Scattering Analysis of Railroad Ballast Using Ground Penetrating Radar

Imad L. Al-Qadi, Wei Xie, Roger Roberts (GSSI)

Illinois Center for Transportation
University of Illinois at Urbana-Champaign

Outline

- Background
 - Railroad Ballast Characteristics
 - GPR Application in Railroad
- Objective
- GPR Data Collection and Processing
- Scattering Pattern Analysis
- Moisture Measurement Using Amplitude Envelope Method
- Summary

Ballast Functions

- Structural Support
 - Resist vertical, lateral, and longitudinal forces
 - Support sleepers
 - Reduce stress levels on subgrade
- Drainage
- Reduce frost problems
- Absorb noise

Ballast Fouling

Ballast fouling greatly influences its functions:

- Clean ballast:
 Uniformly-graded
 large aggregate
 having high air
 void content
- Fouled ballast: Fine materials fill air-void space

Sources of Ballast Fouling (Selig et al. 1994)

- Ballast breakdown: 76%
- Infiltration from subballast: 13%
- Infiltration from ballast surface: 7%
- Subgrade Infiltration: 3%
- Sleeper wear: 1%

Railroad Ballast Assessment

- Traditional Selective Drilling Method:
 - Condition driven
 - Time consuming
 - Limited coverage
 - Train traffic disturbance
- GPR:
 - Nondestructive/ no disturbance to structure
 - Continuous
 - Rapid
 - High coverage
 - Very limited train traffic disturbance

GPR Background

- Ground Penetrating Radar (GPR) is a special kind of radar
- Purpose of using GPR:
 - Detect target buried in dielectric medium
 - Estimate their depth
- GPR applications: geophysics, archeology, law enforcement, civil engineering (structure, transportation – pavement, railroad)

GPR Application for Railroads

- Ground-coupled antenna may produce ringing when h> λ /8
 - Strong surface reflection
 - For 900MHz, $\lambda/8 = 42 < 70$ mm (size of ballast)
- Air-coupled antenna can be used in order to avoid obstacles
 - Strong echoes produced by rails may mask weak signals from ballast
 - Several data processing techniques may be used

Dielectric Characteristics of Ballast

Dielectric constants of quartzite ballast

Railroad Ballast	Dielectric Constant			
Dry, Clean Ballast	3.0			
Wet, Clean Ballast (5% water)	3.5			
Dry, Spent Ballast	4.3			
Wet, Spent Ballast (5% water)	7.8			
Saturated, Spent Ballast	38.5			

 Effect of moisture on fouled ballast is much greater than on clean ballast

Objective

- Assess railroad ballast condition using GPR:
 - Estimate ballast thickness
 - Detect ballast fouling
 - Analyze the influence of ballast fouling on drainage capability

GPR Data Collection on Railroad

- Equipment
 - SIR-20 control unit,
 - Three bistatic 1 and 2 GHz air-coupled horn antennae were used to collect continuous parallel longitudinal scans
 - DMI was used to trigger GPR acquisition
 - Digital camera was used to identify railroad surface
- Data collection location
 - Outer and center antennae were mounted at least 600 mm from rails

Raw GPR Data of Ballast

Different Paths of Reflected Signal

Raw GPR data

GPR Data Processing

- To remove the strong clutter bands from rails and produce clear image:
 - Surface reflection was corrected
 - Vertical band-pass FIR filter was used to remove noise
 - Horizontal band-pass filter was implemented to remove clutter from rails
 - Gain was applied to account for energy attenuation

Processed GPR Data

First pulse from surface and subsequent small pulses are mainly from scattering

Raw GPR data

Processed GPR data

Ballast Breakdown

In clean ballast, the penetration depth of 2-GHz antenna is about 600mm, much greater than the sleeper's height, 150mm

Breakdown ballast under sleepers

Trapped Water Detection

 2-GHz antenna is more sensitive to scattering pattern change than the 1-GHz antenna

Trapped water due to lack of lateral drainage

Scattering Pattern Analysis

Pavement Materials:

- Scattering response is weak (homogenous material)
- Reflected pulse has similar shape as incident signal

Railroad Ballast:

- Scattering response is dominant (heterogeneousity is high)
- Reflected pulse shape is influenced by size of scatter

GPR Frequency Selection

Frequency → air void → ballast fouling

```
f (MHz) 100 200 400 500 600 900 1000 2000 (low frequency) (high freq)
```

 Low frequency may detect "clear" discontinuities in dielectric constant; but may not detect changes in air void volume

Detect Changes in Scattering Pattern

Air void volume in clean ballast is about 30%

$$D^{N} = \frac{2a\pi}{\lambda} = \frac{70 \times 30\% \times \pi}{\lambda}$$

$$\lambda = \frac{c}{f \cdot \sqrt{\varepsilon_r}}$$

Normalized dimensions for different frequencies

F (MHz)	100	200	400	500	600	900	1000	2000
λ (mm)	1500	750	375	300	250	166	150	75
DN	0.04	0.09	0.18	0.22	0.26	0.4	0.44	0.88

Note: Scattering response is dominant response as DN close to unity.

Scattering Pattern of Ballast under Various Conditions

Air void ← Ballast fouling index

(a) Clean ballast (b) Moderately fouled ballast (c) Fouled ballast Ballast exhibiting various scattering pattern (2-GHz)

Scattering Amplitude Envelope Approach (Roberts et al, 2006)

- The Hilbert transform is used to obtain the amplitude envelope of reflected signal
- Very low amplitude envelope and sudden change in slope of amplitude envelope indicate a change in ballast condition.
 - Clean Ballast Slightly Fouled Ballast **Fouled Ballast Moderately Fouled Ballast**

- (a) Clean ballast
- (b) Moderately fouled ballast (c) Fouled ballast

Moisture Measurement

- Clean ballast allows water to flow through easily
- For slightly fouled ballast, fine particles partially block air void and influence drainage capability

Before Spray

RF noise

0.25hr after spray

Significant Saturation contrast

5hr after spray

Diminished saturation contrast

Summary

- Fouled ballast generates different GPR scattering patterns compared to that of clean ballast
- 2-GHz antenna is sensitive to scattering pattern change
- Combination of direct scattering pattern analysis and amplitude envelope approach may provide more information about ballast fouling and trapped water
- GPR proved to be an effective approach to detect ballast fouling

ACKNOWLEDGEMENT

- Transportation Technology Center, Inc.
- Federal Railroad Administration Project DTFR53-05-D-00200 who Partially funded this project.
- Erol Tutumluer from UIUC

Thank You!

