Mechanistic Investigation of Timber Crosstie Spike Failures
Preliminary Findings from the Laboratory and Field

Matheus Trizotto
Marcus Dersch
Tom Roadcap
J. Riley Edwards
Arthur Lima

16 October 2019
Tucson, AZ
Acknowledgements

► Project Sponsor

Federal Railroad Administration

► Industry Partnership

NORFOLK SOUTHERN

CN

UNION PACIFIC

BUILDING AMERICA

CSX

BNSF RAILWAY

LEWIS BOLT & NUT COMPANY

vossloh North America

Progress Rail A Caterpillar Company

PANDROL
Presentation Outline

► Project Overview
► Phase I Review
► Phase II
 • Laboratory Experimentations
 - Single Spike Testing
 - Single Fastener Plan
 • Field Experimentation
 - Instrumentation
 - Hypotheses
 • Field Data Examples and Comparisons
 - Vertical Forces
 - Lateral Forces
 - Longitudinal Forces
 - Longitudinal Displacements
► Future Work
Project Overview

► PHASE I: How large is the problem?
 • Industry Survey
 • Interviews and Site Visits
 • Document scope of the problem
 • Hypotheses about spike breakage

► PHASE II: What is causing spike failures?
 • Execute laboratory experimentation plan developed in PHASE I
 • Attempt to replicate failures in the laboratory
 • Develop and perform parametric analyses with FE models of fastening systems
 • Validate models with laboratory work

► PHASE III: How do we prevent the failures?
 • Perform additional lab tests/FEA as needed
 • Investigate design improvements
 • Recommend improvements
Phase I Review

- Spikes have been failing due to fatigue
 - Primarily on *premium fastening system*
 - Often *new ties*
 - Mainly on *curves*
 - Also in *special trackwork*
- Most likely a mechanism problem
- Leads to rapid gauge deterioration and have caused at least 11 derailments since 2000

Potential Factors
- *Lack of anchor increases* longitudinal loads

\[
F_{\text{Spikes}} = F_{\text{Rail}} - F_{\text{friction}} - F_{\text{Anchor}}
\]
Phase I Review

► Spikes have been failing due to fatigue
 • Primarily on *premium fastening system*
 • Often *new ties*
 • Mainly on *curves*
 • Also in *special trackwork*

► Most likely a mechanism problem

► Leads to rapid gauge deterioration and have caused at least 11 derailments since 2000

Potential Factors

► *Lack of anchor increases* longitudinal loads
Phase I Review

► Spikes have been failing due to fatigue
 • Primarily on *premium fastening system*
 • Often *new ties*
 • Mainly on *curves*
 • Also in *special trackwork*

► Most likely a mechanism problem

► Leads to rapid gauge deterioration and have caused at least 11 derailments since 2000

Potential Factors

► *Lack of anchor increases* longitudinal loads
 • *Plate uplift* further increases loads
 • Wood is weaker on that direction

► Stiffer fasteners reduces distribution of loads

► Crosstie age

\[F_{\text{Spikes}} = F_{\text{Rail}} \]
Stress in Spikes – Hypothetical Graph

- **Total Stress into Spikes**
- **Threshold Stress for Spike Failure**

Traditional Systems
- Anchor Tangent Flat
- Anchor Curve Grade
- Anchor Curve Grade (extreme case)

Premium Systems
- No Anchor Curve Grade
- Anchor Curve Grade

Types of Stress
- Longitudinal
- Lateral

Stress into Spikes
- Premium Systems
- Traditional Systems

(RailTEC at Illinois | 8)
Phase II | Laboratory Experimentation

Understanding Fastener Mechanics

► Three stages of component testing under longitudinal loads

Single Spike Single Fastener Track Assembly
Single Spike Experimentation

Two Types of Experimentation
► Fatigue testing of cut spikes
► Static and cyclic longitudinal loading of cut spikes

Findings
► Fatigue failures recreated in the laboratory
► AREMA (Ch. 5) yield stress can be reached with less than 2,000 lb. longitudinal force
► Maximum stress along spike occurs at ~1.5” as would be expected based on field observations (*Shown in following slide*)
 • Provided data for FEM calibration
Cyclic Testing – Shakedown

Timber block with splits

- It appears the “splitting” allows for increased spike rotation and decreased bending
Cyclic Testing – Shakedown

Timber block with no split

► No “splitting” leads to increased spike bending and decreased rotation
Cyclic Testing – Shakedown

Varying Load Magnitude

► Load: Longitudinal only
 • ~2.40 M cycles between 200 and 1,500 lb.
 • ~3.60 M cycles between 200 and 1,900 lb.
 • ~0.25 M cycles between 200 and 2,300 lb.

► Failure information:
 • Approximate depth to failure: 1.56” from top of crosstie
 • Approximate cycle count 6.25 M
Cyclic Testing – Shakedown

Constant load magnitude

► Load:
 • 200 to 2,300 lb.

► Failure information:
 • Approximate depth to failure: 1.63” from top of crosstie
 • Approximate cycle count 0.74 M
Longitudinally Loaded Spike Stress Profile

Stress Along Spikes at 2000 lb

-1
0
1
1.5" - Typical Spike Breakage

Distance From Top of Tie (in.)

Stress (ksi)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Specimen X
Specimen Y

AREMA (Ch. 5) Standard for Spike Yield

Bottom of spike head Load Application Zone

Top of crosstie (ToFC)

Tested Yield Strength of Samples
Single Fastener Experimentation

Testing procedure
► Single fastener loaded with static and cyclic longitudinal loads
► Instrumentation will provide insight on load distribution to spikes and the effect of key variables

Current variables to consider
► Fastener
 • Traditional
 • Typical e-clip
 • Reduced toe-load e-clip
► Plate uplift vs. No uplift
► Anchor vs. No anchor
Field Experimentation Overview

Horseshoe Curve

- 3-track curve in Norfolk Southern’s Pittsburgh line
- Westbound track has primarily **uphill empty** trains (45.6 MGT)
 - Tractive effort is distributed throughout the locomotives
- Eastbound track has primarily **downhill loaded** trains (50 MGT)
 - (Air)break forces are distributed throughout the entire train

Key feature: Tracks have the *same curvature, grade and climate*, allowing the comparison of the effects of the following on loading demand and fastener response

- Anchor
- Temperature
- Load
- Speed
- Direction of traffic
- Braking vs. traction forces
- High vs. low rail
Field Experimentation

High Level Outcomes

Data acquisition through field experimentation allows for

► **Quantification of Loading Environment**
 • Improve our understanding of the load demands placed on the fastening systems as a result of passing trains

► **Evaluation of Fastening System Response**
 • Improve our understanding of the characteristic stiffnesses, deformations, and displacements as demands/conditions (loading, weather, etc.)

► **Development of Analytical Model**
 • Validate a three dimensional (3D) finite element (FE) model
 • Compare data with laboratory results
Quantification of Loading Environment

- Vertical, lateral and longitudinal loads collected with industry standard load circuits installed in the center of the crib on both high and low rails
Evaluation of Fastener Response

- Rail and plate displacements measured with specially designed DMDs (Displacement Measurement Devices)
 - Rail displacements relative to plate
 - Plate displacements relative to the tie

Plate movement was recreated in computer animation
Field Site Overview

Track 1
(50 MGT)

Few Broken Spikes

Downhill

Track 2

Track 3
(45.6 MGT)

Many Broken Spikes

Uphill

Grade: 1.76%
Curvature: 9.2°
Lubricated Airbrake grade

Instrumentation Area

Data Collection Box

Wheel Counter

Thermocouple
Two ties and one crib instrumented in each track.
Data Acquisition and Collection

On-site computer
► Always reading data from the instrumentation
► Keeps most recent data on memory
► Records data:
 • When a wheel is detected
 • 6 seconds prior to wheel detection
Field Instrumentation

<table>
<thead>
<tr>
<th></th>
<th>Our hypotheses</th>
<th>What we see</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Loads</td>
<td>![Track 1] ➔ ![Track 3]</td>
<td>?</td>
</tr>
<tr>
<td>Lateral Loads</td>
<td>![Track 1] ➔ ![Track 3]</td>
<td>?</td>
</tr>
<tr>
<td>Longitudinal Rail Loads</td>
<td>![Track 1] ➔ ![Track 3]</td>
<td>?</td>
</tr>
<tr>
<td>Longitudinal Plate Displacements</td>
<td>![Track 1] ➔ ![Track 3]</td>
<td>?</td>
</tr>
</tbody>
</table>

Grade: 1.76%
Curvature: 9.2°
Lubricated (TOR and GF)
Airbrake grade
Vertical and Lateral Forces Example

Lead Locomotives

- Vertical and lateral load traces are clean and reasonable.
Vertical and Lateral Forces Example

Helper Locomotives

- Evidence of high lateral forces on helper locomotives
Vertical Forces and Plate Disp. Example

For this train

- Vertical displacements follow expected trends
- Clear uplift in Plate 2 but less often in Plate 1
Track Loading Comparison

Vertical Axle Loads

- **Track 1**
 - N = 30 Trains
 - (7877 Axles)

- **Track 3**
 - N = 17 Trains
 - (5472 Axles)
Track Loading Comparison

Lateral Axle Loads

Track 1
N = 30 Trains
(7877 Axles)

Track 3
N = 17 Trains
(5472 Axles)
Longitudinal Forces Example

For this train

► Rail axial tension build up can be seen before train appears
Longitudinal Forces Example

For this train:
- Rail axial tension build up can be seen before train appears
- Evidence of longitudinal loads on the rail with plate uplift
Track Loading Comparison

Longitudinal Rail Loads Before Train

Longitudinal Rail Load (kips)

Compression

Tension

<table>
<thead>
<tr>
<th>Track 1</th>
<th>Track 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rail</td>
<td>N = 6 Trains</td>
</tr>
<tr>
<td>Low Rail</td>
<td>N = 6 Trains</td>
</tr>
</tbody>
</table>

① ③
Track Loading Comparison

Longitudinal Plate Displacement Relative to the Tie

Track 1
N = 30 Locomotives
(180 Axles)

Track 3
N = 17 Locomotives
(102 Axles)
Field Instrumentation Initial Findings

Our hypotheses vs What we see

<table>
<thead>
<tr>
<th>Field</th>
<th>Our hypotheses</th>
<th>What we see</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Loads</td>
<td> ➔ </td>
<td> ➔ </td>
</tr>
<tr>
<td>Lateral Loads</td>
<td> ➔ </td>
<td> ➔ </td>
</tr>
<tr>
<td>Longitudinal Rail Loads</td>
<td> ➔ </td>
<td> ➔ </td>
</tr>
<tr>
<td>Longitudinal Plate Displacements</td>
<td> ➔ </td>
<td> ➔ </td>
</tr>
</tbody>
</table>

- **Grade:** 1.76%
- **Curvature:** 9.2°
- **Lubricated (TOR and GF)**
- **Airbrake grade**
Field Data Analysis – Future Work

► Model (Kerr) and quantify loads being transferred to the fasteners

► Further investigate plate displacement behavior

► Investigate/quantify difference in longitudinal stiffness for fasteners with and without anchors – Track 3 vs Track 1

► Quantify the effect of speed, weight, direction, length, etc. in longitudinal / lateral loading
Phase I Single Spike FEM Summary

- Longitudinal load is more detrimental than an equivalent lateral load
 - This is due to the timber being less resistant on that direction
 - This finding supports the theory that spike failures in premium fastening systems are primarily related to longitudinal loads

- Stress can exceed the fatigue limit of spike steel at regular service loads

- Max. stress depth varies with the magnitude and direction of applied load

- Species of timber significantly effects the depth/load of failure
Final Calibrated Single Spike Results

- A longitudinal load of 2,000 lb. or a lateral load of 2,750 lb. can lead to the fatigue strength of the spike being exceeded.
Current Focus:
• Spike hole tolerances do not ensure all spikes are engaged and
• Given there are multiple spike arrangements for a given fastener

Investigate effect of the following on spike stress state:
• Spike engagement
• Spike arrangement
• Loading direction/magnitude
FEM Update | Model Overview

► From previous validated model
 • Interactions: spike – crosstie
 • Materials: spike and timber
 • Mesh: spike and timber (near plate/spikes)

► Loads applied in-line with field data (longitudinal only shown below)
 • Simplified as a traction distributed over the rail seat
 • No e-clips modeled for simplification
FEM Update | Preliminary Results

- Effect of spike engagement
 - Loading (P): 7,000 lb. longitudinal

 ![Diagram](image1)

 ![Diagram](image2)

 - Spike stress is effected by spike engagement
 - There is a ~100% increase in maximum spike stress from plate on left (~20 ksi) to plate on right (~40 ksi)

 Fatigue Limit is ~33ksi
FEM Update | Preliminary Results

▸ Effect of spike engagement
 • Loading (P): 7,000 lb. longitudinal

▸ Spike stress is effected by spike engagement
 • There is a ~100% increase in maximum spike stress from plate on left (~20 ksi) to plate on right (~40 ksi)

*Fatigue Limit is ~33ksi
Effect of spike arrangement

- Loading (P): 7,000 lb. longitudinal

Spike stress is effected by arrangement

- There is a ~30% increase in maximum spike stress from plate on left (~20 ksi) to plate on right (~26 ksi)

*Fatigue Limit is ~33ksi
Effect of spike arrangement

- Loading (P): 7,000 lb. longitudinal

Spike stress is effected by arrangement

- There is a ~30% increase in maximum spike stress from plate on left (~20 ksi) to plate on right (~26 ksi)

*Fatigue Limit is ~33ksi
Current tolerances do not ensure all spikes are engaged at one time.

There can be different spiking patterns for a given premium fastening systems.

The effect of spike engagement can significantly affect spike stress:
- In the example provided, by up to 100%.
- This led to a stress that exceeded the fatigue limit.

The effect of spike arrangement can affect spike stress:
- In the example provided, by up to 30%.

Therefore, additional work will investigate if there might be any reasonable recommendations that can be made to reduce risk of increasing spike stress.
Acknowledgements

► Project Sponsor

U.S. Department of Transportation
Federal Railroad Administration

► Industry Partnership

NORFOLK SOUTHERN

CN

UNION PACIFIC

BUILDING AMERICA

CSX

BNSF

LEWIS

PANDROL

Progress Rail

A Caterpillar Company

vossloh

North America
Thank you for your attention!

Marcus Dersch
Principal Research Engineer
mdersch2@illinois.edu

Matheus Trizotto
Graduate Research Assistant
trizott2@illinois.edu

University of Illinois at Urbana-Champaign (UIUC)
Rail Transportation and Engineering Center (RailTEC)

This project is supported by the National University Rail Center (NURail), a US DOT-OST Tier 1 University Transportation Center