Use of Laser Triangulation and Deep Neural Networks (DNNs) for Railway Track Safety Inspections

Project Introduction and Update

Ryan M. Harrington
Arthur de O. Lima
J. Riley Edwards
Marcus S. Dersch

Industry Partners Meeting
16 October 2019
Tucson, AZ
Outline

► Background and approach
 • Project overview
 • Current inspection characteristics
 • Potential inspection improvements

► Technology and methodology
 • Railmetrics prior experience
 • Deep neural networks
 • Data collection methods

► Progress to date
 • Features of interest
 • Areas inspected
 • Current results
 • Challenges

► Path forward
Project Overview

► **Mission** – Evaluate the potential for use of Laser Triangulation and Deep Neural Network (DNN) technologies to provide value-added inspection data to existing geometry car inspection systems

► **Objectives:**
 - Improve railway network safety through improved reliability and robustness of track inspections
 - Provide value-added inspection data to existing geometry car inspection systems in operating conditions that include both:
 - Locations without a priori knowledge (e.g., the first inspection of a given route)
 - A posteriori scenarios (e.g., a repeat inspection of a route)

► **Timeline:** May 2019 → August 2020
Project Approach

► Use Railmetrics sensors to **collect data on the High Tonnage Loop (HTL)** at the Transportation Technology Center (TTC).
 - Tonnage accumulated by Facility for Accelerated Service Testing (FAST) train operations.

► Scans will be analyzed by RailTEC @ Illinois researchers in order to identify locations with defects and/or degradation in order to **build a condition database**.

► This database will be used by Railmetrics to subsequently **train a DeepCNet-based neural network** in the automated identification of features of interest.

► **Evaluate performance of the DNN** through the analysis of a separate set of test data and comparison of the DNN’s outputs to experts.
 - Goal of at least 75% agreement between the DNN and expert raters
Current Methods and Proposed Technology

► Current visual inspections (FRA Class 6+)
 • Costly
 • Time consuming
 • Risk associated with personnel on track
 • Impact track capacity

► Alternative technologies
 • Machine learning (in use in industry)
 - Process large amounts of data
 - Reliant on human recommendations
 - Limited to problems designer can solve
 • Deep Neural Network (DNN)
 - Subset of machine learning
 - Develop own analysis method
 - No retraining
Railmetrics Data Collection

Successive Scans are Compiled to Form a Continuous Image

Road/Runway/Tunnel/Rail Surface

Content Developed in Part by Railmetrics
Successive Scans are Compiled to Form a Continuous Image
Successive Scans are Compiled to Form a Continuous Image

Content Developed in Part by Railmetrics
Railmetrics Data Collection

Content Developed in Part by Railmetrics
Scanning Technology

► Two types of scans combined for analysis
 • Unique to Railmetrics

► Intensity Scan
 • Measure intensity of laser light reflected off surface
 • Produce black and white image

► 3D Scan (“Range”)
 • Measure elevation
 • Produce 3D profile
3D Scan ("Range")

Content Developed in Part by Railmetrics
Combined Result

Content Developed in Part by Railmetrics
Benefits of Two Scans

This is an “Intensity Image” Can you tell which ties/sleepers are bad just by looking at them?

Content Developed in Part by Railmetrics
Benefits of Two Scans

This is a “Range Image”; we can now detect a bad tie that appeared to be cracked, but isn’t.

This tie appeared to be cracked, but isn’t.

This is a “Range Image”; we can now detect a bad tie that appeared to be OK based on the Intensity Image alone.

Content Developed in Part by Railmetrics
High-Rail and Trailer

► Optical wheel encoder
 • Back of trailer
 • Rolls on wheel
 • Trigger image capture

► Data capture
 • RailTEC and/or Railmetrics personnel on site at TTC
 • Images relayed from trailer to computer in high-rail vehicle
 • Uploaded to Railmetrics database for further processing and transfer to RailTEC
Project Breakdown Overview

► Phase 1:
 • Task 1 – Project initiation
 • Task 2 – Definition of safety parameters for analysis
 • Task 3 – Sensor installation and field data collection
 - Ground truth inspection
 - High rail inspection

► Phase 2:
 • Task 4 – Development of features-of-interest database
 • Task 5 – DNN training

► Phase 3:
 • Task 6 – DNN testing and evaluation
 • Task 7 – Final reporting and results dissemination
Ground Truth Walking Inspections

► Record of features of interest
 • Spreadsheet list of features prepared prior to arrival
 • Use tablet to categorize ties by type, section and number
 - Concrete, timber, composite, etc.
 • Subcategories for features
 - Missing spike, center crack, broken clip, etc.

<table>
<thead>
<tr>
<th>Tie #s</th>
<th>Cent. Crack</th>
<th>Long. Crack</th>
<th>RSD</th>
<th>Broken Shoulder</th>
<th>Insulator Defect</th>
<th>Missing Dowel</th>
<th>Broken Dowel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Progress to Date

➤ Ground Truth Inspections
 • Documented fifteen different features of interest
 - Multiple of same defect documented once per tie
 • Approximately 7,500 ties inspected

➤ Data Collection via High-Rail
 • 5 weeks of data collection
 • Average 3 runs per week

➤ Challenges
 • Inconsistent judgement
 - Raised spike
 • Major issues repaired before detection
 - Broken tie plates
 - Clusters
 • Intentional variance interferes
 - Different manufacturers for similar tie plates
Ground Truth Summary

Approximate number of ties inspected: 7,500
Path Forward

► Weekly data capture on HTL
 • During Fall 2019 FAST operations
 • Walking inspections as needed

► Initial processing of data for automatic identification of features (Railmetrics)

► Tag new “features of interest” (RailTEC)

► Train DNN (Railmetrics)

► Evaluate DNN performance (Railmetrics)
Acknowledgements

► Research Sponsor:

[Image of U.S. Department of Transportation Federal Railroad Administration logo]

► Subcontractor:

[Image of Railmetrics logo]

► Industry Partners:

[Image of BNSF and CN Railway logos]

► Field Testing Support:

[Image of ICCI logo]
Project Team Contact Information

J. Riley Edwards, Ph.D., P.E.
Research Sci. and Sr. Lecturer
jedward2@Illinois.edu

Marcus S. Dersch, P.E.
Principal Research Engineer
mdersch2@Illinois.edu

Arthur de O. Lima
Research Engineer
aolima@Illinois.edu

Ryan M. Harrington
Graduate Research Assistant
rhrrngt2@Illinois.edu

John Laurent
CTO and VP Sales & Marketing
jlaurent@pavemetrics.com

Richard Fox-Ivey
Principal Consultant
rfoxivey@pavemetrics.com

Mario Talbot
Scientist
mtalbot@pavemetrics.com

Railmetrics
Thank you for your attention!

J. Riley Edwards
Research Sci. and Sr. Lecturer
jedward2@Illinois.edu

Ryan M. Harrington
Graduate Research Assistant
rhrrngt2@Illinois.edu

University of Illinois at Urbana-Champaign (UIUC)
Rail Transportation and Engineering Center (RailTEC)

This project is supported by the National University Rail Center (NURail),
a US DOT-OST Tier 1 University Transportation Center