 0.23 811 758 53 0.51

Scenario 3 635 567 68 0.66 669 565 104 1.01

Fuel Savings Fuel Savings
5 Empty Slots 10 Empty Slots

 

 

2.4.6  Extra Costs of Filling Empty Slots 

Maximizing slot efficiency involves better matching of equipment and loads, but 

does not require transportation of extra equipment; however filling empty slots does.  

Consequently, the extra costs associated with this should be accounted for.  These 

include the extra grade resistance and the opportunity cost of the equipment.  

 

Over the 103-mile route analyzed, grade resistance was not a significant factor.  

However, there are substantial elevation changes over many intermodal routes.  Empty 

40’ containers weigh approximately 8,500 lbs and the added grade resistance should be 

accounted for in calculating the savings due to the improved aerodynamics.  We used 

TEM and Poole’s fuel consumption formula (AREMA, 2001; Poole, 1962) to evaluate 

the importance of this effect over a typical western transcontinental route with 
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approximately 15,000’ of total elevation rise.  We found that lifting the weight of 10 

empty containers would require approximately 38.5 additional gallons of fuel.  Using 

the figures in Table 2.1, the estimated fuel savings due to the improved aerodynamics 

over a 2,000-mile route range from about 400 to 2,000 gallons per train, which is 

considerably more than the fuel penalty due to the extra weight. 

 

Regarding the opportunity cost of empty intermodal loads we assumed that an empty 

container is worth about $2,000 each and that the time value of 10 empty containers is 

about $5.50 per day.  Thus, for a three-day trip, the total would be about $16.50 which is 

less than 1% of the value of the fuel that would be saved.  

 

2.5 Discussion 

The current practice of measuring intermodal loading efficiency uses the metric slot 

utilization.  For example, improving slot utilization from 90% to 100% on some typical 

intermodal trains reduced the aerodynamic coefficient by 3% to 23% depending on train 

type.   

 

Beyond this, matching intermodal loads with cars of an appropriate length to 

maximize slot efficiency results in further improvement in train aerodynamics and can 

provide greater energy efficiency than slot utilization alone.  If the loads and cars are 

matched, the additional aerodynamic benefit ranged from 5% to 36%.  Over the 

103-mile long route considered, this benefit was estimated to reduce fuel consumption by 

0.13 to 1.0 gal/mile, depending on the load-and-car combinations analyzed.  When these 
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amounts are extrapolated to the 800 to 2,000 mile distances typical of many intermodal 

routes, the potential for fuel savings are substantial.  Intermodal trains can be more 

efficiently operated if loads are assigned not only based on slot utilization, but also better 

matching of intermodal loads with cars.  Although not considered in this chapter, the 

effect will be even greater for the units in the front of the train where the aerodynamic 

effect is greater. 

 

Filling empty slots with empty loads also reduces aerodynamic resistance and 

improves energy efficiency, despite the additional weight penalty and consequent 

increase in bearing, rolling and grade resistance.  A series of analyses for double stack 

containers on well cars (scenario 1), trailers on spine cars (scenario 2) and containers on 

spine cars (scenario 3) were conducted.  These scenario analyses show that filling empty 

slots with empty loads is beneficial, and the magnitude of this benefit increases with the 

number of empty slots to be filled.  

 

Based on sensitivity analyses of speed, filling empty slots with empty intermodal 

loads will generally reduce train resistance at the speeds typical of intermodal trains.  

The container-on-spine car scenario is the most beneficial followed by trailer on spine car 

and then container on well car.  The fuel savings generally ranged from 0.21 to 1.01 

gal/mile over the route considered. 

 

Although these options appear to offer potential benefit in terms of energy efficiency, 

they also introduce logistical challenges regarding rail car use, positioning and 
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availability, terminal operations and design, and placement of empty containers or trailers.  

The cost-effectiveness of implementing new practices based on the results presented here 

would have to consider all of these factors.  

 

2.6 Conclusion 

Three approaches for improving intermodal train energy efficiency were evaluated; 

slot utilization, slot efficiency, and filling empty slots.  All have a beneficial effect.  

Slot efficiency in which intermodal loads are matched with cars of an appropriate length 

reduces the gap length between loads, thereby improving airflow.  Compared to slot 

utilization, maximizing slot efficiency offers additional potential to reduce fuel 

consumption and intermodal train operating costs.  Filling empty slots with empty 

containers or trailers also reduces aerodynamic resistance thereby improving energy 

efficiency.  Despite the additional weight penalty and consequent increase in bearing 

and rolling resistance that would accrue, the reduction in aerodynamic resistance more 

than offsets this at speeds typical of intermodal trains.  
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CHAPTER 3 

 

OPTIMIZING THE AERODYNAMIC EFFICIENCY OF 

INTERMODAL FREIGHT TRAINS 

In chapter 2, I conducted a series of analyses to compare both the relative and 

absolute effects of different loading patterns and operating practices on train make-up and 

energy efficiency.  It was found that aerodynamic characteristics significantly affect IM 

train fuel efficiency; and, a train can be more efficiently operated if loads are assigned not 

only based on slot utilization but also by properly assigning loads to cars, which we 

referred to as “slot efficiency”.  Depending on the particular train configuration, train 

resistance for a fully loaded train can be reduced by as much as 27%, and fuel savings by 

1 gallon per mile per train, simply by better matching loads and railcars. 

 

Our previous work (Lai and Barkan, 2005) quantified the aerodynamic and energy 

penalties of specific load and car combinations under idealized conditions.  We did not 

consider the actual make-up of train consists or the wide variety in available loads and 

car types that a terminal manager must contend with in trying to implement more energy 

efficient loading practices.  In Lai et al. (2007), we describe a wayside machine vision 

system that automatically monitors the gap lengths between IM loads on passing trains so 

the railroad can evaluate how aerodynamically that trains were loaded.  However, no 

previous work has addressed the question of how to select among the wide variety of 
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loads and railcars actually available to load aerodynamically efficient trains.  This is an 

essential element of achieving the potential fuel and costs savings.  In this chapter, I 

develop an aerodynamic loading assignment model (ALAM) using an integer 

programming (IP) framework to optimize aerodynamic efficiency under various 

constraints regarding loading assignments.  The model can help terminal managers load 

trains more efficiently and can be incorporated into software used to automate or expedite 

the loading process inside IM terminals.   

 

Previous researchers have considered various other aspects regarding optimization 

of the loading process and equipment utilization.  Feo and Gonzales-Velrade (1995) 

proposed an integer-linear programming model to maximize the utilization of trailers to 

railcar hitches.  Powell and Carvalho (1998) developed a dynamic model to optimize the 

flow of flat cars over a network.  Corry and Kozan (2006) presented an assignment 

model to dynamically assign containers to IM trains so as to minimize excess handling 

time and optimize the weight distribution of the train.  Each of the above studies focused 

on certain types of IM loads or railcars.  However, none of them considered the energy 

efficiency of IM train loading.  In this chapter, we present the first application of 

optimization techniques to improve the energy efficiency of IM trains.  The proposed 

model can deal with all types of IM loads (11 different types of trailers and containers), 

and railcars (hundreds of different types of well, spine, flat cars) operated in North 

America (TTX, 1999).   
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This study is particularly timely in light of increasing fuel prices and their impact on 

industry operating costs, as well as the need to conserve energy and reduce greenhouse 

gas emissions.  In 2006, the major North American railroads spent over $8 billion on 

fuel in the United States making it their largest operating expense.  From 2002 to 2005, 

North American railroad fuel cost doubled, and since 1999 it is up by nearly a factor of 

three (AAR, 2006).  This trend is impacting railroads all over the world, consequently 

fuel efficiency is more important than ever (Stodolski, 2002; BNSF, 2004; UIC, 2004).  

Investigation of options to improve aerodynamic efficiency is a promising avenue with 

widespread potential economic and environmental benefits for rail freight transportation 

efficiency (AAR, 1981 and 1987; Smith, 1987). 

 

3.1 Intermodal Rail Terminal Operations 

At IM terminals, managers assign containers and trailers of a variety of lengths to 

available well, spine or flat cars (BNSF, 2004; UP, 2004).  Railroad IM business in 

North America is different from the general carload freight business; IM business often 

competes directly with trucks and as a consequence is very time sensitive.  Because of 

this, railroads try to avoid intermediate switches and stops on most IM trains.  In this 

study, we used the IM operation of the BNSF Railway’s route between Chicago and Los 

Angeles (LA) (aka “the Transcon”) as the basis for our analyses.  This is one of the 

busiest IM corridors in North America and approximately 80% of the IM trains on this 

route have no intermediate operations.  Of the remaining 20%, most have no more than 

two intermediate stops and these are generally close to the final destination (Utterback, 

2006).  Given that for most trains there is little or no container shifting occurring en 
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route, the initial loading pattern will be the principal factor affecting their aerodynamic 

performance.  

 

IM loads, i.e. trailers or containers, range in length from 20 to 57 ft (Muller, 1999; 

TTX, 1999).  There is considerable variety in the design and capacity of IM railcars 

with different numbers of units and slots, and thus loading capabilities.  An IM railcar 

may have one or more units permanently attached to one another (via articulation or 

drawbar).  A unit is a frame supported by at least two trucks, providing support for one 

or more platforms (a.k.a. slots).  For example, Figure 3.1a shows an articulated 3-unit 

well car, and Figure 3.2b is a 5-unit spine car.  A platform (or slot) is a specific 

container/trailer loading location.  As a result, each well-car unit has two slots because 

of their ability to accommodate two containers, one stacked on the other (a.k.a. “double 

stack”), and each spine-car unit has one slot (Figure 3.1). 

  

 

(a) 

 

(b) 

Figure 3.1:  (a) A 3-Unit Well Car with 6 Slots (b) a 5-Unit Spine Car With 5 Slots 

 

There are also a number of safety-related loading rules and various feasible and 

infeasible combinations of IM load and car configurations.  Because IM cars in a train 

are not generally switched in and out at terminals, managers primarily control the 
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assignment of loads but not the configuration of the equipment in a train.  Consequently, 

it is reasonable to treat train make-up as given.  Terminal managers often use computer 

software (Optimization Alternatives Ltd Inc, 2006) as a decision-making tool to assist 

them in complying with loading rules; nevertheless load assignment is still a largely 

manual process in which aerodynamic efficiency is not considered.  

 

3.2 Methodology 

To develop ALAM we need to quantify the IM train aerodynamic characteristics in 

order to incorporate them into the integer programming model for optimal loading.   

 

3.2.1  Evaluation of Intermodal Aerodynamic Efficiency 

The principal metric currently used to measure the efficiency of IM train loading is 

“slot utilization” (Burriss, 2003).  It measures the percentage of available slots on IM 

cars that are used for loads.  Slot utilization does not take into account the size of the 

space compared to the size of the load.  Although perfect slot utilization indicates 

maximal use of available spaces, it is not intended to, nor does it ensure, that IM cars are 

loaded to optimize their aerodynamic characteristics and hence maximize energy 

efficiency.  Two trains may have identical slot utilization, but significantly different 

energy efficiency due to different loading patterns and consequent aerodynamic 

resistance (Lai and Barkan, 2005).   

 

Aerodynamic drag is known to be a major component of train resistance, particularly 

at high speeds (Hay, 1982; AREMA, 2001).  The Association of American Railroads 
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(AAR) supported research on wind tunnel testing of rail equipment, including large-scale 

IM car models (Gielow and Furlong, 1988).  The test results were used to develop the 

Aerodynamic Subroutine of the AAR’s Train Energy Model (TEM) (Drish, 1992).  

These experiments showed that the gap length between IM loads, position-in-train, and 

yaw angle of wind are three important factors affecting train aerodynamics (Engdahl, 

1987).  Although yaw angle of wind is important at specific locations, over a long route 

this effect will tend to be canceled out by winds in all directions.  Consequently, this 

study focuses on the first two factors, namely gap length and position-in-train effects.  

 

The greater the gaps between loads, the larger the aerodynamic penalty because 

closely-spaced containers or trailers behave as one long load.  In contrast, loads spaced 

72″ or more apart, behave as distinct objects as boundary layers on their surfaces are 

reinitialized (Engdahl, 1987).  The wind tunnel tests showed that the lead locomotive 

experiences the highest drag due to headwind impact.  After the head end, resistance 

declines until about the 10th unit in the train, after which drag remains nearly constant for 

the remaining units.  Therefore, minimizing the total gap length and placing loads with 

shorter gaps near the front of the train will result in lower aerodynamic resistance.  

Consequently, the objective of optimal loading can be stated as minimization of the “total 

adjusted gap length (TAGL)” within the train.  The adjusted gap length is defined as the 

gap length weighted by the position-in-train effect, where the weight associated with each 

unit gets smaller as the unit gets farther from the head end.  The relationship between 

aerodynamic resistance and position-in-train effect is represented in the following 

equation derived from wind tunnel testing (Engdahl, 1987):  
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0.29308 0.0000714.85824 9.86549 10.66914k k
DC A e e− −= + +               (3.1) 

where k is the unit position in the train and CDA is the drag area which represents the 

aerodynamic resistance in ft2.  The adjusted factor associated with each gap can be 

computed by dividing the drag area of a given unit by the drag area of the 100th unit 

(Table 3.1).   

Table 3.1:  Adjusted factor of each gap in the train 

k Drag area (ft2) Adjusted factor
1 (locomotive) 31.618 1.5449

2 28.801 1.4073
3 26.700 1.3046
4 25.133 1.2280
5 23.963 1.1709
6 23.091 1.1283
7 22.440 1.0964
8 21.954 1.0727
9 21.591 1.0550
10 21.320 1.0418
100 20.466 1.0000  

 

3.2.2  Aerodynamic Loading Assignment Model (ALAM) 

The following notation is used in the algebraic model: I={i} is an index referring to 

the type or size of the load (for instance, i=C40 represents a 40' container, i=T48 

represents a 48' trailer, etc.).  CL and TL are a subset of I representing containers and 

trailers, respectively.  We group loads of the same type together and denote each load of 

type i with j = 1, 2, 3…Ji, where Ji is the total number of loads of type i (for instance, JT48 

=10 means that there are ten 48'-trailers in the storage area).  The symbol k (k = 1, 2, 

3…N) defines the position of each unit in the train.  For instance, k = 1 corresponds to 

the first IM unit of the train, k = 2 corresponds to the second unit, etc.  The slot position 
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in every unit is denoted by p, where p = 1 represents the upper (top) slot (platform) in a 

well-car unit or the (only) slot in a spine-car or flat-car unit, and p = 2 represents the 

lower (bottom) slot in a well-car unit (see Figure 3.2).   

 

The following symbols represent the parameters used in the model: Ak is the 

adjusted factor of the kth gap (see Table 3.1), where A1 > A2 > …>AN; Uk is the length of 

the kth unit; δk indicates the type of the kth unit, where δk = 1 when the unit is a well-car 

unit, and δk = 0 otherwise; Li is the length of an ith type load; Qkp is the length limit of 

position p in the kth unit; wij is the weight of the jth load of type i; Wk is the weight limit 

for the kth unit; and Ripk is a three dimensional matrix for loading capabilities of each slot, 

where Ripk = 1 if the ith type of load can be assigned to position p in unit k, otherwise it is 

0.  Finally, Ф represents an arbitrarily specified large number introduced for modeling 

purposes as will be explained in the model description below.   

 

 

(a) 

 

(b) 

Figure 3.2:  The available slots in (a) 5-unit well car (b) 5-unit spine car 

 

Two sets of binary decision variables are included in the IP model.  The first 

variable is denoted by yijpk where:  
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1,   if the  load of type  is assigned to position  in the  unit
0,  otherwise

th th

ijpk
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y
⎧

= ⎨
⎩

. 

The second binary variable, denoted by xk, determines whether the position 1 (top 

slot) in a well unit can be used, namely:   

1,   if top platform of the  unit can be used
0,  otherwise

th

k
k

x
⎧

= ⎨
⎩

. 

According to the loading rules, position 1 of a well-car unit (top slot) can be used when 

the bottom slot is filled by containers whose total length is at least 40' (AAR, 2004).   

 

The loading problem is formulated here as a linear integer programming model.  

This model minimizes aerodynamic resistance of an IM train (thus the fuel consumption), 

which is assumed to be a function of the train’s total adjusted gap length, subject to the 

train characteristics and loading possibilities for a given set of loads. The algebraic 

expression is given below:  

 

Min 

1 1 11 1 1 1 1 1
1

0.5
N

ij i k k ij k i k ij k i
i j k i j i j

A U y L A U y L U y L+ + +
=

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪× − + − + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑∑ ∑ ∑∑ ∑∑ (3.2) 

 

The constraints of the model are as follows:   

1    ,≤ ∀∑∑ ijpk ipk
p k

y R i j                                           (3.3) 

    , , ,≤ ∀ijpk ipky R i j p k                                               (3.4) 
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i j p

y w W k                                           (3.8) 

    ,≤ ∀∑∑ ijpk i kp
i j

y L Q k p                                            (3.9) 

yijpk , xk = 0, 1                                                     (3.10) 

 

The objective function (TAGL) represents the total adjusted gap length, which is 

comprised of two parts.  The first part involves the gap length between the locomotive 

and the first load (Figure 3.3), which is given by the difference between the length of the 

first unit (U1) and the length of the load in position 1 of the 1st unit (∑∑ yij11Li) divided by 

2.  Multiplying the gap length by the adjusted factor A1 results in the first adjusted gap 

length.  The second part of the objective function computes the sum of the subsequent 

adjusted gap lengths.  Each of the subsequent gaps is half of the difference in length 

between the current unit and the load (Uk - ∑∑ yij1kLi)/2 plus half of the length difference 

between the next unit and the load (Uk+1 - ∑∑ yij1k+1Li)/2 multiplied by the appropriate 

adjusted factor, Ak.  Note that we only take into account the loads in position 1 of all 

units in the train.  This is reasonable since these are the only loads on spine or flat cars; 

and for well cars, the upper level gaps have a more significant aerodynamic effect than 

the lower level gaps (Furlong, 1988; Storms, 2005; Airflow Science Corporation, 2006).   
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Figure 3.3:  Locomotive and first two intermodal units in a train  

 

Minimizing total adjusted gap length creates the most efficient train configuration.  

However, not all loads can be assigned to all slots.  Loading assignment must conform 

to the loading capability of each unit as well as length and weight constraints.  These are 

expressed in the model constraints above.  The first two constraints, (3.3) and (3.4), 

ensure that each load is assigned to no more than one slot following the loading rules.   

Constraints (3.5) and (3.6) together state that if the bottom slot (position 2) in a well-car 

unit (δk = 1) is not filled with loads greater than 40 ft, in which case equation (3.5) 

requires that xk = 0, then no load can be assigned to the top slot (position 1) for the same 

unit, i.e., ∑∑ yij1k = 0 and therefore yij1k = 0 for all i, j.  Constraint (3.7) ensures that 

containers cannot stack on top of trailers in well-car units.  Constraints (3.8) and (3.9) 

are for weight and length limits, respectively.  The weight constraint (3.8) is imposed for 

each car unit in order to reflect the total carrying capacity of that unit.  The length 

constraint (3.9) is imposed for each slot to guarantee that the total length of loads in a 

given slot (position) does not exceed the length of that slot.   

 

3.2.3  Solution Algorithm  

When assigning loads to IM trains, there are 3 possible scenarios that terminal 

managers may encounter: (1) number of loads = number of slots, (2) number of loads > 
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number of slots, and (3) number of loads < number of slots.   Scenario 1 and 2 are more 

common than scenario 3, and they can be solved directly by using the IP model to select 

the best loads for the available slots.  When there are fewer loads than available slots 

(scenario 3), in some cases ALAM assigned two loads to two spine-car units (one load 

per unit) instead of double stacking them in a frontal well-car unit although a well-car 

unit was available.  This is because the model only accounts for loads in position 1 (top) 

of all units for determining the adjusted gap length calculation.  Clearly, such a loading 

pattern is not the most efficient alternative.  To solve with this we developed an 

algorithm that can deal with all possible loading scenarios and successfully implement 

ALAM to determine the most energy efficient loading pattern.   

 

A stepwise indirect approach is presented below based on the idea that placing loads 

towards the front of the train and leaving the rear cars empty is generally more 

aerodynamic and thus preferable.  This approach ensures that only the front part of the 

train is first made available for loading; thereby leaving the rear of the train empty.  The 

algorithmic details are provided below: 

 

Step 1: k = 1, total number of loads = NL, total number of units in the train = NU 

Step 2: Count number of slots from 1st unit to kth unit  if this value is less than NL 

and k< NU then go to Step 3; otherwise, go to Step 4 

Step 3: k = k + 1 and go to Step 2 
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Step 4: Solve by ALAM  if k = NU  or there is no unassigned loads then go to 

Step 5; otherwise, go to Step 3 

Step 5: Stop and output the optimal loading pattern 

 

The algorithm starts with identifying the “loaded section” by increasing the number 

of available slots (in “loaded section”) until it is equal to the number of total loads.  

With the “loaded section” determined, we can then use ALAM to solve the IP problem.  

After implementing ALAM, if there are no unassigned loads or if k is equal to the total 

number of units in the train, we can output the optimal loading pattern; otherwise, we 

have to increase the number of available slots to accommodate the unassigned loads.  

Although the number of slots is equal to the number of loads, some loads might still be 

unassigned because of possible weight or length restrictions.  If there are any unassigned 

loads and k is not the last unit in the train, the (k+1)st unit is made available.   

 

With this solution procedure, ALAM is able to deal with all kinds of scenarios of IM 

loading which means the loading assignment model is now complete.  This stepwise 

indirect algorithm may require several iterations before reaching the optimum; however, 

our computational experience shows that the solution time of ALAM is efficient enough, 

and therefore is a practical decision tool for real-time terminal operations.   

 

3.3 Empirical Application 

Most IM trains operating in North America can be categorized into four general 

types:  (I) International Stack Trains; (II) Domestic Stack Trains; (III) 

Trailer-on-Flat-Car (TOFC)/Container-on-Flat-Car (COFC) Trains; and, (IV) Mixed IM 
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Trains consisting of both TOFC/COFC and Double Stack equipment (Armstrong, 1998).  

International and Domestic Stack Trains (Type I & II) have only well cars, TOFC/COFC 

Trains (Type III) have spine and flat cars, and mixed IM Trains (Type IV) are comprised 

of all types of IM railcars (well, spine, and flat cars).  

 

  We have developed a database of approximately 250 IM trains and loads that 

operated on the BNSF Chicago – Los Angeles route (BNSF, 2005).  Based on our 

assessment of their typical makeup, four representative trains were selected for detailed 

comparison of current terminal operations  and the optimal loading pattern, given the 

loads and cars available (Table 3.2).  Train 1 represents a double stack train transporting 

mostly international containers.  Train 2 is also a double stack train but it is used for 

domestic containers.  Train 3 is a TOFC/COFC train with a variety of trailers, and train 

4 was comprised of well, spine and flat cars, and it also has a variety of differently-sized 

containers and trailers (Table 3.3).   

 

As a result of the different characteristics of equipment and loads of these types of 

trains, there are varying degrees of flexibility in loading options.  For example, train 1 

has primarily 20' and 40' containers with little flexibility in alternative loading 

assignments compared to train 2, which had a much greater diversity of load types due to 

the variation in domestic container size (Table 3.3).  Consequently, the potential 

improvement in the aerodynamics of train 2 is greater than for train 1.   
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Table 3.2:  Four representative IM trains 

Train Type Number of Cars Number of Units Total Loads
1 International Stack Train 30 104 224
2 Domestic Stack Train 37 115 244
3 TOFC/COFC Train 37 110 131
4 Mixed Train 32 104 173  

 

Table 3.3:  Number of loads in the example trains 

Train C20 C40 C45 C48 C53 T20 T28 T40 T45 T48 T53 Total Loads
1 32 184 8 0 0 0 0 0 0 0 0 224
2 28 88 9 17 102 0 0 0 0 0 0 244
3 0 0 0 0 0 11 31 0 30 35 24 131
4 32 22 0 6 59 0 2 2 2 15 33 173  

 

In the following sections, we present a series of scenario analyses for the four types 

of IM trains described above.  In section 3.3.1, we consider the scenario in which the 

number of loads equals the number of available slots in the train, and in sections 3.3.2 

and 3.3.3, we consider scenarios in which the number of loads is more, or less, than the 

number of slots, respectively.  In section 3.3.4, we compute fuel consumption for each 

of the scenario analyses, and the results and policy suggestions based on our analyses are 

presented in 3.3.5.   

 

3.3.1  Scenario 1: Number of Loads Equals Number of Slots 

ALAM was used to analyze the optimal loading pattern for each of the four 

representative types of IM train and loads shown in Tables 3.2 and 3.3.   Certain 

restrictions were applied to the loading pattern when assigning loads to slots (AAR, 2004; 

Armstrong, 1998; TTX, 1999).  For example, a 48'-well car cannot handle containers or 

trailers greater than 48' in the bottom position (position 2), although it can accommodate 
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containers up to 53' in the top position (position 1).  53'-slot spine cars have only one 

platform (position 1) per unit and can handle either containers or trailers up to 53' long.  

Besides length and weight constraints, some of the IM units can accommodate only 

containers, some can accommodate only trailers, and the others can handle both.  To 

ensure that load assignment follows the loading rules, possible loading combinations are 

specified for each IM unit.  In order to clearly illustrate the aerodynamic effects, we 

assumed that none of the units were constrained by weight limits and the optimization 

process was based solely on minimization of the total adjusted gap length (TGAL).     

 

For any given train and pool of loads, there is at least one loading pattern in which 

TAGL is minimized (the most aerodynamic pattern), and conversely, another loading 

pattern in which it is maximized (worst case).  At present, terminal managers’ goal in 

load assignment is to maximize slot utilization; therefore, they are largely indifferent to 

alternative loading patterns as long as they achieve 100% slot utilization (and comply 

with applicable loading rules).  Consequently, with 100% slot utilization, average 

terminal operating practice will be some intermediate value between these two extremes.  

Therefore, I assumed that the mean of the TAGL for the minimum and maximum cases 

represents average terminal performance in the scenarios with 100% slot utilization 

(scenarios 1 and 2).  

 

CPLEX 9.0 incorporated with GAMS (Brooke et al., 1998) was used to solve the 

model.  Our computational experience showed that the optimal solution for each case 

could be obtained in less than five seconds.  Thus, computational complexity is not a 
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problem for real-time terminal operations.  We then compared the results of ALAM with 

our estimate of average terminal loading (Figure 3.4).  In this scenario, the optimal 

results were generally close to the mean due to the inflexibility in possible loading 

combinations.  This was especially evident for train 1 and train 3.  Since train 1 has 

mostly international IM loads (i.e. 20' and 40' containers), the difference between the 

most and the least aerodynamic loading patterns is small.  For train 3, the small range in 

TAGL is due to the characteristics of trailers and equipment in TOFC/COFC (Type III) 

trains.  Train 4 is really a combination of trains with characteristics like trains 1 and 3 so 

it is not surprising that it also demonstrates a relatively small possible range of TAGL 

values for this scenario.  By contrast, train 2 has a considerably greater TAGL range 

because of the wider variation in loads that is typical of this type of train.  

 

 

Figure 3.4:  Minimum, maximum and estimated average TAGL for the four example 

trains when loads = slots (scenario 1) 
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3.3.2  Scenario 2: Number of Loads Exceeds Number of Slots  

At IM terminals, managers often have more loads than available slots in the next 

outgoing train (scenario 2) and this offers greater flexibility in load assignment.  

Scenario 2 is more common at IM terminals than scenarios 1 and 3 so these results are 

particularly important in assessing the potential benefits of using ALAM.  The task in 

scenario 2 is to select the best set of loads from the load-pool to match the current 

outgoing train.  Unfortunately, specific data on the composition of the pool of loads are 

not available because IM load assignments are only recorded when an outgoing train is 

loaded and ready to depart.  However, it is reasonable to assume that the load pool is 

proportional to the distribution actually loaded onto a train.  For the purpose of 

comparison among the four train types in this scenario analysis, I assumed that the 

number of each type of load was increased by approximately 50% (Table 3.4).  Train 

consists and configurations were assumed to be unchanged.  

 

Table 3.4:  Number of available loads for example trains in scenario 2 

Train C20 C40 C45 C48 C53 T20 T28 T40 T45 T48 T53 Total Loads
1 48 276 12 0 0 0 0 0 0 0 0 336
2 42 132 14 26 153 0 0 0 0 0 0 367
3 0 0 0 0 0 17 47 0 45 53 36 198
4 48 33 0 9 89 0 3 3 3 23 50 261  

 

Due to the greater number of potential loads to choose from compared to scenario 1, 

there is some reduction in TGAL for all four train types; however, the magnitude of 

potential improvement varies widely (Figure 3.5).  Only train 1 (international 

double-stack container trains) experiences little potential improvement, again due to the 

inflexibility in types of loads.  By contrast, all three of the other train types show 
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substantial potential to reduce TAGL, with train 2 showing the greatest range.  The wide 

range in possible TAGL means that terminal managers have a higher chance of loading 

aerodynamically inefficient trains and that use of ALAM has more potential to improve 

the energy efficiency of these types of trains.  

 

 

Figure 3.5:  Minimum, maximum and estimated average TAGL for the four example 

trains when loads > slots (scenario 2) 

 

3.3.3  Scenario 3: Number of Loads Less Than Number of Slots 

In scenario 3, I analyzed the same four trains but the number of loads available was 

reduced by approximately 50% (Table 3.5).  Since slot utilization is not 100% in this 

scenario, a larger adjusted gap length does not necessarily represent the poorest 

aerodynamics.  According to Engdahl et al. (1987), the worst aerodynamic pattern is to 

have empty units uniformly distributed throughout the train.  If terminal managers are 

loading without regard to aerodynamics, we expect loading patterns to be somewhere 

between the best and the worst.  Therefore, I estimated their performance by assuming 

they placed half of the empty units at the end of the train, which would not affect 
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aerodynamics, and the other half uniformly distributed in the “loaded section” (from the 

1st unit to the last loaded unit). 

 

Table 3.5:  Number of available loads for example trains in scenario 3 

Train C20 C40 C45 C48 C53 T20 T28 T40 T45 T48 T53 Total Loads
1 16 92 4 0 0 0 0 0 0 0 0 112
2 14 44 5 9 51 0 0 0 0 0 0 123
3 0 0 0 0 0 6 16 0 15 18 12 67
4 16 11 0 3 30 0 1 1 1 8 17 88  

 

The number of empty units for each of the four trains can be determined based on 

the optimal patterns obtained from ALAM (50, 57, 52, 38 units for trains 1, 2, 3, 4, 

respectively).  For example, the best aerodynamic loading pattern for train 1 is to assign 

all available loads to the first 54 units (loaded section), and leave the last 50 units empty.   

The worst case for train 1 is to distribute the 50 empty units uniformly throughout the 

entire 104-unit train which results in 4,446-ft adjusted gap length.  Therefore, the 

average terminal performance was estimated by setting the last 25 units empty and 

distributing the other 25 empty units in the available loaded section.   The differences in 

TAGL among optimal loading, worst loading and estimated average terminal 

performance are substantially greater than those in scenarios 1 and 2 because the 

calculation of adjusted gap lengths ignores units not in the loaded section (Figure 3.6).  
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Figure 3.6:  Minimum, maximum and estimated average TAGL for the four example 

trains when loads < slots (scenario 3) 

 

3.3.4  Fuel Consumption Computation 

To quantify the potential fuel savings resulting from the optimal loadings obtained 

from ALAM, I computed the aerodynamic coefficients and the corresponding fuel 

consumption using the Aerodynamic Subroutine and the AAR Train Energy Model (TEM) 

(Furlong, 1988; Drish, 1992).  The BNSF Transcon is a high speed freight rail route 

primarily with gentle grades, curves and rolling topography, so we selected a typical 

100-mile segment to estimate fuel consumption and extrapolated this to develop 

estimates for the entire route.  

 

Table 3.6 summarizes the computed fuel consumption values and associated savings 

if trains are loaded optimally using ALAM compared to estimated-average-loaded trains.  

The aerodynamic benefits of trains in scenario 2 are generally higher than scenario 1 due 

to the increased flexibility in loading patterns.  However, there is almost no added 

benefit from optimizing loading train 1 compared to normal terminal practices because of 

the inflexibility in loading patterns for this type of train.  Even though the flexibility of 
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train 1 in scenario 2 is relatively higher than scenario 1, it still makes almost no 

difference in fuel consumption.  I will further discuss the implication of this result in 

section 3.3.5 below.   

 

The aerodynamic benefit for train 3 (TOFC/COFC train) is generally higher than the 

others even though the range in TAGL in scenario 1 is not as large as the others (Figure 

3.4).  This is because loads in spine or flat cars can be placed relatively closer to each 

other compared to the other types of trains comprised of well cars (Lai and Barkan, 2005), 

resulting in a greater difference in the aerodynamic efficiency of loading patterns.  

 

Scenario 3 is a relatively unique case (slot utilization << 100%) compared to scenarios 

1 and 2 (slot utilization = 100%).  The differences between optimal patterns and 

estimated average terminal practices in scenario 3 are substantial because there are quite 

a few long gaps in the terminal case caused by empty slots in the train (Table 3.6c).  The 

fuel savings for trains 1 and 2 are higher here since the aerodynamic drag caused by 

empty slots between two double-stack units is greater than empty slots between 

single-level units in trains 3 and 4.   
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Table 3.6:  Fuel consumption and estimated savings for optimally loaded trains 

compared to average loaded trains (estimated terminal performance) in (a) scenario 1  

(b) scenario 2 (c) scenario 3 

(a) 

Train Optimal Terminal (gallons/mile) %
1 961 961 0.00 0.0%
2 964 973 0.09 0.9%
3 937 996 0.59 5.9%
4 944 986 0.42 4.3%

Fuel Consumption (gallons) Fuel Savings

 

(b) 

Train Optimal Terminal (gallons/mile) %
1 961 961 0.00 0.0%
2 955 988 0.33 3.3%
3 937 1,033 0.96 9.3%
4 945 967 0.22 2.3%

Fuel Consumption (gallons) Fuel Savings

 

(c) 

Train Optimal Terminal (gallons/mile) %
1 827 992 1.65 16.6%
2 825 1,036 2.11 20.4%
3 823 926 1.03 11.1%
4 838 928 0.90 9.7%

Fuel Consumption (gallons) Fuel Savings

 

 

3.3.5  Policy Recommendations for Railway Intermodal Operations 

The scenario analyses presented above demonstrate the potential benefit of 

implementing ALAM at IM terminals.  In this section, we discuss the implications of 

these results and some options to improve the energy efficiency of IM train operations.  
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Use of ALAM for intermodal train loading  

The most obvious recommendation stemming from the work described here is that 

ALAM be integrated into railroads’ IM terminal loading operations.  Use of ALAM to 

match loads to slots would have reduced fuel consumption by as much as 20%.  The 

exact amount will vary for individual train consists and loads available, but these figures 

provide insight into the magnitude of potential savings available.  The percentage of 

each of the four types of trains on the BNSF Transcon are approximately equal with a 

total of about 50 per day.  Accounting for the different potential savings for these train 

types if they were loaded according to ALAM guidelines, compared to the average 

loading configuration, translates to a total annual savings of about 29 million dollars 

based on the most common scenario (scenario 2). 

 

Major railroad IM terminals already use software to assist and expedite the loading 

process, so integration of ALAM objectives and methodology into this software would 

not require substantial institutional or process change.  It also should have little if any 

impact on operating cost because it will not generally require more work, but rather, 

inform the loading process with a new quantitative parameter, minimization of TAGL.  

Implementation of ALAM would automate terminal managers’ consideration of the large 

variety of loads and railcar types available thereby enabling them to load trains in a more 

aerodynamically efficient configuration.  These benefits can be further enhanced by 

several additional factors as described in the following three subsections. 

 



 64

Better Matching of Loads with Railcars 

The aerodynamic benefit of optimizing the loading pattern of train 1 in scenarios 1 

and 2 is small.  This is due to the inflexibility in loading patterns of train 1, and also the 

characteristics of the “long” well cars.  Train 1 is primarily transporting 20’ & 40’ 

international containers with just a few 45' containers.  Nevertheless, approximately 

70% of its railcars were designed for 53' containers.  Placing 45' containers in the frontal 

positions in the train would generally be better than 40' containers; however, for this kind 

of long well-car unit, it makes little aerodynamic difference.  This is because using 53’ 

cars to transport either 40' or 45' loads always results in gaps greater than the critical gap 

length (12 ft), necessary to gain aerodynamic benefit (Engdahl et al., 1987) so 

reconfiguring the shorter loads on the longer cars has little effect (Lai and Barkan, 2005).  

 

Using 53'-well cars is convenient for managers because of these cars’ flexibility; 

however, placing shorter international containers in 53'-well cars causes greater 

aerodynamic resistance than if 40'-unit well cars are used.  For example, without 

changing the placement of loads, if train 1 used well cars designed for 40' containers (45' 

containers can still be placed in at the top), the aerodynamic coefficient reduces from 

7.04 to 5.50 lbs/mph2, and the weight of the train would be reduced by 18% as well.  

The corresponding fuel savings would be 0.88 gallons per mile, an approximately 9% 

reduction.  Consequently, we suggest better matching IM loads with the railcars used to 

transport them, specifically acquisition and use of well cars with 40’ slots that are 

designed for international loads.  

 



 65

Optimize Loading for More Than a Single Train Simultaneously 

The analysis thus far has focused on optimizing the aerodynamic efficiency of a 

single outgoing train for a given set of loads.  We formulated the problem this way 

because most loads arrive shortly before loading begins.  However, if advance 

knowledge (either empirical or probabilistic) on the composition of outgoing trains and 

the load pool is available, this information can be used to optimize the loading of multiple 

trains simultaneously and increase the benefit of applying the model developed in this 

research.  

 

ALAM can be extended to address the multiple train loading problem by modifying 

it to consider units of all the loads and units in each of the trains available.  This is 

accomplished by introducing a new index, t, that refers to the set of outgoing trains.  

The objective function of the extended model is minimization of the total adjusted gap 

length of all the outgoing trains in a given time horizon:  
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The constraints are the same as ALAM except the decision variables yijpk and xk are 

replaced by yijtpk and xtk.  Compared to the basic ALAM described earlier, this modified 
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version provides a global optimum solution as opposed to the local optimum based on 

analysis of a single train. 

 

Uncouple Empty Railcars at the End of IM Trains 

The optimal loading pattern aims to achieve the lowest aerodynamic resistance and 

thereby maximize fuel economy; therefore, when the number of loads is less than the 

number of slots (scenario 3), the loads are placed in cars at the front of the train, and 

empty slots in the rear.  According to IM loading rules, the speed of a train with empty 

cars is restricted to 55 mph due to concerns about dynamic instability of these cars at 

higher speeds (BNSF, 2004).  Hence, there is a tradeoff between aerodynamic loading 

pattern and train operating speed.  Although ALAM is intended to maximize 

aerodynamic efficiency, it can be modified to suit terminal operators’ or dispatchers’ 

preferences (higher train speed vs. better fuel efficiency) by adding additional constraints 

or pre-processes (such as each car must have at least one load so that the speed 

restrictions can be avoided). 

 

We can also approach this problem by removing the empty cars from the end of the 

train.  Although this might incur some additional operating costs this should be 

compared to the energy efficiency benefits.  Uncoupling empty cars would reduce the 

weight of the train and also eliminate the speed restriction.  Table 3.7 shows the 

computed fuel consumption and respective savings for the worst case, average terminal 

practices, and optimal loading pattern with or without an uncoupling policy.  Fuel 

savings are computed by comparing terminal practices to the optimal results if the 
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uncoupling strategy is used.  The savings with implementation of the practice of 

uncoupling are greater than without uncoupling.  Comparison of Table 3.6c and Table 

3.7 shows that the uncoupling strategy can increase fuel savings by 14 ~ 25%.  

Therefore, if repositioning empty IM equipment can be efficiently accomplished without 

transporting it in IM trains with loads, uncoupling railcars from the end of trains should 

be considered.  

 

Table 3.7:  Fuel consumption and estimated savings for the worst case, average loaded 

trains (estimated terminal performance), and optimal results without or with uncoupling 

policies in scenario 3 

Train Worst Case Terminal Optimal
without Uncoupling

Optimal
with Uncoupling (gallons/mile) %

1 1,090 992 827 598 3.94 39.7%
2 1,135 1,036 825 562 4.74 45.8%
3 976 926 823 578 3.48 37.6%
4 976 928 838 706 2.22 23.9%

Fuel Consumption (gallons) Fuel Savings

 

 

3.4 Discussion  

ALAM can be extended to optimize the aerodynamic efficiency at the system level 

instead of optimizing the loading of a single train.  The time horizon can be extended to 

several days (or more if desired) depending on the availability of advance train-and-load 

information and how difficult it is to solve the problem using IP.  An interesting 

question we intend to address in the future is to consider the time horizon required to 

approach the global optimum, and how much improvement is possible as that horizon is 

lengthened. 
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This study focused on IM services between Chicago and LA in which no 

intermediate train reconfiguration occurs en route.  This is the case for approximately 

80% of the trains operating on this route.  In the majority of cases, the initial loading 

pattern could be determined to optimize the train's aerodynamic efficiency without 

considering unloading sequences.  Of the remaining 20%, half of them have no more 

than two additional terminals and these are generally near the final destination so the 

same aerodynamic benefits will apply over most of the route.  If intermediate operations 

do occur, then the aerodynamic benefits will apply for the portion of the route prior to the 

terminal where the train is reconfigured.  Beyond that trains may operate at lower 

efficiency.  It would also be possible to modify the model to optimize aerodynamic 

efficiency for the entire route including intermediate destinations (where the train is 

reconfigured) in the analysis.  However, there is a trade off between the costs and 

benefits of doing this.  The increased modeling complexity would demand more 

computation time and the resulting problem might be too complex to solve using IP.  

Further research should be conducted to develop specially designed solution algorithms 

that can generate very good (if not optimal) loading patterns for trains whose composition 

changes en route. 

 

3.5 Conclusions 

We develop a mathematical programming model (ALAM) by incorporating the 

aerodynamic characteristics of intermodal trains to optimize load-to-unit assignments.  

The model can be integrated into current terminal operation software as an additional tool 

to help terminal managers make better loading decisions.  The contributions of this work 
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to the literature are: (1) It is the first use of optimization modeling with the objective of 

improving the aerodynamics and consequent energy efficiency of intermodal trains and 

reveals significant possible savings are possible.  (2) The model developed in this 

chapter can be adapted to a variety of other intermodal train loading assignment problems 

through modification of the objective function.  This is a novel contribution to the 

literature and enhances its generality because the formulation can be solved efficiently 

and thus serve as a basis for other intermodal load assignment problems.  (3) Several 

policy recommendations regarding railway intermodal operations are developed based on 

a series of scenario analyses.   

 

There are substantial potential fuel and cost savings benefits that railroads can 

achieve thorough implementation of ALAM at intermodal terminals.  These benefits can 

be further enhanced through several additional steps including: (a) better matching of 

railcars and loads for international intermodal trains (b) simultaneous optimization of 

multiple trains to take greater advantage of the potential to improve energy efficiency of 

intermodal trains through use of more aerodynamic loading patterns, and (c) uncoupling 

empty railcars from the end of loaded intermodal trains when practical.  The potential 

annual savings in fuel consumption through use of ALAM by one large railroad on one of 

its major intermodal routes is estimated to be approximately 15 million gallons with a 

corresponding value of 29 million dollars.  Correspondingly larger savings in fuel, 

emissions and expense are possible if the methodology described in this chapter were 

applied to all North American intermodal trains. 
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CHAPTER 4 

 

OPTIMIZING THE AERODYNAMIC EFFICIENCY OF 

INTERMODAL FREIGHT TRAINS WITH ROLLING 

HORIZON OPERATIONS 

In chapter 2, aerodynamic characteristics have been prove to have a significant 

impact on IM train fuel efficiency; therefore, a train can be more efficiently operated if 

loads and slots are carefully matched during the process of load assignments (Lai and 

Barkan, 2005).  In order to help terminal managers assemble more fuel efficient trains, 

in chapter 3, I present an aerodynamic loading assignment model (ALAM) in which the 

objective was to maximize aerodynamic efficiency (by minimizing the adjusted gap 

length) of the outgoing IM freight train given any particular static combination of loads 

and railcar types (Lai et al., 2007).  The analysis of one major railroad IM route revealed 

the potential to reduce fuel consumption by 15 million gallons per year with a 

corresponding cost saving opportunity of $29 million.   

 

ALAM was developed based on current terminal practices and considers optimization 

of the loading pattern of a single train at a time.  However, if advance information on 

outgoing trains and loads is available, a better loading plan will often be possible by 

simultaneously considering more than one train.  The larger pool of loads and railcars will 
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enable better matching, but may also introduce greater uncertainty about the composition 

of the future load pool.   

 

In this chapter, I extend ALAM to optimize multiple trains simultaneously.  This 

work starts by evaluating the benefit from optimizing multiple trains and loads assuming 

full static information on trains and loads.  I then consider the more realistic case with 

incomplete future information.  A dynamic load assignment model with a rolling horizon 

scheme is developed for continuous terminal operations, which balances the advantage 

from optimizing multiple trains together against the risk of making suboptimal decisions 

due to incomplete future information.  This study addresses an important economic and 

environmental topic in rail transport, and also makes a methodological contribution by 

introducing rolling horizon operations for IM loading efficiency to the literature. 

 

4.1 Methodology  

 

4.1.1  Loading Assignment at IM Terminals 

The rail IM business in North American is quite different from the general freight 

business and intermediate stops are no longer the norm for most IM trains, the subject of 

our research.  Railroads try to avoid intermediate switches and stops because the IM 

business is highly time sensitive.  For example, approximately 80% of the IM trains on the 

BNSF Transcon route (Chicago – LA) have no intermediate operations; most of the other 

20% have no more than 2 intermediate stops and these are generally close to the final 

destination, so there is little container shifting occurring enroute (Avriel et al., 1998; 
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Giemsch and Jellinghaus, 2004; Utterback, 2006).  Therefore, the initial loading pattern 

for most trains will be the principal factor affecting their aerodynamic performance for all 

or most of the trip. 

 

At IM terminals, containers and trailers of a variety of lengths are assigned to 

available well, spine or flat cars by terminal managers (BNSF, 2004; UP, 2004).  IM 

loads, i.e. trailers or containers, vary in length from 20 to 57 ft.  There is considerable 

variety in the design and capacity of IM railcars with different numbers of units and slots, 

and thus loading capabilities.  An IM railcar can have one or more units permanently 

attached to one another (via articulation or drawbar).  A unit is a frame supported by at 

least two trucks, providing support for one or more platforms (a.k.a. slots).  For example, 

Figure 4.1a shows an articulated 3-unit well car, and Figure 4.1b is a 5-unit spine car.  A 

platform (or slot) is a specific container/trailer loading location.  As a result, each 

well-car unit has two slots because of their accommodation of two containers, one 

stacked on the other (a.k.a. “double stacking”), and each spine-car unit has one slot 

(Figure 4.1).  

 

 

(a) 

 

(b) 

Figure 4.1:  (a) a 3-unit well car with 6 slots (b) a 5-unit spine car with 5 slots 
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There are also a number of loading rules developed for safety purposes and various 

feasible and infeasible combinations of IM load and car configurations.  Because IM 

cars in a train are not generally switched in and out at terminals (i.e., cars will not be 

uncoupled from one train and coupled to another), managers primarily control the 

assignment of loads but not the configuration of the equipment (i.e., railcars) in a train.  

Consequently, we treat the train configuration as given.  

 

Aerodynamic drag is a major component of train resistance, particularly at high 

speeds (Hay, 1982; AREMA, 2001; Lai and Barkan, 2005).  In the 1980s, the 

Association of American Railroads (AAR) sponsored research on wind tunnel testing of 

rail equipment, including large-scale IM car models (Gielow and Furlong, 1988).  The 

results were used to develop the Aerodynamic Subroutine of the Train Energy Model 

(TEM) (Drish, 1992).  These experiments showed that gap length between IM loads and 

position-in-train were the two important factors affecting train aerodynamics (Engdahl, 

1987).  Larger gaps result in a higher aerodynamic coefficient and greater resistance; 

and, the front of the train experiences the greatest aerodynamic resistance due to 

headwind impact.  Therefore, to incorporate both important aerodynamic factors, the 

model chooses to minimize the summation of total adjusted gap lengths (i.e., gap lengths 

multiplied by adjusted factors).  The adjusted factors (accounting for the 

position-in-train effect) are computed by dividing the drag area (representing the 

aerodynamic resistance in ft2) of a given unit by the drag area of the 100th unit; the result 

is listed in Table 4.1.  
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Table 4.1:  Adjusted factor for each gap in the train (Lai et al., 2007). 

 k Drag area (ft2) Adjusted factor
1 (locomotive) 31.618 1.5449

2 28.801 1.4073
3 26.700 1.3046
4 25.133 1.2280
5 23.963 1.1709
6 23.091 1.1283
7 22.440 1.0964
8 21.954 1.0727
9 21.591 1.0550
10 21.320 1.0418

100 20.466 1.0000  

 

4.1.2  Static Aerodynamic Efficiency Model 

Placing loads with shorter gaps in the frontal position generates less aerodynamic 

resistance; therefore, the objective function of the aerodynamic model is to minimize the 

total adjusted gap length of all trains considered in the decision horizon.  The following 

notation is used in the algebraic model: i is an index referring to the type and size of the 

load (namely, 40' container, 48' trailer, 53' trailer, etc.); CL is the subset of i for container 

loads, and TL is the subset of i for trailer loads.  We group loads of the same type 

together with an index, j (j = 1, 2, 3…Ji); Ji is the number of loads of a specific type and 

size i (i = C40, T48, T53, etc.), for instance, JT48 = 10 means that there are ten 48' trailers 

in the storage area.  Let t denote the index for outgoing trains (t = 1, 2…T).  The 

symbol k defines the position of each unit in the train (k = 1, 2, 3…N), where k = 1 

corresponds to the first IM unit of the train.  The slot position in each unit is denoted by 

p, where p = 1 represents the upper (top) platform in a well-car unit or the single platform 

in a spine-car or flat-car unit, and p = 2 represents the lower (bottom) platform in a 

well-car unit (Figure 4.2).  The following symbols represent the parameters used in the 
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model: Ak is the adjusted factor of the kth gap shown in Table 4.1, where A1 > A2 > …>AN; 

Utk is the length of the kth unit of train t; δtk indicates the type of the kth unit in train t, 

where δtk = 1 when the unit is a well-car unit, and δtk = 0 otherwise; Li is the length of the 

ith type load; Qtkp is the length limit of position p in the kth unit of train t; wij is the weight 

of the jth load of type i; Wtk is the weight limit of the kth unit of train t; and Ritpk is a four 

dimensional matrix for loading capabilities of each slot, where Ritpk = 1 if the ith type of 

load can be assigned to position p in unit k of train t, or it equals 0 otherwise.  Finally, Ф 

represents an arbitrarily large number introduced for modeling purposes as explained in 

the model description below.   

 

 

(a) 

 

(b) 

Figure 4.2:  The available slots in (a) 5-unit well car (b) 5-unit spine car 

 

Two sets of binary decision variables are included in the model.  The first variable 

is denoted by yijtpk such that:  

1,   if  load of type  is assigned to position  in the  unit of train 
0,  otherwise

th th

ijtpk
j i p k t

y
⎧

= ⎨
⎩

.  
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The second binary variable, denoted by xtk, determines whether the top slot in a well unit 

can be used, namely:   

1,   if the top slot of the  unit in train  can be used
0,  otherwise
⎧

= ⎨
⎩

th

tk
k t

x . 

According to the loading rules, the top slot can be used when the bottom slot is filled by 

containers whose total length is at least 40' (AAR, 2004).   

 

The loading problem is formulated as a mixed integer program (MIP) that minimizes 

fuel consumption (i.e., the total adjusted gap length) of T outgoing trains.  For train t, 

the objective function (total adjusted gap length) is  
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This objective function is comprised of two parts.  The first part, representing the 

gap length between the locomotive and the first load (Figure 4.3), is the difference 

between the length of the first unit (Utl) and the length of the load in position 1 of the 1st 

unit (∑∑ yijt11Li), which is then divided by 2.  Multiplying the gap length by the adjusted 

factor A1 results in the first adjusted gap length.  Each of the subsequent gaps is half of 

the difference in length between the current unit and the load (Utk – ∑∑ yijt1kLi)/2 plus half 

of the length difference between the next unit and the load (Utk+1 – ∑∑ yijt1k+1Li)/2 

multiplied by the appropriate adjusted factor, Ak.  Thus, the second part of the objective 

function computes the sum of the subsequent adjusted gap lengths.  Note that we only 
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take into account the loads in position 1 of all units in the train.  This is reasonable since 

they are the only loads in spine or flat cars; for well cars, the upper level gaps have a 

more significant aerodynamic effect than the lower level gaps (Furlong, 1988; Storm, 

2005; Airflow Science, 2006).  A schematic representation is given in Figure 4.3.  

 

 

Figure 4.3:  Locomotive and first two IM units in a train. 

 

 The complete mathematical program for all T trains is as follows: 
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Minimizing total adjusted gap length creates the most efficient train configuration, 

but the loading assignment must conform to the loading capability of each unit as well as 

length and weight constraints.  Constraints (4.3) and (4.4) ensure that each load can be 

assigned to no more than one slot, and must obey the loading assignment rules (Ritpk).  

Constraints (4.5) and (4.6) together state that if the bottom slot (position 2) in a well-car 

unit (δtk = 1) is not filled with containers greater than 40 ft (in which case equation (5) 

requires that xtk = 0), then no load can be assigned to the top slot (position 1) for the same 

unit, i.e., ∑∑ yijt1k = 0 and therefore yijt1k = 0 for all i,j.  Note that constraint (4.6) allows 

a bottom load without a top load (yijt1k = 0).  Constraint (4.7) ensures that containers 

cannot stack on top of trailers in the well car units; the parameter 2 is used for the 

possible scenario of two trailers in one well-car unit.  Constraint (4.8) is the weight limit 

that is imposed for each car unit in order to reflect its total carrying capacity (Wtk).  

Constraint (4.9) is the length limit imposed for each slot to guarantee that the total length 

of loads in a given slot does not exceed the length of that slot (Qtkp).  Note that the trivial 

solution, namely yijt1k = 0 and xtk = 0, satisfies all the constraints of the model.  However, 

this would result in the largest total adjusted gap since all gaps would be at their 

maximum value.  This case is ruled out because of the minimization of the total gap 

length.  Thus, the model prefers not to leave a load behind if a suitable slot is available.  
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The above optimization formulation (4.2)–(4.10) reminds us of certain network flow 

problems (e.g., assignment problem) that can be solved efficiently.  However, the 

existence of certain constraints (e.g., the weight constraints) makes the problem NP-hard.  

Optionally we can develop relaxation or decomposition based heuristics for our model, 

but earlier research (Lai et al., 2007) has shown that existing commercial MIP solver (i.e., 

CPLEX) can solve this problem within reasonable time (this is also found to be true in 

our numerical experiments).  Therefore, in this study we choose to use CPLEX to solve 

the problem instances. 

 

The current terminal operational practice and a previous paper by Lai et al. (2007) 

consider loading plans for the current outgoing train only.  This scenario is a special 

case of the general model developed here in which T = 1.  The model thus optimizes the 

aerodynamic efficiency of one outgoing train for a given set of loads.  However, some 

degree of advance information about outgoing trains and loads is often available 

(Anderson, 2006).  This provides an opportunity to achieve even more aerodynamically 

efficient loading patterns by optimizing more trains and loads together.  

 

4.2 Dynamic Aerodynamic Efficiency Model 

Obviously, optimizing multiple trains simultaneously will lead to more efficient 

loading plans if complete information on all trains and loads is available at the time of 

optimization (i.e., static current information).  In practice, however, information about 

some loads may not be immediately available (i.e., future information).  Under some 
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circumstances, including the loading pattern of a later train in the optimization will 

reduce the efficiency of the immediate outgoing train.  For example, suppose the two 

trains compete for the same “suitable” load, and the later train gets this load in the 

optimization (with the objective of minimizing the total adjusted gaps in both trains).  It 

is possible, however, that after the dispatch of the immediate train, another suitable load 

with the same characteristics becomes available.  As a result, the earlier optimal solution 

(before knowing the future load information) turns out to be suboptimal (overall).  

Therefore, uncertainty about future loads introduces some degree of risk on optimizing 

multiple trains; i.e., the overall optimum for multiple trains will not be achieved.  In a 

dynamic setting, there is a trade-off between the benefit of optimizing multiple trains 

simultaneously and the risk of making wrong decisions for the uncertain future. 

 

To address this trade-off, we propose a dynamic loading approach with rolling 

horizons, where loading decisions with ‘smoothed’ objectives are updated over time as 

new information becomes available.  Carrying out this approach poses three questions: 

(1) when to optimize loading patterns for one (or more) train; (2) how many trains to 

optimize each time and how to optimize them; and (3) how many trains to load after each 

optimization. 

 

The first and third questions are relatively simple to answer.  In principle, it is 

always better to postpone an optimization decision to the last moment possible (before 

loading a departing train), because it maximizes the available information, thereby 

reducing uncertainty.  Therefore, to the extent practicable, train loading should be 



 81

delayed until just before its departure.  For the same reason, it is always better to load 

only the next outgoing train based on the optimal loading pattern even though multiple 

trains may be optimized together.  Hence, we should always load the minimum number 

of trains, assuming that each optimization process can be conducted efficiently to update 

the optimal loading patterns in time.  The only remaining question is how many trains 

should be optimized each time and how to optimize them.   

 

We further propose an exponential smoothing approach under the rolling horizon 

framework, where future trains are considered simultaneously with the current train.  

Before loading the tth train, suppose we have known information on nk(t) unassigned 

loads, and these loads can fill a maximum number of T(t)+1 sequential trains (i.e., trains t, 

t+1, …, t+T(t)), where T(t)+1 is the number of future trains considered in an assignment.  

The time horizon is defined to be from the departure time of train t to that of train t+T(t).  

The loading decision for train t will be directly relevant to the trains departing in this 

horizon.  Meanwhile, these trains are also directly influenced by the future loads 

incoming within this horizon; assume there are nu(t) such future loads.  We optimize the 

following weighted average of objective functions: 

 

Min 
( )

,

t T t

t s s
s t

zα
+

=
∑                     (4.11) 

s.t.   (4.3) – (4.10) 

 

In (4.11), parameter αt,s is a nonnegative weight assigned to a future train s, for t ≤ s 

≤ t+T(t).  The vector of weights, )(~ tα := (αt,t, αt,t+1, …, αt, t+T(t)), specifies how future 
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trains are included in the loading decision.  For example, )(~ tα  = (1, 0, 0, …, 0) 

corresponds to the trivial case where we optimize and load the departing train t only, 

while )(~ tα  = (1, 1, 0, …, 0) corresponds to optimizing two trains t, t+1 together and 

loading train t only.  Ideally, we want to define )(~ tα  in a way such that the objective in 

(4.11) is a weighted average of short-term (currently departing train) and long-term 

(future trains) objectives.  To achieve this, we propose to use exponentially decreasing 

weights:  

 

)(~ tα = (1, αt, αt
2, …, αt

T(t)),           (4.12) 

 

where αt is a scalar such that 0 1tα≤ ≤ . 

 

Then, (11) becomes  

 

Min ( ) ( ) ( )
( ) ( ) 1
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0
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z z z z zα α α α
+ −

−
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= =

⎡ ⎤
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⎣ ⎦
∑ ∑  

(4.13) 

 

which is a weighted average of zt, (zt + zt+1), …, and 
( )t T t

s
s t

z
+

=
∑ .  If most load information 

is already known and there are few unknown loads on the horizon (i.e., nu(t)<<nk(t)), we 

should choose αt ≈ 1, such that )(~ tα ≈ (1, 1, …, 1) and 
( ) ( )

,

t T t t T t

t s s s
s t s t

z zα
+ +

= =

≈∑ ∑ , to exploit 

the efficiency from optimizing multiple trains together.  In the limit, this scenario 
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converges to the static optimization case where full future information is available.  On 

the other hand, if we expect a large number of unknown loads on the horizon (i.e., 

nu(t)>>nk(t)), we should choose αt ≈ 0, such that )(~ tα ≈ (1, 0, 0, …, 0) and t

t

ts
sst zz ≈∑

+

=

τ

α , , 

to avoid the penalty due to future uncertainty.  

 

The weight scalar αt can vary over time and across the train index t.  Its appropriate 

value can be calibrated from historical data over repeated experiments or simulations for 

any existing IM facility.  When empirical data are not available, a reasonable value need 

be estimated.  Note from (4.11) and (4.13) that the value of αt controls the balancing 

between the short-term objective (regarding immediate train departure) and long-term 

importance (future trains to be loaded).  It reflects the relative significance of static 

information versus dynamic information, which is closely related to the concept of 

“degree of dynamism” (DOD) introduced in Lund et al. (1998) and Larsen (2001) –– the 

proportion of dynamic information at the time of decision.  We propose an “adjusted 

DOD,” defined as follows:  

 

= ∀+
( )    ( ( ) ( ))

u

k u

n tDOD tn t n t .          (4.14) 

 

And, we propose using αt as the following:  

 

α = = ∀+
( )1-     ( ( ) ( ))

k
t

k u

n tDOD tn t n t .        (4.15) 
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For every optimization, the value of DOD is determined based on not only the 

numbers of known loads, nk, but also the estimated number of unknown loads, nu.  For 

example, if nk is large enough for three consecutive outgoing trains, then nu will be the 

number of estimated future incoming loads from now until the decision time for the third 

outgoing train.  Therefore, a uniform arrival of loads and trains’ departure time would 

result in a constant DOD whereas a non-uniform arrival and departure time would lead to 

adaptive DODs.   

 

4.3 Model Extensions and Operating Rules 

 

4.3.1  Level of Service 

The model thus far treats all loads as equally important by assuming each load can 

be placed on any of the trains.  This assumption is reasonable given the frequent service 

on many IM routes; however, sometimes there may be certain loads with a higher priority 

than others.  Or, railroads may promise their customers that loads making the cutoff time 

will be loaded onto one of the next several trains.  These specific operational practices 

can be accommodated by adding level of service (LOS) constraints during data 

preprocessing.  For example, if we know there are 30 UPS trailers that must make it 

onto the first outgoing train, we add constraint   ij pk
i UPS j p k

y
∈

≥∑ ∑∑∑ 1 30  to the original 

model.   
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More generally, the LOS constraints can be enforced as follows:  

 

     ,t ijtpk
t p k

d y S i j≤ ∀∑∑∑                                     (4.16) 

 

Where dt is the departure time of train t, and S is the service level in hours.  This 

constraint ensures that every load will be assigned within the service level.  The 

constraints can also be modified to impose this rule on specific loads by changing i to “i 

∈  specific loads ”.  Similarly, if S is defined in terms of the number of train departures 

(i.e., the load can be delayed by at most S train departures) and load ij makes to the cutoff 

time of train which is denoted by Gij, the following constraint ensures load ij being 

assigned in the next S trains.   

 

   ,ijtpk ij
t p k

y t G S i j≤ + ∀∑∑∑                                 (4.17) 

 

4.3.2  Blocking and Loading before Cutoff Time 

As mentioned in section 2.1, the rail IM business in North American is different 

from the general freight business in the sense that Railroads try to avoid intermediate 

switches and stops because this business is highly time sensitive.  Therefore, the initial 

loading pattern for most trains will be the principal factor affecting their aerodynamic 

performance for all or most of the trip. 
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Blocking is usually defined on a car basis prior to loading assignment.  Therefore, 

for the small number of cases in which the IM train does make intermediate stops, we can 

set ijtpky  to zero if load ij is not supposed to be on the kth unit of train t priori to the 

optimization.  This would possibly expedite the solution process by reducing the size of 

the decision space.  

 

Occasionally, the actual time required to load the whole train is longer than the time 

period from cutoff to departure; therefore, terminal managers have to start loading trains 

before the cutoff time.  Some site-specific loading rules can be developed to ensure 

aerodynamic efficiency under this circumstance.  For yards handling only containers or 

mixed IM loads, managers should try to load the shorter containers (≥ 40’) in the lower 

positions of well cars.  This is because the aerodynamics of longer container atop 

shorter containers are better than the opposite (shorter atop longer).  Thus, holding 

longer containers for upper level slots will generally be a good option.  For yards 

handling only trailers, managers should assign loads that best match the available slots 

beginning at the front of the train to guarantee an aerodynamic loading pattern.  With 

above rules, managers can still apply the proposed load-assignment models with available 

loads and slots at cutoff time, and approach to the system optimum. 

 

4.4 Model Implementation and Case Study 

In the following sections, we first apply the static model to evaluate aerodynamic 

efficiency from optimal loading at the system level, assuming static information of trains 

and loads.  Then, we use the dynamic model to analyze continuous terminal operations 
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when information is dynamic.  The dynamic model is implemented for two different 

cases: (1) a terminal with uniform arrival rate of incoming loads; and (2) a terminal with 

non-uniform arrival rate of incoming loads.   

 

4.4.1  Static Case with Perfect Information 

In the static case, we conducted an analysis of 16 trains with 90-minute departure 

intervals ranging from 84 to 122 units (mean = 104), and 4,224 loads (both domestic and 

international IM loads) in a 24-hr window.  Trains originated from a major IM terminal 

in one 24-hour period.  The numbers and types of available loads for each train were 

obtained from data provided by the railroad.  Five possible scenarios were conducted to 

evaluate the benefit of optimizing more trains together.  They are to optimize one, two, 

four, eight and sixteen trains at a time, assuming perfect information for all trains and 

loads.  CPLEX 10.0 incorporated with GAMS (Brooke et al., 1998) was used to solve 

the model in reasonable time.  For example, the 16-train scenario (with 45,477 variables 

and 8,605 effective constraints after data preprocessing) was solved to optimality within 

0.922 seconds by a 2.26GHz CPU and 1.5 GB of RAM. 

 

Considering only one train at a time is consistent with current terminal practice.  

However, with perfect information, the more trains that are optimized at a time, the better 

the aerodynamic efficiency (Figure 4.4); although, the marginal benefit declines 

considerably beyond four trains.  Terminal managers’ goal in load assignment is to 

maximize slot utilization; therefore, they are largely indifferent to alternative loading 

patterns as long as they achieve 100% slot utilization and comply with applicable loading 

rules.  Consequently, with 100% slot utilization, average terminal operating practice will 
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be some intermediate value between the minimal and maximal total adjusted gap length.  

We assumed that the mean of the total adjusted gap length for the minimum and 

maximum cases represents average terminal loading performance in scenarios with 100% 

slot utilization (Lai et al., 2007), and is therefore equal to 31,822’ (Figure 4.4).  

Compared with this baseline performance in which load assignment is based on 

maximizing slot utilization only, the benefit of optimizing aerodynamic efficiency of IM 

trains ranges from 14% to 46%.  Since scenarios 2 to 5 (optimizing multiple trains) are 

more beneficial than scenario 1, the fuel savings are also more significant. 

 

 

Figure 4.4:  Effect of the number of trains optimized simultaneously on the adjusted gap 

length. 
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Placing loads on different trains is generally feasible due to the frequent service of 

IM operations.  Lai et al. (2007) estimated that optimizing one train at a time can save 

15 million gallons of fuel per year compared to current operations; and, optimizing 

multiple trains together shows the potential to further improve savings by an additional 

30% (Figure 4.4).  In other words, if there is no flexibility in placing loads on different 

trains, the potential 30% savings is lost.   

 

In practice, loads often arrive at and trains depart from terminals quickly, with little 

lead time. Therefore, it is rarely the case that reliable load information will be available 

for more than three trains at any time.  Consequently, we implement the rolling horizon 

framework developed in this study for continuous terminal operations in sections 4.4.2 & 

4.4.3.  

 

4.4.2 Rolling Horizon Operations with Uniform Arrival Rate 

To implement the rolling horizon scheme, we need to know the number of loads 

initially available and the arrival pattern of additional loads between consecutive train 

departures.  According to the cutoff time and load information, we assumed that 690 

loads (for three trains) are known at the beginning of the 24-hour period with a constant 

rate of incoming loads.  The constant rate is computed as the sum of all the loads for the 

16 trains divided by 16.  The resultant rate is approximately 230 loads per 90 minutes.  

In other words, there will be 230 new loads incoming before the next optimization and 

assignment since the train departure interval is also 90 minutes.  The detailed 

distribution of load numbers (by type) is shown in Table 4.2. 
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Table 4.2:  The distribution of number of loads for all types of IM loads. 

Load Type C20 C40 C45 C48 C53 T20 T28 T40 T45 T48 T53 Total
Initial number of loads 81 225 18 60 255 6 9 6 6 9 15 690
Incremental loads / 90 min 27 75 6 20 85 2 3 2 2 3 5 230

Containers Trailers

 

 

 In this case, T(t) = 2 is true for all trains except the final two.  The adjusted DOD 

within the time window of this system is approximately 230×2/(690+230×2) = 0.4 most 

of the time, and we simply recommend using αt = 1 – 0.4 = 0.6, for all t.  As proposed, 

we consider up to three trains in each optimization, and load only the current outgoing 

train.  The unassigned loads and future trains will be incorporated into the next 

optimization, along with any new loads.  Figure 4.5 shows the result of implementing 

the rolling horizon scheme for this empirical example.  The dotted line is a benchmark 

representing the objective value for a static assignment case where one train is optimized 

at a time with 230 available loads (as described in Lai et al., 2007).  The dashed line 

shows the idealized scenario with full information, where 16 trains are optimized together.  

This objective value is the best performance possible and serves as a reference point to 

evaluate the performance of the proposed rolling horizon framework.  The solid line in 

Figure 4.5 shows the experiments with the rolling horizon scheme where we vary αt over 

0 to 1.   

 

 These numerical results verify our qualitative arguments.  When αt =1, all trains are 

treated equally in each optimization, and the final objective value is actually about 3% 

higher than the best possible.  This shows that the optimality of the current outgoing 
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train is unnecessarily over-compromised by putting too much emphasis on future trains.  

On the other hand, when αt = 0, the objective value is also about 2% higher than the best 

possible confirming our argument that there are benefits from considering multiple trains 

together.  The exponential smoothing scheme, however, successfully reduces the 

objective value to within 0.2% of the best possible for any αt between 0.1 and 0.6.  

These values are about 7.5% smaller than the benchmark value for the one-train-a-time  

strategy, thus demonstrating that the proposed rolling horizon scheme with exponentially 

decreasing weights is beneficial. 

 

 

Figure 4.5:  Rolling horizon scheme on uniform operation with different αt values. 
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 The numerical experiments also reveal interesting insights into the choice of the 

weight parameter.  Since DOD ≈ 0.4 at all times, we propose that a possible αt value be 

1–DOD = 0.6, and that )(~ tα = (1, 0.6, 0.36, …), ∀t.  Figure 4.5 shows that the optimal 

objective value is actually insensitive to αt for a wide range, 0.1 tα≤ ≤ 0.8.  This finding 

indicates that an appropriate value of αt can be calibrated from historical data; and if 

historical data are not available, 1 – DOD would be a good choice.  Compared to 

optimizing one train at a time (αt = 0), rolling horizon operations yield a 2.2% fuel 

savings in this example, or approximately 160,000 gallons of fuel per year for trains on 

the single route considered in this analysis.  

 

 The computation time and optimality gap by CPLEX 10.0 does vary across 

optimization instances.  For example, when αt = 0.6, 12 out of the 16 instances are 

solved to within 0.1% relative optimality gap in less than 1 CPU second.  Note that only 

part of the solution for each instance (regarding the current outgoing train) is finally 

implemented into the overall solution throughout the horizon.  Although the other four 

instances have relative optimality gap between 1% - 3% after 600 CPU seconds 

(pre-determined upper limit), the overall quality of the rolling horizon solution is close to 

the known optimum (with full information and zero optimality gap) (Figure 4.5).  This 

computational performance is also found to be true for the example in the next section.   

 

4.4.3  Rolling Horizon Operations with Non-Uniform Arrival Rate 

In section 3.2, we implemented the rolling horizon scheme for a terminal with a 

hypothetical uniform load arrival and train schedule.  In this section we consider a 
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terminal with non-uniform conditions.  IM loads typically do not arrive at terminals 

uniformly throughout the 24-hour day cycle (Figure 4.6).  Instead, more loads arrive by 

day then at night, with the peak at 12 noon at the terminal we studied.  A detailed 

breakdown of the incoming loads by type and intended departure time is presented in is 

presented in Tables 4.3 & 4.4.  The number of units in the ten trains range from 93 to 

122 units (mean = 110).  The cutoff time is assumed to be 2 hours before departure, so 

the 11 a.m. train can draw from the pool of loads not assigned after the 5 a.m. train, plus 

those newly arrived from 3 a.m. to 9 a.m.   
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Figure 4.6:  Distribution of incoming loads by time of day.  
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Table 4.3:  Number of incoming loads by time and type 

Time C40 C45 C48 C53 T40 Total
Initial 144 4 12 168 72 400

1:00 15 0 1 18 8 42
2:00 15 0 1 17 7 40
3:00 16 0 2 18 8 44
4:00 8 0 1 10 4 23
5:00 10 0 1 11 5 27
6:00 10 0 1 12 5 28
7:00 14 0 1 16 7 38
8:00 12 0 1 14 6 33
9:00 21 1 2 17 11 52

10:00 31 1 3 36 15 86
11:00 42 1 3 49 21 116
12:00 48 1 4 56 24 133
13:00 67 2 6 78 33 186
14:00 53 1 4 62 26 146
15:00 61 2 5 71 31 170
16:00 55 2 5 64 28 154
17:00 48 1 4 56 24 133
18:00 41 1 3 48 21 114
19:00 35 1 3 40 17 96
20:00 37 1 3 43 18 102
21:00 29 1 2 34 14 80
22:00 23 1 2 26 11 63
23:00 19 1 2 23 10 55
0:00 15 0 1 17 7 40

Load Type

 

 

Table 4.4:  Departure time of outgoing trains 

Depature Time
Train 1 1:00
Train 2 5:00
Train 3 11:00
Train 4 13:00
Train 5 15:00
Train 6 16:00
Train 7 18:00
Train 8 20:00
Train 9 21:00
Train 10 0:00  
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We examine the effect of (1) varying the constant factor (0 tα≤ ≤ 1), and (2) 

adaptive αt in this experiment.  The inventory level is always enough for two trains, i.e., 

T(t) = 1, throughout the decision horizon; hence, we consider two future trains in each 

optimization, and load only the current outgoing train.  The adjusted DOD for each of the 

10 assignments depends on the current inventory level and the next outgoing train’s 

departure time.  For instance, the DOD of the 5 a.m. train is 201/(201+324) = 0.617 

because it has 324 loads available in the pool, and there will be 201 new loads incoming to 

the terminal before the cutoff time of the next outgoing train (11 a.m. train).  

 

Figure 4.7 shows the result of implementing the rolling horizon scheme to this 

empirical example, for a range of static αt.  The results of applying the rolling horizon 

scheme to non-uniform operations are largely similar to uniform operations.  Either 

placing too much emphasis on future trains (with αt = 1) or myopically ignoring future 

trains (with αt = 0) compromises the optimality of the solution.  Again, the optimal 

objective value is relatively insensitive to the value of αt for a wide range, 0.1 tα≤ ≤ 0.9.  

The static case with applying adaptive DOD (changing αt over time) yields results very 

close to αt = 0.6.  This again demonstrates that if historical data are not available, αt = 1 

– DOD would be a good choice.  Compared with optimizing one train at a time (αt = 0), 

using rolling horizon operations yield an 8.6% benefit, or approximately 700,000 gallons 

of fuel savings per year for the IM trains at this route.  
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Figure 4.7:  Rolling horizon scheme under non-uniform conditions for different αt. 

 

4.5 Discussion  

Optimizing multiple trains together has the potential to further improve the fuel 

savings compared to optimizing one train at a time.  The greater the flexibility in placing 

loads on different trains, the better the aerodynamic efficiency.  However, the marginal 

benefit drops considerably beyond optimizing four trains at a time (Figure 4.4).  As 

expected, the marginal benefit is greatest when comparing “no flexibility” (i.e., 

optimizing one train at a time) to “flexibility in several trains”.  Beyond that, there are 

diminishing returns because there are not enough new types of load choices available to 

yield additional benefit in train aerodynamics.  
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Railroad IM terminals usually use computer software (e.g. OASIS) to assist the 

loading assignment process; therefore, integration of our proposed model into the 

software currently being used would not require significant institutional or process 

change.  It also should have little if any impact on operating cost because the general 

process remains the same; the only difference would be terminal managers’ decisions on 

which load should be assigned to which slot to maximize fuel efficiency.  We believe 

implementation of the proposed rolling horizon optimization scheme can automate the 

terminal managers’ tasks regarding the large variety of loads and railcar types, thereby 

enabling them to load trains in a more aerodynamically efficient manner.   

 

The experiments described above have thus far treated loads with equal importance, 

ignoring potential constraints on loads’ time priorities.  It is worthwhile to examine the 

effect of LOS constraints on the outcome as described in Section 2.4.1.  Using the same 

data from Section 3.3, we now assume that the railroad promises to its customers that all 

loads arriving before the cutoff time will be loaded onto one of the next three departing 

trains (i.e., S=3).  We compared the results in aerodynamic efficiency (total adjusted gap 

length) and delay (in units of departed trains and hours) of imposing or not imposing 

LOS constraint.  

 

The optimization results show that imposing an LOS constraint reduces the 

aerodynamic efficiency of IM trains by 36%.  This is expected because LOS constraint 

reduces the flexibility of assigning loads to different trains.  The cumulative delay of 



 98

loads (in units of departed trains and hours) with or without the LOS constraints is shown 

in Figures 4.8 & 4.9.  With the LOS constraints, the delays are more uniform across 

loads, but the total delay of all loads is actually slightly longer.  For example, forcing 

one trailer to be placed in an IM well car due to the LOS constraints would probably 

cause two containers to be left behind.  The impact on delay would decrease if there was 

enough equipment dedicated to trailers (e.g. spine or flat cars); however, this will often 

not be the case in practice.  Thus, LOS constraints will generally have a significant 

impact on both energy efficiency and operational cost.  
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Figure 4.8:  Delay with or without LOS constraints in terms of trains 
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Figure 4.9:  Delay with or without LOS constraints in terms of hours 

 

4.6 Conclusion 

This chapter presents static and dynamic aerodynamic efficiency models for the 

loading of multiple IM trains.  It also develops a rolling horizon scheme for continuous 

train terminal operations.  For the static case, when full information is available, the 

system optimum can be reached by optimizing as many trains as possible.  In practice, 

however, terminals operate in a dynamic environment where not all information on 

incoming loads and trains is available.  Attempting to optimize the loading of too many 

trains in this environment will reduce the ability to achieve the most efficient loading 

configuration.  Therefore, a rolling horizon scheme with decreasing weight assigned to 

each train is proposed to counterbalance the effect of uncertainty.  Numerical results 
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show that the realistic rolling horizon scheme significantly reduces the adjusted gap 

length as compared to the current practice, which leads to a substantial benefit from 

aerodynamic efficiency of IM trains.  Correspondingly larger savings in fuel, emissions 

and expense are possible if the methodology described in this chapter could be applied to 

all North American IM trains. 
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CHAPTER 5 

 

OPTIMIZING RAILWAY CAPACITY PLANNING 

“Everything should be made as simple as possible, but no simpler.” – Albert Einstein 

 

Railways all over the world are increasingly experiencing capacity constraints.  In 

North America, railway freight traffic has increased nearly 30% over the past 10 years, and 

this demand is projected to increase another 88% by 2035 (AASHTO, 2007).  This raises 

the question, how can railroads handle this additional traffic on a network that is already 

experiencing capacity constraints?  There is a variety of engineering options that can be 

used, either singly or in combination, to increase network capacity, such as adding tracks, 

adding or lengthening sidings, modification of traffic control systems, etc. 

 

To improve capacity using infrastructure upgrades, the North American railroad 

industry generally relies on experienced personnel and simulation software to identify 

bottlenecks and propose alternatives to reduce congestion (HDR, 2003; CN, 2005; 

Vantuono, 2005).  Experienced railroaders often identify good solutions, but this does not 

guarantee that all good alternatives have been evaluated or that the best one has been found.  

Furthermore, the aging demographics of the railroad industry means that many 

experienced capacity analysts will soon retire.  Simulation can model a section of the 

network in great detail but it is not suitable for network capacity planning.  Instead of 
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solving the real problem, solutions based on corridor-based simulation analyses may move 

bottlenecks to other places in the network.   

 

A good decision support tool for railway capacity expansion projects should have the 

ability to generate and evaluate possible expansion alternatives, and suggest an optimal 

capacity expansion plan at the network level by minimizing the cost of increasing capacity 

subject to the estimated future demand.   

 

Several recent studies proposed methods to compare different investment alternatives 

in transportation systems.  Felipe et al. (1996) developed a multicommodity, multimodal 

network design model to determine investment priorities for a freight intercity network.  

Jelaska (1998) proposed a capacity planning support model to evaluate the investment 

impacts for a range of options.  Fransoo and Bertrand (2000) developed an aggregate 

capacity estimation model to compare alternatives for investments in infrastructure 

investment, specifically passing sidings, which can single out the most promising 

investment alternatives without the time-consuming simulation process.  Petersen and 

Taylor (2001) presented a method formulated as nested dynamic programming models for 

determining the optimal timing and economic feasibility of a new railway line in Brazil.  

Delorme et al. (2001) developed a constraint programming model and a unicost set packing 

model to evaluate railway infrastructure capacity.   Putallaz and Rivier (2004) presented a 

methodology and the basis for the development of an effective decision support system; 

their method deals the planning of investments in capacity and also takes into account the 

impacts of timetables on maintenance and renewal policies.  Wahlborg (2004) calculates 
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the capacity consumption based on the UIC 405 model for current and future traffic and 

infrastructure.   

 

These methodologies are able to compare different proposed alternatives by various 

means; however, they do not have the ability to create possible alternatives, implement a 

network flow model to identify the location and method required for upgrade, and evaluate 

the tradeoff between capital investment and delay.  This is the incentive for development 

of a new decision support tool in this research.  

 

In this chapter, I start by reviewing state-of-art, rail-line-capacity-analysis 

methodologies, and then develop a decision support framework to help capacity planners 

determine how to optimally allocate capital for capacity expansion at the network level.  A 

Class 1 railroad’s network is usually divided into divisions assigned to different 

superintendents for operating purposes; and, these divisions are further divided into 

hundreds of subdivisions or “subs”, which represent segments of track ranging from 

300-mile mainlines to 10-mile branch-lines.  The objective of this research is to develop a 

framework that can successfully identify the optimal investment plan regarding which 

subdivisions need to be upgraded and what kind of engineering options should be 

conducted based on the estimated future demands, available budget, and network 

properties.  Such a decision support framework will help railroads maximize their return 

from capacity expansion projects and thus be better able to provide reliable service to their 

customers, and return on shareholder investment. 
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5.1 Railway Line Capacity Analysis Methodologies 

The aim of capacity analysis is to determine the maximum number of trains that 

would be able to operate on a given infrastructure under a particular set of operational 

conditions during a specific time interval.  Railway line capacity cannot be considered 

as a static value; instead it is highly dependent on a number of infrastructure and 

operational factors (Krueger, 1999; Vantuono, 2005), such as:  

 Length of subdivision 

 Siding spacing and uniformity 

 Intermediate signal spacing 

 Percentage of single, double, or multiple track 

 Peak train counts 

 Average and variance speed 

 Traffic mix 

 Dispatching priorities 

 Schedule 

 

Numerous approaches and tools have been developed to determine rail line capacity; 

however, unlike the highway capacity analysis domain, there is no commonly accepted 

standard measurement for railway capacity analysis (Abril et. al., 2007).  Each model 

has its strengths and weaknesses and is generally designed for a specific type of analysis 

(Martland and Hutt, 2005).   
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In general, railway capacity tools can be categorized into three groups: (1) 

theoretical (2) detailed simulation, and (3) parametric.  Theoretical models are typically 

the simplest among the three, and can often be computed manually.  Although the model 

is simple, it is useful for a quick evaluation of the line and for example can capture the 

relative effects of different signal systems and operating practices on capacity.  By 

contrast, simulation is the most sophisticated and computationally intensive, and requires 

specific, detailed, train and network data.  The simulation result is the closest 

representation of the actual operations.  Therefore, there is a tradeoff between use of 

theoretical versus simulation methods.  Parametric models fill the gap between simple 

theoretical models and detailed simulation by focusing on the key elements of line 

capacity so as to quickly highlight “bottlenecks” in the system (Krueger, 1999).  They 

are more efficient than simulation and represent the real world better than theoretical 

models.   

 

5.1.1  Theoretical Capacity Models 

The theoretical capacity of a rail line can be considered as the maximum number of 

trains that can traverse it during a specified time period.  This type of capacity model 

often assumes homogenous train speed and characteristics, few or no service disruptions, 

directional or alternative running, and few or no meets or passes.  The advantage of 

using theoretical capacity models is that they are simple and require minimum 

computation; however, the outcome may lack accuracy due to various simplifying 

assumptions.  These simple capacity models are most useful for comparing the relative 

effects of different alternatives at the strategic planning level, or for computing transit 
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capacity since the assumptions are more accurate in the simpler transit operating domain 

(TCRP, 1996).  

 

Theoretical models usually start with calculation of minimum train spacing (a.k.a. 

headway) based on the signal block length and train speed.  Line capacity, also called 

“Maximum Throughput”, is then computed by dividing headway from the specific time 

period (AREA, 1947; Conant, 1964).  For example, the Air Brake Association (ABA) 

(1972) model is developed in this format, and it has two equations for single and 

bidirectional operation, respectively.  The AREMA (2002) model is also similar to the 

ABA model, but it further defines “Practical Capacity” as a fraction of theoretical 

capacity (Krueger, 1999).   

 

In transit capacity analysis, numerous theoretical models have been developed and 

used.  TCRP Report 13 has a comprehensive review of North American rail transit 

capacity analysis methodologies (TCRP, 1996).  A major difference between transit and 

conventional, especially freight railroad capacity is that station dwell time plays an 

important role in transit systems.  The Canadian Urban Transit Association (1985) 

model is basically the same as the maximum throughput method except that the dwell 

time is incorporated into minimum headway calculation.  Alle’s (1981) model uses real 

data from a busy station in New York City, and it produces results that are close to actual 

experience without applying any of the judgment factors used in many other calculation 

methods to calibrate theory with practice.  The disadvantage is that only one station was 

examined, and that real data are not always available, especially for new designs.   
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In light rail transit, models also need to consider the ratio of traffic light green time 

to the cycle length because they are running on the street (Levinson, 1994).  Vuchic 

(1981) develops comprehensive mathematical formulae for transit operations; however, 

according to the review of TCRP Report 13, “the difference between theory and practice 

is difficult to reconcile or quantify with other mathematical treatments”, and Vuchic’s 

model sometimes produces inaccurate results (TCRP, 1996).  

 

A number of more sophisticated models have been developed to allow relaxation 

some of the unrealistic assumptions in the simplest theoretical models.  Petersen (1974) 

developed a single-track analytical model assuming that the departure times are 

uniformly distributed over the time period.  Petersen and Taylor (1982) presented a 

methodology that performs probabilistic analyses of dispatch patterns, and it was later 

extended by Kraft (1988).  Chen and Harker (1990) attempted to estimate the delays of 

given traffic flows in a stochastic single track environment and was extended by Harker 

and Hong (1990) to include a partially double-track corridor.  Pachl (2002) proposed 

“Blocking Time Calculation”, which can accommodate traffic mix but requires detailed 

information of blocking time overlaps.  Ekman (2004) presented an analytic method to 

estimate the capacity of new infrastructure based on a discrete event model of train paths.  

Kozen and Burdett (2005) incorporate the average delay of each train on each section into 

the sectional running time and the standard bottleneck analysis; their model uses 

directional distribution for bidirectional operations, four stopping protocols for 

acceleration and deceleration movements, and train distribution for the traffic mix.  
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They later extended the model to take into account different types of railway 

characteristics (e.g. traffic mix, signal locations, and dwell times).  Improverail 

Consortium (2003) also proposed a capacity model (UIC 405) that handles traffic mix by 

calculating the expected number of sequences.  UIC 405 model is less complicated than 

Kozen and Burdett’s model, and has been used in the Banverket infrastructure investment 

plan for 2003 and 2015 (Wahlborg, 2004).   

 

Optimization is another approach to determine railway line capacity analytically.  

For given infrastructure conditions, optimization models are used to identify the line 

capacity based on the most compact schedule (create train paths as closely as possible, 

a.k.a. optimal saturated timetables) (Szpigel, 1972; Assad, 1980; Jovanovic and Harker, 

1991; Harker and Hong, 1994; Cai and Goh, 1994; Carey and Lockwood, 1995; Higgins 

et al., 1996; Oliveira and Smith, 2000; Caprara et al., 2002).  A similar strategy, 

timetable compaction method, is also used in the UIC 406 model, proposed by the 

International Union of Railways (UIC) (UIC, 2004).  The UIC 406 model schedules 

the existing train paths as closely as possible to each other by modifying the base 

timetable, so the remaining unused time left in the timetable represents the maximum 

time available during which additional train services can theoretically be scheduled 

(Landex et al. , 2006).  

 

As might be expected, some of these enhanced theoretical models or optimization 

models become too complex to solve manually, which is one of the main attractions of  
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using theoretical models.  Capacity analysts are responsible for selecting suitable 

evaluation methods for their particular applications.  

 

5.1.2  Simulation Models 

Since the 1960s, computer simulations have been used for rail line capacity analysis 

(Bronzini and Clarke, 1985).  The power of simulation is that it enables modeling of 

complex systems with a high degree of reality.  For rail applications, it can be used to 

evaluate track configurations, signal systems, operating strategies, and various other 

parameters of interest, either alone or in combination. .   

 

Simulation models generally mimic train dispatcher logic and are used to evaluate 

infrastructure and/or operational changes (ASSHTO, 2005).  They usually follow a set 

of fixed rules governing train priorities and a train performance calculator.  By 

providing track configuration, signal systems, and operating plans as input, an 

experienced user can evaluate the outputs to determine bottlenecks and conflicts.  

Adjustments can then be made to the inputs to resolve these conflicts.   

 

There are a number of railroad simulation models with different features and logic.  

The most popular one at present is Rail Traffic Controller (RTC), developed by Berkeley 

Simulation Software (Wilson, 2008).  The RTC logic assigns trains through the network 

according to their priority.  When there are conflicts, the logic seeks alternative routes 

for the lower priority train.  The results have been validated with hundreds of real-world  
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networks.  One of the most well-known recent applications is the Chicago CREATE 

project (Thompson, 2006).  

 

The Route Capacity Model (RCM) was developed by the Canadian National 

Railroad.  It is a computationally efficient model that can complete 500 runs in 10 

seconds and is thus well-suited for system-level capacity analysis.  The user can specify 

the desired level of statistical confidence (e.g. 95%) and then RCM will automatically run 

the simulations until the confidence level is achieved.   

 

Other models include RAILSIM by SYSTRA, RAILS 2000 by CANAC, FastTrack 

II by MultiModal Applied Systems, Rail Dispatch and Capacity Analysis Model 

(RDCAM), RailSys by Rail Management Consultants, Open Track by Institute for 

Transport Planning and Systems in Zurich, and etc.  

 

5.1.3  Parametric Models 

Simulation is best suited to analysis of local-level problems; however, it becomes 

computationally difficult when applied at the network level.  On the other hand, 

theoretical models are sometimes too simple to be valid.  Parametric capacity models 

are intended to fill the gap between detailed simulation and simple formulae.  They 

focuse on key elements of line capacity to quickly highlight “bottlenecks” in the system 

(Krueger, 1999). 
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Prokopy and Rubin (1975) developed the first parametric model for railway line 

capacity.  It utilizes formulae that reflect train delay or capacity as a function of physical 

plant train operations and control systems.  The formula is derived through 

multi-variable regression analysis of many different simulation runs using the Peat 

Marwick Mitchell (PMM) model.   

 

Krueger (1999) applied a similar method to establish the CN Parametric Line 

Capacity Model; however, he developed a totally different parametric capacity model 

with different parameters.  Simulations were conducted with the Route Capacity Model 

(RCM) instead of using the PMM model.  The three most important elements of the CN 

parametric model that makes it particularly useful are: (1) the ability to calibrate each 

parameter for each/any scenario (it is not a fixed program); (2) produce a graphical delay 

versus volume relationship; and (3) "What-if" ability to quantify the 

sensitivity/significance of individual parameters and in combination.  In the CN model, 

parameters are categorized into plant, traffic, and operating variables.  The model can 

recognize the dynamic nature of capacity and provides a system wide capacity measure 

of subdivisions in a rail network.  This enables comparison of different parts of the 

network to identify areas of limited or excess capacity (Krueger, 1999). 

 

5.2 A Decision Support Framework for Railway Capacity Planning 

The objective of this research is to develop a framework to generate and evaluate 

possible capacity expansion alternatives and consider the capacity planning problems at  
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the network level.  This tool will help capacity planners determine how to optimize 

allocation of capital for capacity expansion projects in a rail network.   

 

The framework comprises three modules: (1) an “Alternatives Generator (AG)” that 

enumerates possible expansion options along with their cost and capacity effects; (2) an 

“Investment Selection Model (ISM)” that determines which portions of the network (at the 

subdivision level) need to be upgraded with what kind of capacity improvement 

alternatives; and (3) an “Impact Analysis Module (IAM)” that evaluates the tradeoff 

between capital investment and delay cost (Figure 5.1).  These three components can be 

used separately as stand-alone tools, or they can be combined as the decision-support 

framework.   

 

 

Figure 5.1:  Decision support framework for railway capacity planning 

 

Table 5.1 shows the inputs and outputs of each module in the decision support 

framework.  Based on the link properties (plant, traffic, & operating parameters), the AG 

enumerates possible expansion alternatives for each link with the associated costs and 

capacity increases.  The ISM then combines this information with the estimated future 
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demand and available budget to determine the best set of investment options for the 

network, assuming the level of service remains the same.  Finally, The IAM evaluates 

the tradeoff between capital investment and delay cost to determine if the capital 

investment is cost-effective.  The output will be a set of options that the capacity planner 

can use to guide decision making.  In the following sections, these three modules are 

demonstrated in more detail. 

 

Table 5.1:  Inputs and outputs of each module in the decision support framework 

Input Output
AG Plant, Traffic, Operating Parameters Capacity Expansion Alternatives
ISM Demand, Budget, Expansion Alternatives Investment Selection Set
IAM Budget, Investment Selection Set Exapnasion Benefit Table  

 

Instead of solving capacity problems based solely on corridor analyses, this 

decision-support framework is able to conduct network-based analyses to ensure that the 

system fluidity and interaction between corridors are taken into account.  The decision 

support framework is a brand new process to determine the best strategy of network 

capacity planning.  Within this framework, I developed an enhanced parametric model 

(AG) to evaluate capacity and generate expansion alternatives; a novel optimization model 

(ISM) to determine the necessary investment plan; and an original sensitivity analysis 

procedure (IAM) to evaluate the tradeoff between capital investment and delay cost.   

 

5.3 Alternatives Generator (AG) 

In order to explore possible capacity expansion options, we need a tool to evaluate 

the current state of each subdivision in the network and then generate expansion 
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alternatives with associated capacity increases and construction costs.   Several capacity 

expansion models use simple linear or empirical functions to represent the cost and 

increase in capacity of different alternatives (Felipe et al. 1996; Ordonez and Zhao, 2005).  

This may work for highway systems because the cost of the infrastructure is proportional 

to length and number of lanes, and the capacity of directional traffic movement can be 

calculated based on empirical formulae (TRB, 2000).  However, increasing rail line 

capacity using a combination of the number of sidings, tracks and signals is more 

complicated than a simple linear model (Krueger, 1999).  More accurate model that can 

accommodate these aspects is needed to evaluate the capacity increase and the 

corresponding cost (AASHTO, 2005).   

 

  As discussed in section 5.1, theoretical models are usually too simple to 

incorporate all the important line capacity factors, and simulation is too complex for 

network-level planning.  Therefore, I chose to adapt the CN parametric line capacity 

model as the evaluation tool for rail traffic impact.  In terms of its accuracy and ease of use, 

it falls between theoretical formulae and simulation, and incorporates key elements of line 

capacity (Krueger, 1999).  Although the CN model can assess capacity based on network 

link properties, it is not able to enumerate possible alternatives and compute the 

associated construction costs.  Therefore, I enhanced the CN parametric model in this 

research to be a complete AG by adding enumeration and cost functions.  

 

Although we chose the CN model for this study, it is not the only tool that can be used 

or enhanced as the AG.  Railroads that have their own capacity analysis tools can 
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substitute these for the CN parametric model as long as they possess similar functionality.  

Knowledge from industry experts is also an excellent source of capacity expansion options; 

these empirical alternatives can be incorporated into the final expansion alternatives table 

in addition to options created by the AG.   

 

5.3.1  Review of CN Parametric Model (Krueger, 1999) 

The CN parametric model accounts for the dynamic nature of capacity.  It provides 

a system-wide measure of the subdivisions in a rail network and allows evaluation of the 

effect of capacity improvement for different alternatives.  The model measures the 

capacity of a subdivision by predicting its relationship between train delay (hours per trip) 

and traffic volume (trains per day).  Generally, the more trains are running on a 

subdivision for a given time period, the more delay every train experiences over the trip 

(Prokopy and Rubin, 1975).  The CN model achieves this relationship by using those 

key parameters affecting the traffic handling capability of a subdivision.  These key 

parameters are categorized into plant, traffic, and operating parameters as follows:  

 

Plant Parameters 

 Length of Subdivision (SL) 

 Meet and Pass Planning Point Spacing (MPPPS):  

MPPPS is the mean spacing of locations used to meet or overtake trains, namely 

siding spacing.  Sidings are crucial for operating bi-directional, mixed priority 

and different speed trains.  MPPPS for a subdivision is computed as:  
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(     1)

Length of SubdivisionMPPPS
Number of MPPP

=
+

               (5.1) 

 Meet and Pass Planning Point Uniformity (MPPPU):  

MPPPU is the measure of uniformity in siding spacing (MPPPS).  With same or 

similar speed limit across the subdivision, the higher the uniformity of MPPPU, 

the more the line capacity.  It is a ratio of the standard deviation versus average 

siding spacing:  

Standard Deviation of  MPPP SpacingMPPPU   
MPPPS

=     (5.2) 

A uniformity value of zero represents a subdivision with equally distributed 

sidings. 

 Intermediate Signal Spacing Ratio (ISSR):  

Intermediate signals reduce the required headway between adjacent trains so as to 

increase line capacity.  This parameter relates the ratio of signal spacing to the 

siding spacing.  In the CN parametric model, sidings are assumed to have one 

signal located at the center of the siding.  Below is the parametric expression for 

ISSR:  

  
  1  #   

  100

Length of Subdivision
MPPP of Signals

ISSR
MPPPS

⎛ ⎞
⎜ ⎟+ +⎝ ⎠= ×      (5.3) 

 Percent Double Track (%DT):  

Doubling track has a significant impact on line capacity (more than double the 

capacity of a single track mainline).  Sidings length of 6,000 ft or less were not 
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used by the original modelers as a useable passing siding but are part of the 

double track segments.  %DT is calculated as the ratio of double track versus the 

length of the subdivision:  

   %   100
  

Miles of Double TrackDT
Length of Subdivision

= ×       (5.4) 

Note that the CN parametric model can handle %DT up to a limit of 75%; this limit 

was found to retain the exponential characteristics and fall within the parametric 

range of most of CN’s subdivisions.  

 

Traffic Parameters 

 Traffic Peaking Factor (TPF):  

TPF represents the concentration of traffic within a short time frame (4 hours), 

often called bunching or peaking.  It has a significant impact on capacity, 

because when the traffic level is greater than the sustainable capacity, it results in 

a considerable system recovery time.  TPF is calculated as the ratio between the 

maximum number of trains dispatched in a 4-hour period versus the average 

number of trains within the same time duration. 

   4   
   4 

Maximum Tains in hoursTPF
Average Trains in hours

=        (5.5) 

 Dispatching Priority Factor (DPF):  

Dispatching priorities for different types of trains dictate which trains will 

experience delay.  Priority shortens the transportation time of higher priority 
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trains by penalizing lower priority trains.  Generally the greater the number of 

priority classes, the less capacity is available.  DPF is quantified using a 

probability function that identifies the chances of a train meeting another train of 

a higher priority, which is calculated as:  

1

2 1

1  
( 1)

N i
i

j
i j

CDPF C
T T

−

= =

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

∑ ∑         (5.6)  

Where: 

N = Number of priority classes (passenger, express, freight, and unit) 

T  = Daily number of trains 

Ci = Number of ith priority class trains 

Cj  = Number of jth priority class trains 

 Speed Ratio (SR):  

Besides DPF, speed ratio is another parameter reflecting the traffic mix over the 

subdivision.  The difference in speed among trains can significantly increase 

delay because of overtakes and/or holding trains in yard.  SR is calculated as the 

ratio of the fastest train speed to the slowest train speed:  

    
  

Fastest Train SpeedSR
Slowest Train Speed

=          (5.7) 

 Average Speed (AS):  

Average train speed plays a vital role in line capacity because the higher the train 

speed the lower the delay and transit time.  AS is measured as the average 
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minimum run time of all trains in each direction, as obtained from a Train 

Performance Calculator (TPC).   

1

1

N
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∑
            (5.8) 

Where: 

Vi = Speed of ith class 

ni  = Number of trains in ith class 

N = Total number of classes 

 

Operating Parameters 

 Track Outage (TO):  

Track outages accounts for the planned and unplanned events that take a track out 

of service.  TO directly reduces the available service time of a subdivision as 

well as line capacity.  Capacity is sensitive to the occurrences and duration of 

TO.  This parameter is defined as the number of hours the subdivision is out of 

service:  

1

   '
1N

i T i

Total Duration of OutagesTO s

n d=

=

∑
       (5.9) 

Where: 

nT  = Total number of outages per day 

di = Duration of each outage (hrs)
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Temporary Slow Order (TSO):  

TSO has a negative impact on line capacity due to: (1) the time loss due to 

operating at slower than normal speed; and (2) acceleration and deceleration 

time (V time).  It is often maintenance related and can be applied to a distance 

or at a single point on the line.  TSO is computed as follows:  

     timeTSO V Travel Time= +            (5.10) 

( - ) ( - )  m TSO m TSO
time

V K V V K VV
A D

= +          (5.11) 

   60
TSO m

L LTravel Time
V V K
⎛ ⎞

= + ×⎜ ⎟
⎝ ⎠

         (5.12) 

Where: 

Vm   = Maximum freight speed (mph) 

VTSO  = Temporary slow order speed (mph) 

K   = % of time running at max speed (85%) 

A   = Acceleration rate (20 mph/min) 

D   = Deceleration rate (30mph/min) 

L   = Length of TSO + average train length  

 

The relationships between “delay-volume curve” and “key parameters” were 

developed based on a series of regression analyses and simulation results from the RCM.  

The relationship between train delay and traffic volume was found to be best expressed 

by the following exponential equation:   
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Train Delay oB V
oA e=             (5.13) 

  Where:        

Ao  = Parametric plant, traffic, operating coefficient 

   Bo  = Constant 

   V  = Traffic Volume (trains/day) 

 

Coefficient “Ao” depicts the relationship between train delay and the parametric 

values.  “Ao” is a unique value for each combination of parameters defined by the plant, 

traffic and operating conditions of a subdivision.  A different “Ao” will define a new 

delay vs. volume curve (Figure 5.2).  This parametric model was verified by comparing 

its output to the RCM output of the CN network, and the results show that the accuracy 

was on average within 10 %.   

 

 

Figure 5.2:  Delay versus volume curve 
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There are two versions of the CN parametric model built in different environments: 

(1) window-based program, and (2) Excel spreadsheet.  The spreadsheet version is used 

in this research, so I can easily incorporate the enumeration and cost functions by using 

Excel/VBA Macro code.   

 

5.3.2  Enumeration Function 

 The purpose of the enumeration function is to automatically generate conventional 

capacity expansion alternatives for each subdivision in the network based on its current 

properties.  Three common types of capacity expansion alternatives are built into this 

module: adding (1) passing sidings, (2) intermediate signals, and (3) 2nd main track.  For 

the single track scenario, increasing the number of sidings can reduce meet and pass 

delay, and increasing the number of signals and shortening block length can reduce the 

headway between trains thereby increasing line capacity.  Beyond that, according to 

Rollin Bredenberg (V.P. Service Design at BNSF Railway), if demand averages 60 trains 

per day with a peak of 75, double-track must be added to single-track segments 

(Vantuono, 2005; AAR, 2007).  

 

 For each subdivision, the enumeration function will calculate all possible 

combinations of expansion alternatives until it reaches the limit of minimal siding 

spacing or maximal number of signals per spacing specified by the user (Figure 5.3).  

For example, for a 100-mile CTC subdivision with nine existing sidings and no 

intermediate signals, if the minimum siding spacing is set to eight miles and the 
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maximum number of signals within each spacing is two, the largest number of sidings 

that can be placed in this subdivision is 11 (≈100/8 – 1), and the largest number of 

intermediate signals that can be placed (between two sidings) is two.  Table 5.2 shows 

the possible alternatives for this example; the order of enumerated alternatives is based 

on ascending construction costs.  Since adding signals are usually less expensive than 

adding sidings, adding signals is considered first (up to the limit) before adding another 

siding; therefore, the first and second alternatives are to increase the number of 

intermediate signal in every spacing by one and by two, respectively.  Since two 

intermediate signals is the upper bound for number of signals per spacing, the next (third) 

alternative is to increase the number of sidings (by one).   

 

Figure 5.3:  Flowchart of alternatives generator 

 

Table 5.2:  Possible capacity expansion alternatives 

Alternatives Sidings Signals/Spacing
1 + 0 + 0
2 + 0 + 1
3 + 0 + 2
4 + 1 + 0
5 + 1 + 1
6 + 1 + 2
7 + 2 + 0
8 + 2 + 1
9 + 2 + 2

10   Adding 2nd Main Track  
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5.3.3  Line Capacity Evaluation 

After the enumeration, the next step is to evaluate the capacity increase and 

construction cost of each alternative (Figure 5.3).  For each subdivision, AG will first 

evaluate the current line capacity based on the existing key parameters.  Capacity 

planners usually have an idea of the current line capacity based on empirical experience.  

These empirical values can be used in AG to determine the current LOS by adjusting the 

acceptable delay to match the capacity values from both AG and empirical experiences.  

If empirical values are not available, the maximum trip time of 10 hours will be used to 

calculate the capacity (Figure 5.2) (Krueger, 1999).  However, users can specify their 

own suitable limits depending on the context in which it is used.   

 

After obtaining the base case (current condition), AG can then compute the capacity 

increase of each alternative by changing the plant parameters (e.g. MPPPS & ISR), 

assuming the traffic and operating parameters remain the same.  The CN parametric 

model cannot handle subdivisions with %DT more than 75%; consequently, I assigned a  

capacity of 80 trains per day for a double-track segment according to typical railroad 

industry freight railroad practices (Vantuono, 2005; AAR, 2007).   

 

5.3.4  Construction Cost Estimation 

The unit construction cost of each type of expansion options is needed to compute 

the cost of expansion alternatives.  Users can specify these values in advance or use the 
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default cost estimates.  Three required basic unit costs are: the costs of (1) adding a new 

siding, (2) adding a new intermediate signal, and (3) adding a 2nd main track.   

 

The general default cost estimates are based on information obtained from railroads 

and consulting companies.  These values serve as the general average case considering 

the need for new tracks, signals, and bridges, but ignore the cost of acquiring additional 

land or environment permit.  For a new 12,000-foot passing siding, I assumed as cost of 

$4,870,000 for track work and civil infrastructure.  For territory with an existing CTC 

signal system, the cost of signalizing a newly constructed siding within this territory 

would be $300,000 for each end of the siding or $600,000 in total.  Therefore, the first 

required unit cost, cost of adding a signalized passing siding, is $5,470,000.  Within 

existing CTC territory, the cost of a new intermediate signal point (i.e. one signal in each 

direction) is approximately $100,000 (second required unit cost).  And, the third 

required unit cost, that of adding the 2nd main track, is $2,250,000 per mile.   

 

5.3.5  Output of Alternatives Generator – Alternatives Table 

Table 5.3 lists the alternatives for the subdivision mentioned in 5.3.2.  For our 

network analysis, a similar table is generated for each subdivision in the network, and 

these tables together form the input data for the investment selection model.  Ideally, 

capacity planners would review these alternatives before they are input into ISM.  

During the process, planners can remove inadequate alternatives or add additional 

alternatives based on their experience and judgment.  
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Table 5.3:  Expansion alternatives with capacity increase and construction cost 

Alternatives Sidings Signals/Spacing Capacity (trains/day) Cost
1 + 0 + 0 + 0 $0
2 + 0 + 1 + 3 $1,000,000
3 + 0 + 2 + 4 $2,000,000
4 + 1 + 0 + 3 $5,470,000
5 + 1 + 1 + 6 $6,570,000
6 + 1 + 2 + 7 $7,670,000
7 + 2 + 0 + 6 $10,940,000
8 + 2 + 1 + 9 $12,140,000
9 + 2 + 2 + 10 $13,340,000

10   Adding 2nd Main Track + 50 $204,750,000  

 

5.4 Investment Selection Model (ISM) 

The ISM is developed to identify which subdivisions need to be upgraded with what 

type of improvements in the network by using optimization and network analysis 

techniques.  Trains with different origins and destinations are similar to multiple 

commodities and they share common line capacity; therefore, we formulate this problem 

as a mixed integer network design model (Magnanti and Wong, 1984; Minous, 1989; 

Ahuja et al., 1993).  Based on the estimated future demands of all OD pairs and capacity 

expansion options, the ISM determines an optimal investment plan for capacity 

expansion with the premise that “level of service” remains the same as the current 

conditions.  In other words, there is no difference between delay (hours per train) before 

expansion with existing traffic, and delay after expansion with the future demand.  

 

5.4.1  The General Investment Selection Model 

The following notation is used in the investment selection model:  i is an index 

referring to the starting node of an arc, and j is the ending node of an arc;  k corresponds 

to the kth origin-destination (OD) pairs of nodes (s1, t1), (s2, t2), …, (sk, tk) in which sk and tk 
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denote the origin and destination of the kth OD pair;  q represents the index of engineering 

alternatives.  B is the available budget for capital investment; α and γ  are the weights to 

account for the planning horizon;  cij is the cost of running on arc (i, j).  dk is the demand 

of kth origin-destination pair;  hij
q represents the cost of the qth engineering option on arc (i, 

j);  Uij is the current capacity of arc (i, j); and uij
q is the increase in capacity of arc (i, j) by 

the qth engineering option.  

 

There are two sets of decision variables in the ISM.  The first variable is denoted by 

xij
k , which is the number of trains running on arc (i, j) from the kth OD pair.  The second 

variable is a binary variable, denoted by yij
q, which determines whether the qth engineering 

option is used for arc (i, j), namely:  

1,   if the  engineering option is used for arc ( ,  )
0,  otherwise

th
q

ij
q i j

y
⎧

= ⎨
⎩

  

The investment selection model is formulated as follows:  
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The objective function takes into account the capital investment, residual value, and 

flow cost; it aims to minimize the total cost that includes both the ‘net cost’ of new 

infrastructure and the total traffic flow cost over the planning horizon.  The net cost is 

defined as the difference between capital investment and the residual value of new 

infrastructure at the end of the horizon.  The residual value is usually a fraction of the 

initial capital investment, so it is embedded in the first part of the objective function, 

together with capital investment.  The total flow cost is the summation of transportation 

cost and maintenance of way (MOW) cost.  Besides the necessary investment to 

accommodate future demand, additional capital investment might further reduce the total 

flow cost.  The relative importance of these depends on the planning horizon.  The 

longer the planning horizon, the more railroads should be willing to invest due to larger 

reductions in flow cost over time.  Therefore, the appropriate weights (α &γ ) should be 

determined by using the life cycle cost analysis (LCCA) method (Acharya et al., 1991; 

Zoeteman and Esveld, 1999; Viet, 2002; Lee, 2002; Ozbay et al., 2004; Ling et al., 2006) 

according to the implementation circumstances.  For a multiyear capacity planning 

project, we need to take into account the increase in flow cost over time and the discount 

factor to compute the net present value; therefore, cij in this general formulation is a set of 

discounted flow costs by year within the planning horizon.  The determination of α ,γ , 

and the discounted flow cost are further discussed in 5.4.2.  

 

Constraint 5.15 is the budget constraint, which can be removed if the task is to 

determine how much funding would be required to meet the estimated future demand.   
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Equation 5.16 is the line capacity restriction ensuring that the total flow on arc (i, j) is 

less than or equal to the current capacity plus the increased capacity due to upgraded 

infrastructure.  For each arc (i, j), there can be at most one selected engineering option 

(constraint 5.17).  Finally, equation 5.18 is the network flow conservation constraint 

guaranteeing that the outflow is always equal to the inflow for trans-shipment nodes; 

otherwise, the difference between them should be equal to the demand of that OD pair.  

 

5.4.2  The Investment Selection Model for a Class 1 Railroad 

In this section, I used the network for a North American Class 1 Railroad as an 

example to further discuss how to determine α , γ , and the flow cost in ISM.  Figure 5.4 

is a general timeframe for multiyear capacity expansion projects.  At year zero (m0), the 

decision maker must make the capital investment decision; the new infrastructure will be 

completed after the construction lead time (L years), and the impact on operational cost  

will last for N years based on the planning horizon.  At the end of the horizon, we need to 

account for the residual value of the new infrastructure.   

 

 

Figure 5.4:  Timeframe of multiyear capacity expansion projects 
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Determination of Alpha 

The first part of the objective function accounts for both capital investment and 

residual value.  Residual value is usually computed as:  

Remaining Service Life Initial  Capital  Investment
Total  Service Life

×         (5.19) 

Since net cost is defined as the difference between capital investment and the residual 

value, it can be computed as:  

 (1 )Remaining Service LifeNet  Cost   Initial  Capital  Investment
Total  Service Life

= − ×     (5.20) 

As a result, α  in equation 5.14 is:  

1 Remaining Service Life  
Total  Service Life

α = −             (5.21) 

 

Determination of Discounted Flow Cost 

The unit flow cost is a per train-mile operational cost incurred by railway traffic 

flow; the total flow cost is the summation of transportation cost and maintenance of way 

(MOW) cost over the planning horizon.  According to Grimes & Barkan (2006), the 

MOW cost should include both ordinary maintenance expense and renewal expenditure.  

The transportation cost is the train-operation transportation cost.  As a result, the unit 

flow cost can be computed as:  

ij
Annual (MOW Cost + Transportatoin Cost)c = 

Total Train Miles
         (5.22) 
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Where:  

  cij  = The unit flow cost of running on arc (i, j) at the base year ($/train-mile) 

 

Equation 5.22 can be used to compute the flow cost of a selected base year in the 

past.  In a multiyear planning project, the unit flow cost in the future should be 

estimated and discounted to the base year.  Due to recent increases in fuel and steel cost, 

the annual unit flow cost has been sharply higher from 2003 to 2006 (Figure 5.5).  The 

average yearly increase in unit flow cost is about 11%.  This information is used to 

estimate the future unit flow cost of the multiyear plan.  

(1 )e m
mij ijc  = c π+                (5.23) 

Where:  

ce
mij  = The estimated flow cost of running on arc (i, j) at year m 

π  = Increase rate of unit flow cost 

 

Discounting is another essential element of the overall cost benefit analysis (Ozbay 

et al., 2004), especially for long-term planning projects.  The present value method (a 

component of discounted cash flow analysis) was first introduced by Wellington (1914).  

For each year of an N-year operation (Figure 5.4), a specific discounted flow cost is 

computed based on the estimated unit flow cost and the real discount rate.  If ce
mij is the 

estimated unit flow cost in year m and f is the real discount rate, the discounted flow cost in 

the base year would be:  
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Figure 5.5:  Unit flow cost from 2003~2006 

 

Investment Selection Model for a Class 1 Railroad 

North American Class 1 railroads generally operate freight trains according to the 

base train schedule, which is a guideline of what trains to run on what day (or days) of the 

week.  This base train schedule can be preprocessed to seven daily traffic flow patterns 

depicting seven days of the week.  Consequently, the decision variable of the traffic flow 

in the ISM should be denoted as xtij
k depicting number of trains running on arc (i, j) from kth 

OD pair on day w where w is an index to represent each day of the week (Mon thru Sun).  
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The following is the ISM for a Class 1 railroad’s multiyear planning project.  The life 

of railroad infrastructure is assumed to be approximately 20 years in this example.  Hence, 

if a 5-year operation is considered in this project, the value of α  = 0.25.  γ  is 

determined based on the number of weeks in a year, thus γ =52, because the traffic flow 

pattern is fixed for every week of the year.  

min   0.25 52                                                (5.25)

. .                                                                                                
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5.4.3  Model Extensions 

The scope of this research is to improve network capacity; therefore, node capacity 

is not considered in the general model.  However, if terminal capacity data are available, 

we can incorporate a node capacity constraint into the original model, which is given by:  

k
ij i k k

k i
x G         j   ( j  s , t )≤ ∀ ∉∑∑             (5.30) 

Where  

Gi  = Capacity of node i 
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The general model in 5.4.1 would be infeasible if there is not enough budget for 

upgrading the system to accommodate the future demand.  Two strategies can be applied 

to cases in which the budget is insufficient.  The first strategy is to assume an unlimited 

budget while solving the ISM, and then based on the available budget, select the most 

important links to upgrade as identified using the impact analysis module (section 5.5).  

The second strategy is to extend the original ISM formulation to incorporate the 

possibility of having unfulfilled demand (supply < demand), a.k.a. “deficit”.  This 

enables the possibility of rejecting demand if there is not enough budget to accommodate 

all the forecasted traffic.  The extended model is formulated as follows:  

 

( - ) (5.31)

. .
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 The new symbols introduced in this modified ISM are: φ  is the weight for deficit;  

di
k is the demand of the kth OD pair on node i, where di

k is a positive value if i is an origin 

and a negative value if i is a destination; and ai
k is the supply of the kth OD pair on node i, so 

it has to be less than or equal to di
k if i is an origin, and greater than or equal to di

k if i is a 

destination.  

 

The objective function is to minimize the sum of net cost, flow cost and deficit.  α , 

γ , and φ  denote the relative importance of each cost component.  For our purpose, φ  

is considerably greater than α  and γ  because it is undesirable to have a deficit if the 

budget is sufficient to fulfill demand.  On the other hand, even if the budget is insufficient, 

the best scenario is to have the least unfulfilled demand.  

 

Constraints 5.31, 5.32, and 5.33 are the same as 5.16, 5.17, and 5.18 in the general 

ISM.  Constraint 5.19 in the original model is modified into 5.34 and 5.35 in the 

modified ISM; constraint 5.34 is the flow conservation equation subject to supply (as 

opposed to demand); constraint 5.35 guarantees that supply is less than or equal to 

demand.  Combining equations (5.34 and 5.35) enables the modified ISM to handle 

cases without sufficient budget.   

 

5.5 Impact Analysis Module (IAM) 

 As mentioned above, ISM determines the best set of capacity improvement 

alternatives with the premise that “LOS remains the same”.  For example, in Figure 5.6a, 

the solid exponential curve represents the general delay-volume relationship for the 
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existing infrastructure, whereas the dashed curve depicts the delay-volume relationship 

with upgraded infrastructure.  With the same LOS, the upgraded infrastructure can 

provide more capacity than the existing track.  However, it is also possible to gain 

additional capacity by reducing the LOS (increasing delay) (Figure 5.6b).  Line capacity is 

increased by increasing delay along the delay-volume curve of the existing infrastructure.  

 

 
(a)                                            (b) 
 

Figure 5.6:  Increase volume by (a) upgrading infrastructure (b) lowering LOS 

 

 The impact analysis module evaluates whether the capital investment is cost-effective 

by comparing the “required capital investment” to the “delay cost”.  The “required capital 

investment” of each link is the output of the ISM.  The “delay cost” depends on the impact 

of adding additional demand to the existing track layout without upgrading the 

infrastructure.  According to the new demand for each link obtained from the ISM, the 

increase in delay can be determined using the delay-volume curve (Figure 5.6b).  We can 

then compute the delay cost as the product of total delay hours, and unit delay cost per hour.  

From an operational point of view, the unit delay cost can be calculated by summing four 

components: (1) unproductive locomotive cost; (2) idling fuel cost; (3) car/equipment cost; 
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and (4) crew cost.  A recent estimate for one Class 1 railroad is approximately $261 per 

train-hour in 2007. 

 

After obtaining the delay cost, we rank the importance of each link based on the 

benefit as defined by delay cost divided by net cost.  A benefit value less than 1 means the 

investment is not cost effective because the return on investment is negative.  The output 

of the IAM is a table showing the net cost, delay cost, and benefit for each link subject to 

capacity expansion.  This expansion benefit table can be provided to the capacity planners 

for use in their decision-making.   

 

Finally, the problem can be formulated as a “knapsack” problem in which investment 

decisions are made with a limited budget.  The objective of this model would be to 

minimize the delay cost subject to a budget constraint.  With a specific budget level (B), 

the optimal set of investments can be determined by solving the following optimization 

model: 

min  total delay cost                                                                                   (5.37)
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Where dij is the delay cost due to the increase in future demand on arc (i, j) without 

upgrading the subdivision, and yij is the binary decision variable determining whether arc 

(i, j) is upgraded (yij =1) or not (yij =0).   
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5.6 Case Studies 

 To demonstrate the potential use of the decision support framework, two case studies 

were selected, analyzed and are presented in 5.6.1 and 5.6.2.  Case study I has a network 

with 15 nodes, 22 links, and 14 train OD pairs.  Among the 22 links, three of them are 

secondary lines currently serving limited traffic (close to zero).  Converting a secondary 

line into a mainline is costly but, at the same time, it introduces additional routes into the 

network that may reduce the flow cost of certain trains.  In this example, I evaluate the 

tradeoff between capital investment and flow cost by comparing the results of including or 

ignoring secondary lines.   

 

 Case study II is based on an actual Class 1 railroad network and its traffic data 

including 39 nodes, 42 links, and over a thousand train OD pairs.  It is intended as a 

feasibility study to investigate computational efficiency of the decision support framework 

when solving a large scale network problem.  Also, the IAM is used to evaluate the 

tradeoff between capital investment and delay cost assuming there will be a 50% increase 

in traffic demand.  In both case studies, the operational horizon is assumed to be five years, 

and the increased rate of flow cost is the same as the discount rate, namely the unit flow 

cost is a constant regardless of the year.  

 

5.6.1  Case Study I 

Figure 5.7 shows the selected network in which the nodes represent junctions, and 

the arcs represent the connecting rail lines.  There are two types of links in this network, 

mainline (denoted by solid lines) and secondary line (dotted lines).  As mentioned 
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before, upgrading secondary lines is costly in terms of capital investment but it may reduce 

the total flow cost.  In this application, I use both the AG and ISM to determine the 

optimal capital allocation plan and study the tradeoff between capital investment and flow 

cost.   

 

In order to use the AG to determine the current line capacity and expansion 

alternatives, we first need to compute the traffic, plant, and operating parameters.  Table 

5.4 shows the values of the key parameters in each subdivision except (14,15), which is 

already a double-track line.  The AG then uses these parameters to determine the current 

line capacity based on the link properties (Figure 5.8).  

 

 

Figure 5.7:  Case study I network 
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Table 5.4:  Key parameters of case study I network of link (i, j) 

(1,2) (1,3) (2,4) (3,4) (3,5) (3,7) (3,11) (4,7) (5,6) (5,8) (6,9)
SL 100 100 100 100 150 100 300 100 100 150 200
MPPPS 20 14.286 20 10 12.5 12.5 10 16.667 20 21.429 13.333
MPPPU 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5
ISS 1 1 1 1 1 1 1 1 1 1 1
%DT 0.04 0.06 0.04 0.09 0.0733 0.07 0.0967 0.05 0.04 0.04 0.07
TPF 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
DPF 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344
SR 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44
AS 30 32 30 36 36 36 36 36 30 32 31
TO 0 0 0 0 0 0 0 0 0 0 0
TSO 0 0 0 0 0 0 0 0 0 0 0  

(7,13) (8,9) (8,10) (9,10) (9,11) (11,12) (11,13) (12,13) (12,14) (13,14)
SL 200 50 50 50 100 50 100 100 100 100
MPPPS 10 16.667 16.667 16.667 14.286 16.667 10 14.286 10 10
MPPPU 0.5 0.6 0.6 0.6 0.4 0.6 0.5 0.5 0.5 0.5
ISS 1 1 1 1 1 1 1 1 1 1
%DT 0.095 0.04 0.04 0.04 0.06 0.04 0.09 0.06 0.09 0.09
TPF 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
DPF 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344
SR 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44
AS 30 28 28 28 32 28 30 32 30 36
TO 0 0 0 0 0 0 0 0 0 0
TSO 0 0 0 0 0 0 0 0 0 0  

SL  : Length of Subdivision 

MPPPS : Meet and Pass Planning Point Spacing 

MPPPU : Meet and Pass Planning Point Uniformity 

ISS  : Intermediate Signal Spacing 

%DT  : Percent Double Track 

TPF  : Traffic Peaking Factor 

DPF  : Dispatching Priority Factor 

SR  : Speed Ratio 

AS  : Average Speed 

TO  : Track Outage 

TSO  : Temporary Slow Order 
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Figure 5.8:  Current line capacity and distance of each subdivision 

 

Similar to the process demonstrated in section 5.3, two strategies are considered in 

this application to increase line capacity:  

 Add sidings: one, two, three, etc. (until the spacing is reduced to 8-miles). 

 Add intermediate signals: none, one per spacing, two per spacing (at most two 

signals per spacing on average). 

Based on these options, Table 5.5 shows the possible capacity improvement options 

enumerated by AG for link (1, 3).  Similarly, the rest of the single-track mainlines have 

similar patterns.  On the other hand, the cost of upgrading the secondary lines was 

assumed to be $1 million per mile.  Hence, it requires $100, 200, and 300 million to 

upgrade link (11, 13), (6, 9), and (3, 11) to accommodate 15 more trains per day, 

respectively.   
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Besides the expansion options, another set of inputs for the ISM is the estimated 

future demand.  The demand for each OD pair is expressed as the number of daily trains 

projected to be needed from origin i to destination j (Table 5.6).  In this example, it is 

assumed that there is only one type of daily traffic pattern so all days are the same in the 

study period.  

 

Once the above inputs were defined, the capacity expansion problem can be solved 

by the ISM.  Two scenarios were considered in this analysis, with or without 

considering secondary lines as improvement options.  Both cases are coded in GAMS 

and solved by CPLEX.  Figure 5.9a is the optimal solution for the scenario without 

secondary lines whereas Figure 5.9b is the scenario with secondary lines.  In Figure 5.9, 

links with bold numbers are those that require a capacity upgrade, and the number 

represents the amount of additional capacity needed.  Table 5.7 shows the selected 

expansion option for each link requiring upgrade.  The net cost of scenario 1 is lower 

than that in scenario 2; conversely, the flow cost over a 5-year span is higher in scenario 1 

than in scenario 2.  This is what we expected as the tradeoff between capital investment 

and flow cost.  In this case, it is more beneficial to upgrade secondary lines because the 

total overall cost is lower than the scenario with only mainline upgrades. 

 

Figure 5.10 shows the final capacity usage for each arc of the network.  The dashed 

lines represent links currently at capacity whereas the dotted lines represent unused links.  

Hence, the ISM output helps identify not only the important links, but also the 
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unimportant ones.  Consequently, capacity planners could also use these results to 

consider downgrading unimportant links to reduce cost and shift resources to links that 

provide higher benefit. 

 

Table 5.5:  Capacity improvement options for link (1,3) 

 Sidings Signals Capacity Increase Cost
# # trains/day $
6 0 0 0
6 7 2 700,000
6 14 3 1,400,000
7 0 2 5,470,000
7 8 5 6,270,000
7 16 6 7,070,000
8 0 5 10,940,000
8 9 7 11,840,000
8 18 8 12,740,000
9 0 7 16,410,000
9 10 9 17,410,000
9 20 11 18,410,000

10 0 9 21,880,000
10 11 12 22,980,000
10 22 13 24,080,000
11 0 12 27,350,000
11 12 15 28,550,000
11 24 16 29,750,000
12 0 16 32,820,000
12 13 18 34,120,000
12 26 20 35,420,000  
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Table 5.6: The estimated future demand of link (i, j) 

i j Demand (trains/day)
1 9 8
3 6 6
3 11 9
3 15 8
4 6 8
4 13 7
5 15 9
6 3 6
9 13 5

10 3 2
13 3 8
13 9 5
15 6 8
15 3 5  

 

Table 5.7:  Optimal capacity expansion option for each link (i, j)  

(a) without (b) with secondary lines 

(a) 

i j Alternatives Cost ($millions)
3 7 Add signals (3) 1.60
3 5 Add 2 sidings & signals (2) 13.74
8 9 Add 3 sidings 16.41
9 11 Add 3 sidings & signals (1) 17.41

11 12 Add 3 sidings & signals (1) 17.01
5 6 Add 5 sidings & signals (2) 29.35
7 13 Add 5 sidings & signals (2) 32.35
5 8 Add 8 sidings & signals (1) 45.26  

(b) 

i j Alternatives Cost ($millions)
3 11 Upgrade secondary line 300.00
6 9 Upgrade secondary line 200.00

11 13 Upgrade secondary line 100.00
8 9 Add signals (1) 0.30

11 12 Add signals (1) 0.30
7 13 Add signals (2) 4.00
3 5 Add 1 sidings & signals (2) 8.07
5 8 Add 1 sidings & signals (3) 7.07
5 6 Add 2 sidings & signals (1) 11.64
9 11 Add 2 sidings & signals (2) 11.84
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(a) 

 

(b) 

Figure 5.9:  Optimal solution of case study I (a) without (b) with secondary lines 
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Figure 5.10:  The capacity usage of each link 

 

5.6.2  Case Study II 

In case study II, the decision support framework is implemented to establish the 

multiyear capacity expansion plan based on a real Class 1 railroad network and base train 

schedule (Figure 5.11).  In this problem, there are 39 nodes, 42 links, and over 1,000 

train OD pairs.  It is intended to show the feasibility of using the proposed framework to 

solve large scale problems.  Also, I use the impact analysis module to show the tradeoff 

between capital investment and train delay cost. 
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Figure 5.11:  Case study II network 

 

According to the “base train schedule” obtained from the railroad, trains are 

scheduled to run on a certain day (or days) each week.  Therefore, the base train 

schedule can be converted into a weekly traffic flow pattern in which there are seven 

individual daily demand patterns (for each day of the week).  This results in over 1,000 

train OD pairs within a week.   

 

The estimated future demand in this case study was assumed to be 50% more than 

the current traffic flow, and three types of expansion strategies are considered in this 

application:  

 Add sidings: one, two, three, etc. (until the spacing is reduced to 8-miles). 
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 Add intermediate signals: none, one, two, three per spacing (at most three signals 

per spacing on average).  

 Add a 2nd main track 

 

As in case study I, I used the AG to evaluate the current line capacity based on the 

current network characteristics, and generate possible capacity expansion options from 

the strategies listed above.  Note that the general enumeration scheme presented in 

section 5.3.2 is more suitable for a single track mainline with Centralized Traffic Control 

(CTC) or Automatic Block Signal (ABS) control, as opposed to lines with Track Warrant 

Control (TWC) (sometimes referred as “dark territory”).  Routes with CTC and ABS 

signal systems have existing track circuit and power infrastructure, so adding signals on 

these routes would not be as costly as adding signals on TWC trackage which require 

installation of infrastructure.  Consequently, in this example, I omitted the option of 

signalizing the TWC routes since they have light traffic and the future demand is also 

relatively low.   

 

Based on available options and future demand, the ISM gives the optimal solution 

shown in Figure 5.12.  In this problem, the model includes 89,712 variables and 41,015 

equations; and the solution time was only 3.5 seconds.  Although this is just one 

instance and more empirical evidence is needed to generalize this finding, it shows the 

feasibility and computational convenience of using the decision support framework to 

solve large scale network problems.  
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Figure 5.12:  Optimal solution of case study II 

 

As mentioned before, the ISM determines the required upgrade with the premise 

“LOS is unchanged”, but it is possible to gain capacity by increasing delay (reduce LOS) 

of the subdivision.  This is particularly important for routes that require only a small 

amount of additional capacity.  For example, from table 5.8, link (35, 36) requires only 

one train per day additional capacity for Tuesdays and Thursdays; instead of investing 

millions of dollars to upgrade the infrastructure, it may be more beneficial to reduce the 

LOS of this link to incorporate additional trains on those two days.  On the contrary, link 

(1, 2) requires at least 15 trains per day additional capacity; therefore, the return on 

investment in infrastructure of this link is more likely to be justifiable.  Consequently, 

the tradeoff between capital investment and delay cost should be taken into account for 

the final decision.   
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Table 5.8:  The required additional capacity for each link and day of the week 

 

 

The impact analysis module determines if the capital investment is cost-effective by 

comparing the investment to delay cost.  According to the required additional capacity of 

each link (output of ISM), we can use the delay-volume relationship based on the current 

link properties to compute the increase in delay for each link due to additional traffic 

without upgrades (Table 5.9).  

 

i j Sun Mon Tue Wed Thu Fri Sat
1 2 16 15 16 16 16 16 16
2 3 14 15 15 16 15 16 13
3 4 9 10 10 11 10 11 8
4 5 4 4 5 4 5 4 5
5 6 1 0 0 0 0 0 1
6 7 1 2 2 1 2 0 2
7 8 1 0 1 1 1 0 0
7 9 1 2 0 1 0 1 1
9 10 1 2 0 1 0 1 1

10 11 0 1 0 1 0 1 1
11 12 2 0 4 0 4 0 3
4 15 3 5 5 5 5 5 4

15 16 7 7 6 7 6 7 8
5 18 4 5 5 5 5 5 5

18 19 4 5 5 5 5 5 5
19 20 1 3 3 3 3 3 3
20 21 1 3 3 3 3 3 3
33 34 6 4 5 5 6 5 6
34 35 5 4 2 6 5 6 6
35 36 0 0 1 0 1 0 0
35 38 2 7 9 11 12 12 10
38 39 0 0 0 1 0 1 0
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Table 5.9:  Additional delay due to the increase in future traffic demand  

i j Sun Mon Tue Wed Thu Fri Sat
1 2 280.50 250.00 280.50 280.50 280.50 280.50 280.50
2 3 235.20 290.00 290.00 321.30 290.00 321.30 206.40
3 4 245.00 300.00 300.00 331.50 300.00 331.50 192.00
4 5 15.50 15.50 19.20 15.50 19.20 15.50 19.20
5 6 1.60 0.00 0.00 0.00 0.00 0.00 1.60
6 7 1.60 2.55 2.55 1.60 2.55 0.00 1.70
7 8 0.80 0.00 0.80 0.80 0.80 0.00 0.00
7 9 0.30 1.05 0.00 0.30 0.00 0.30 0.30
9 10 0.60 1.40 0.00 0.60 0.00 0.60 0.60
10 11 0.00 0.35 0.00 0.35 0.00 0.35 0.35
11 12 0.80 0.00 3.00 0.00 3.00 0.00 1.80
4 15 4.75 9.45 9.45 9.45 9.45 9.45 7.00
15 16 16.80 16.80 14.00 16.80 14.00 16.80 22.00
5 18 34.20 39.00 39.00 39.00 39.00 39.00 39.00
18 19 22.80 27.30 27.30 27.30 27.30 27.30 27.30
19 20 3.70 11.70 11.70 11.70 11.70 11.70 11.70
20 21 3.70 11.70 11.70 11.70 11.70 11.70 11.70
33 34 15.60 9.60 12.50 12.50 15.60 12.50 15.60
34 35 12.50 9.60 4.40 15.60 12.50 15.60 15.60
35 36 0.00 0.00 1.65 0.00 1.65 0.00 0.00
35 38 5.20 40.30 59.40 80.50 100.80 100.80 71.40
38 39 0.00 0.00 0.00 2.40 0.00 2.40 0.00

Delay (train-hours)Link

 

 

The total delay cost of a subdivision is then computed as the product of total delay 

hours and unit delay cost per hour ($261 per train-hour).  Table 5.10 shows both the train 

delay cost and net cost for each link.  The links are ranked by their benefit, which is the 

result of delay cost divided by capital investment.  The first 12 links have benefit value 

greater than 1 meaning the return is greater than the investment; however, the other 10 links 

have negative return on investment.  This table would be provided to the capacity planner, 

as an aid to their final decision making based on the available budget.   
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Table 5.10:  The benefit of upgrading track 

Difference ($,k) Benefit Cumulative
i j Current Max Train Delay Net Cost Delay - Net Cost Benefit

35 38 24 36 31,107 2,289 28,818 13.59 14
5 18 34 39 18,200 1,643 16,558 11.08 25
3 4 40 51 135,720 13,169 122,551 10.31 35

18 19 34 39 12,663 2,735 9,928 4.63 40
20 21 36 39 5,015 1,393 3,622 3.60 43
15 16 14 22 7,953 2,435 5,518 3.27 46
2 3 35 51 132,612 42,188 90,425 3.14 50

19 20 36 39 5,015 1,693 3,322 2.96 53
4 5 27 32 8,116 4,278 3,839 1.90 54
1 2 35 51 131,173 84,813 46,361 1.55 56

33 34 20 26 6,372 4,870 1,502 1.31 57
34 35 20 26 5,822 4,870 952 1.20 59
4 15 16 21 4,004 4,870 (866) 0.82 59
6 7 15 17 852 1,218 (366) 0.70 60

38 39 23 24 326 1,218 (892) 0.27 60
11 12 6 10 584 2,435 (1,851) 0.24 61
35 36 32 33 224 1,218 (994) 0.18 61
5 6 15 16 217 1,218 (1,000) 0.18 61
7 8 15 16 217 1,218 (1,000) 0.18 61
9 10 5 7 258 2,435 (2,177) 0.11 61

10 11 6 7 95 1,218 (1,122) 0.08 61
7 9 5 7 153 2,435 (2,282) 0.06 61

506,697 185,852 320,845Sum

Link Capacity Cost ($,k)

 

 

With limited budget (B), the optimal investment set can be determined by solving the 

knapsack formulation presented in section 5.5:  

 

min  total delay cost 506,697

. .
         

ij ij ij ij
i j i j

ij ij
i j

d y d y

s t
h y B

− = −

≤

∑∑ ∑∑

∑∑
 

Where dij is the delay cost of arc (i, j) in the fifth column in table 5.10; hij is the 

construction costs to upgrade arc (i, j); and yij is the binary decision variable determining 

whether arc (i, j) is upgraded (yij =1) or not (yij =0).  For example, if the available budget 

is 70 million dollars, the optimal investment set will be to upgrade links (35, 38), (5, 18), 
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and (3, 4) because they can provide the most reduction in total delay within the budget 

constraint.  

 

5.7 Conclusion and Future Work 

Many railroad lines are approaching the limits of practical capacity given their current 

infrastructure.  I have developed a decision support framework to help capacity planners 

determine how to optimally allocate funds for railway capacity expansion projects at the 

network level.  The framework is comprised of three components: (1) an “Alternatives 

Generator (AG)” that enumerates possible expansion options along with their cost and 

capacity effects; (2) an “Investment Selection Model (ISM)” that determines which 

portions of the network (at the subdivision level) need to be upgraded with what kind of 

capacity improvement alternatives; and (3) an “Impact Analysis Module (IAM)” that 

evaluates the tradeoff between capital investment and delay cost.  These components can 

be used separately as stand-alone tools, or they can be combined as a consolidated 

decision-support framework.   

 

Based on network characteristics, estimated future demand, and available budget, the 

proposed decision support framework can successfully determine the optimal solution 

regarding which subdivisions need to be upgraded and what kind of engineering options 

should be conducted.   Such a tool will help railroads maximize their return from capacity 

expansion projects and thus be better able to provide reliable service to their customers, 

and return on shareholder investment.  Such a decision support framework is highly  
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beneficial for optimizing the budget planning for expanding the capacity of North 

American railroads. 

 

The investment selection model I have developed here is a deterministic, one-time 

investment model that does not account for stochastic future demand, multi-period 

decision making, or global optimization by railroads.  The optimal investment plan may 

be different if funding is constrained for each railroad considered in each year of the 

planning horizon.  Therefore, an interesting extension may be to use a dynamic 

optimization model to identify the optimal sequence of upgrades for all the railroads 

considered in the capacity expansion projects.  Also, because the demands of all 

commodities are assumed to be fixed, another interesting extension would be to 

incorporate seasonal demand patterns into the model, and again try to determine what the 

best set of investment options is.  A multi-period stochastic investment selection model 

such as this could help capacity planners determine how to optimally allocate the budget in 

different decision time(s) for capacity expansion.   
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CHAPTER 6 

 

SUMMARY AND FUTURE RESEARCH 

The focus of my dissertation is to increase railway efficiency and capacity through 

improved operations, control and planning.  Various analytical approaches were 

developed and carried out using operations research techniques, and capacity analysis 

methodologies for optimization of the aerodynamic efficiency of intermodal freight trains 

(chapter 2, 3, & 4), and railway capacity planning (chapter 5). 

 

6.1 Summary 

In chapter 2, I investigate and evaluate possible options to improve the energy 

efficiency of intermodal trains.  I found that maximizing slot efficiency by matching 

intermodal loads with cars (of an appropriate length) reduces the gap length between loads, 

thereby improving airflow and reducing drag, which in turn reduces fuel consumption and 

operating cost.  Filling empty slots with empty containers or trailers also reduces 

aerodynamic resistance, further improving energy efficiency.  The analytical results show 

that train resistance can be reduced by as much as 27% and fuel savings by 1 gal/mile per 

train.  

 

I then develop the Aerodynamic Loading Assignment Model (ALAM), an integer 

programming (IP) model that incorporates aerodynamic characteristics of loads and railcar 
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combinations to enable optimization of loading patterns to maximize fuel efficiency 

(chapter 3).  ALAM can be used to help terminal managers make up more fuel-efficient 

trains.  This is the first use of optimization modeling with the objective of improving the 

aerodynamics and consequent energy efficiency of intermodal freight trains.  The model 

developed here can be adapted to a variety of other intermodal train loading assignment 

problems through modification of the objective function.  Finally, several policy 

recommendations regarding railway intermodal operations are developed based on a series 

of scenario analyses.   The potential annual savings in fuel consumption through use of 

ALAM by one large railroad on one of its major intermodal routes is estimated to be 

approximately 15 million gallons with a corresponding value in 2007 of 29 million dollars.   

 

ALAM was further improved to allow optimization of multiple trains simultaneously 

if advance information about outgoing trains and loads is available.  Chapter 4 presents 

static and dynamic aerodynamic efficiency models for the loading of multiple IM trains.  

It also develops a rolling horizon scheme for continuous train terminal operations.  For the 

static case, when full information is available, the system optimum can be reached by 

optimizing as many trains as possible.  In practice, however, terminals operate in a 

dynamic environment where not all information on incoming loads and trains is available.  

Attempting to optimize the loading of too many trains in this environment will reduce the 

ability to achieve the most efficient loading configuration.  Therefore, a rolling horizon 

scheme with decreasing weight assigned to each train is proposed to counterbalance the 

effect of uncertainty.  Numerical results show that the rolling horizon scheme 

significantly reduces the adjusted gap length compared to current practice, thereby 
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leading to further improvement in the aerodynamic efficiency of IM trains.  

Correspondingly greater savings in fuel, emissions and expense are possible if this 

methodology is applied to all North American IM trains. 

 

In chapter 5, I demonstrate a new decision support framework to help railroad 

capacity planners determine how to optimize the allocation of capital investment for 

capacity expansion projects.  This framework has three stand-alone tools: (1) an 

“Alternatives Generator” that enumerates possible expansion options along with their cost 

and capacity effects; (2) an “Investment Selection Model” that determines which portions 

of the network (at the subdivision level) need to be upgraded with what kind of capacity 

improvement options; and (3) an “Impact Analysis Module” that evaluates the tradeoff 

between capital investment and delay cost.  Based on network characteristics, estimated 

future demand, and available budget, the proposed decision support framework can 

successfully determine the optimal solution regarding which subdivisions need to be 

upgraded and what kind of engineering options should be conducted.   This will help 

railroads maximize their return from capacity expansion projects and thus be better able to 

provide reliable service to their customers, and return on shareholder investment.  Such a 

decision support framework can be used to optimize the efficiency and effectiveness of 

railroad capacity expansion programs.  

 

6.2 Future Research 

In this section I discuss some of the possible future research needs and directions in 

the area of intermodal train efficiency and railroad capacity planning.  
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Improving the Design of Intermodal Equipments to Improve Efficiency 

 In Chapter 2, I pointed out that intermodal trains are the least fuel efficient trains due 

to the physical constraints imposed by the combination of loads and the railcar design 

(Engdahl et al., 1986).  Research on practical methods to improve the aerodynamic design 

of intermodal equipment and/or railcars to improve their energy efficiency would be 

worthwhile.  This research would focus on ways to reduce the aerodynamic turbulence 

and consequent drag caused by the gaps between intermodal loads since these contribute 

the majority of resistance at high speed.  In addition to the aerodynamic design analyses, 

the research should include a thorough analysis of fuel savings, additional investment, and 

effects on operating costs to determine the cost effectiveness of whatever designs are 

evaluated. 

 

A Multi-Period Stochastic Investment Selection Model for Railway Capacity Expansion 

The investment selection model I have developed in the decision support framework 

is a deterministic, one-time investment model that does not account for stochastic future 

demand and multi-period decision making.  I plan to develop a multi-period stochastic 

investment selection model by using approximate dynamic programming (ADP) (Powell, 

2007).  ADP is a relatively new solution strategy for large-scale resource allocation 

problems that take place over multiple time periods under uncertainty.  The multi-period 

stochastic investment selection model can help capacity planners determine how to 

optimally allocate the budget in different decision time(s) for capacity expansion.   
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Impact of Advanced Railway Technologies On Line and Network Capacity 

 New railway operating technologies (e.g. PTC, ECP brakes, switch position 

indication, intelligent bearings, etc.) have been developed to improve safety, reliability and 

productivity.  Two of the most promising are PTC and ECP brakes, which have both 

shown a variety of potential benefits.  However, there remain practical, economical and 

institutional barriers to their implementation, in part because of insufficient understanding 

of the benefits they offer railroads in terms of enhanced capacity.  The impact on network 

capacity from these new technologies is not clearly understood and quantified.  Hence, 

there is a need to identify advanced operating technologies with the potential to positively 

affect rail line and network capacity, and then develop analytical tools and conduct 

analyses to quantify the capacity benefits of various possible scenarios.  This will provide 

both public and private rail agencies with a method to evaluate and quantify the potential 

benefits and help them determine the most cost effective plan for adopting these new 

technologies to meet future demand.   

 

Improving Line Capacity through Mitigating the Heterogeneity in Train Operations 

The greater the heterogeneity in train speeds on a line, the more potential conflicts, 

and the lower the line capacity.  Railway capacity can generally be increased by two 

options: (1) reducing the heterogeneity among different types of trains, and (2) upgrading 

railway infrastructure.  The former increases capacity by adjusting the horse power to ton 

(HPT) ratio to reduce the heterogeneity in train speeds and the number of conflicts.  The 

latter improves physical capacity but usually requires long lead time and substantial capital 

investment.  Furthermore, because such investments are permanent, it is less flexible and 
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fungible than adjusting the HPT so the risk is greater.  There is a need to understand the 

relative benefits and interaction between operational and engineering options for capacity 

expansion.  The objective of this study is to compare the impact on capacity through 

adjusting the HPT or upgrading infrastructure, and then develop criteria to better inform 

capacity planning decisions.  

 

Development of a Parametric Capacity Model for Multiple Track Scenario 

 As shown in chapter 5, the CN parametric model recognizes the dynamic nature of 

capacity and provides a system-wide capacity measure of subdivisions in a rail network.  

However, the current version is designed for a single track network that does not take into 

account multiple track scenarios (e.g. crossovers), and/or other different operational 

practices (e.g. directional running).  In addition to identifying areas of limited or excess 

capacity, capacity tools serve as the baseline evaluation instrument for many other 

complicated optimization models, such as the decision support framework presented in 

chapter 5, and railway scheduling optimization tools for solving train, crew, and 

locomotive scheduling problems.  The better the user can assign the right capacity value, 

the better the optimal plan can be created from those tools.  Besides private sector 

railroads, this capacity evaluation tool will also be useful to public agencies to help them 

set national transportation priorities and investment plans.  Therefore, there is a 

substantial need to develop a standard, comprehensive railway parametric capacity model 

analogous to the Highway Capacity Manual (TRB, 2000).  Such a model could assist 

public and private financing of rail capacity investments by determining the magnitude, 

cost, and type of capacity improvements needed for the desired service(s).  
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