FTA Concrete Crosstie Project – Final Update

Prototype Installation at St. Louis Metrolink and CTA Instrumentation

Arthur de Oliveira Lima, J. Riley Edwards, and Marcus S. Dersch

2019 Industry Partners Meeting
16 October 2019 | Tucson, AZ

U.S. Department of Transportation
Federal Transit Administration

RAILTEC
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Acknowledgements

► Research Sponsor
U.S. Department of Transportation
Federal Transit Administration

► Education Program Sponsor
NURail Center

► Industry Partners
Union Pacific
Building America™
AMTRAK®
Metra®
APTA
American Public Transportation Association
MTA New York City Transit
TriMet
Hanson
LB Foster
Gutmann Technologies
Progress Rail
Pandrol
cta
FTA-Funded Resilient Concrete Crossties and Fastening System Research Program

Objectives
► Develop resilient concrete crosstie design solutions for light, heavy, and commuter rail transit operators

Methodology
► Quantify concrete crosstie and fastening system demands when subjected to rail transit loading environments

Key Parameters to Quantify
► Loading Environment (lateral and vertical wheel/rail loads)
► Crosstie Bending Moments (rail seat and center)
► Rail Displacements (vertical and lateral)
FTA Project Transit Partner Agencies

(Two Sites; Curve & Tangent)
Field Experimentation Takeaways

► Loading environment is significantly different at each transit mode
 • Design of any infrastructure component should consider this

► Wheel loads exceeded an impact factor (IF) of 3 rarely (<0.05%)
 • AREMA recommends designing concrete crossties with an IF of 3

► The reserve flexural capacity factors of safety ranged from 2 – 6

► This provides an opportunity to optimize not just the crosstie design but track structure
 • “Savings” from reductions in concrete, steel, & handling could be reallocated into resilient materials (under tie pads, ballast mats, etc.)

► Resilient materials could:
 • Reduce maintenance costs (e.g. increase time between tamping, etc.)
 • Reduce urban pollution (i.e. ground borne noise and vibration, etc.)
Final Prototype Design

Original

Prototype
Prototype Casting at CXT: 16 – 18 Oct.

► 22 crossties cast at CXT, Spokane | 8 crossties had internal instrumentation
Sacramento Regional Transit (SacRT) 8-wire tie design experience

- SacRT’s experience with 8-wire tie design brought up as caution during last year’s meeting
- RailTEC team contacted and visited SacRT to learn about their experience and performance of these ties
 - In 2001 during construction for the Phase I South Line project, center crack issues were observed in the 8-wire ties being used
Sacramento Regional Transit (SacRT) 8-wire tie design experience

- Issues caused by severe center-binding conditions of the ties due to contractor practices in the surface leveling of the subballast layer prior to dumping of ballast by high-rail dump trucks
- Around 320 ties were removed from track due to cracking and approximately six (6) were left in track for monitoring.
- After 18 years in service, no additional deterioration has been observed

▶ SacRT currently uses a 12-wire tie design based on supplier recommendation
Prototype Installation at Metrolink
Prototype Installation at Metrolink
Prototype Results – Railseat

- Design Railseat Positive Capacity: **189 kip-in**
- Similar performance between Original and Prototype designs
Prototype Results – Center

- Design Center Negative Capacity: -56 kip-in
- Similar performance between Original and Prototype designs
Prototype Results - Conclusions

► SacRT’s experience and RailTEC site visit
 • Ties have performed well to date
 • Care and understanding on the part of the construction contractor is needed to prevent extreme demand conditions during construction

► Prototype Crossties
 • Perform similar to original design
 • Bending demand well below the design capacities at C and RS
 • Demonstrates that further optimization can be used
 • No issues have been reported with the prototypes to date

► CTA Wheel-Rail loading
 • Successful instrumentation installation
 • Have been able to identify repeat offenders
 • Possible follow-on research
Additional Work – CTA Instrumentation

► Project extension from FTA allowed collection of additional wheel-rail loads at another heavy-rail property

► Objectives
 • Obtain additional data on heavy-rail loading environment and provide relevant information to CTA personnel

► Approach
 • Instrument southbound Red Line with continuous and automated monitoring of revenue service wheel-rail interface loads.

► Project Timeline
 • December 8th, 2018 – Installation of instruments at CTA
 • July 13th, 2019 – Last train data recorded

► Summary of Recorded Data
 • 30,558 trains → 977,856 axles → 1,955,712 wheels
Field Installation
Vertical Loads

Total trains = 30,558
From 12/10/2018 to 07/13/2019
Maximum = 44.8 kips
Minimum = 2.1 kips
Average = 9.2 kips
Vertical Loads - Maximum Recorded

<table>
<thead>
<tr>
<th>Near Rail</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Speed</td>
<td>Axle #</td>
<td>Peak Load</td>
</tr>
<tr>
<td>13-Feb-2019 17:09:43</td>
<td>22.9</td>
<td>28</td>
<td>44.8</td>
</tr>
<tr>
<td>22-Apr-2019 14:42:49</td>
<td>20.5</td>
<td>18</td>
<td>43.3</td>
</tr>
<tr>
<td>09-Feb-2019 13:24:41</td>
<td>21.3</td>
<td>4</td>
<td>38.3</td>
</tr>
<tr>
<td>11-Apr-2019 01:42:06</td>
<td>24.3</td>
<td>28</td>
<td>37.1</td>
</tr>
<tr>
<td>03-Feb-2019 00:41:18</td>
<td>22.5</td>
<td>12</td>
<td>36.6</td>
</tr>
<tr>
<td>15-Feb-2019 14:43:21</td>
<td>22.9</td>
<td>28</td>
<td>34.4</td>
</tr>
<tr>
<td>18-Feb-2019 16:40:14</td>
<td>23.4</td>
<td>28</td>
<td>34.2</td>
</tr>
<tr>
<td>04-Jun-2019 05:34:00</td>
<td>22.5</td>
<td>20</td>
<td>33.6</td>
</tr>
<tr>
<td>10-Mar-2019 07:21:40</td>
<td>21.3</td>
<td>4</td>
<td>32.1</td>
</tr>
<tr>
<td>12-Mar-2019 22:26:23</td>
<td>22.1</td>
<td>4</td>
<td>31.6</td>
</tr>
<tr>
<td>18-Jun-2019 07:47:18</td>
<td>23.4</td>
<td>14</td>
<td>31.2</td>
</tr>
<tr>
<td>30-Mar-2019 15:13:08</td>
<td>22.9</td>
<td>28</td>
<td>30.9</td>
</tr>
<tr>
<td>11-May-2019 11:50:59</td>
<td>23.4</td>
<td>20</td>
<td>30.7</td>
</tr>
<tr>
<td>05-Jun-2019 19:34:29</td>
<td>21.3</td>
<td>19</td>
<td>30.5</td>
</tr>
<tr>
<td>22-Jan-2019 06:28:31</td>
<td>24.3</td>
<td>12</td>
<td>30.2</td>
</tr>
<tr>
<td>14-Jan-2019 17:49:23</td>
<td>20.5</td>
<td>12</td>
<td>29.8</td>
</tr>
<tr>
<td>29-Mar-2019 16:00:35</td>
<td>20.9</td>
<td>6</td>
<td>29.7</td>
</tr>
<tr>
<td>18-Feb-2019 10:36:20</td>
<td>22.1</td>
<td>3</td>
<td>29.4</td>
</tr>
<tr>
<td>06-Mar-2019 17:38:45</td>
<td>22.5</td>
<td>28</td>
<td>29.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Far Rail</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Speed</td>
<td>Axle #</td>
<td>Peak Load</td>
</tr>
<tr>
<td>11-Feb-2019 10:59:37</td>
<td>24.3</td>
<td>3</td>
<td>34.8</td>
</tr>
<tr>
<td>18-Apr-2019 11:05:57</td>
<td>22.1</td>
<td>1</td>
<td>34.6</td>
</tr>
<tr>
<td>28-Feb-2019 13:58:38</td>
<td>21.6</td>
<td>27</td>
<td>32.5</td>
</tr>
<tr>
<td>11-Feb-2019 18:22:27</td>
<td>22.9</td>
<td>29</td>
<td>32.3</td>
</tr>
<tr>
<td>18-Apr-2019 11:57:53</td>
<td>24.5</td>
<td>3</td>
<td>32.0</td>
</tr>
<tr>
<td>05-Apr-2019 12:21:08</td>
<td>23.4</td>
<td>6</td>
<td>30.9</td>
</tr>
<tr>
<td>11-Dec-2018 15:59:19</td>
<td>23.4</td>
<td>30</td>
<td>30.6</td>
</tr>
<tr>
<td>01-Feb-2019 16:52:19</td>
<td>22.9</td>
<td>3</td>
<td>30.4</td>
</tr>
<tr>
<td>18-Apr-2019 13:32:04</td>
<td>22.5</td>
<td>2</td>
<td>30.0</td>
</tr>
<tr>
<td>12-Feb-2019 09:46:13</td>
<td>23.4</td>
<td>3</td>
<td>28.8</td>
</tr>
<tr>
<td>10-Dec-2018 08:35:07</td>
<td>22.5</td>
<td>30</td>
<td>28.2</td>
</tr>
<tr>
<td>11-Feb-2019 15:56:12</td>
<td>21.3</td>
<td>5</td>
<td>28.1</td>
</tr>
<tr>
<td>11-Feb-2019 07:40:05</td>
<td>22.5</td>
<td>29</td>
<td>27.8</td>
</tr>
<tr>
<td>18-Feb-2019 08:02:17</td>
<td>21.6</td>
<td>30</td>
<td>27.8</td>
</tr>
<tr>
<td>01-Mar-2019 06:36:47</td>
<td>22.5</td>
<td>30</td>
<td>27.4</td>
</tr>
<tr>
<td>07-May-2019 16:19:48</td>
<td>23.4</td>
<td>27</td>
<td>27.4</td>
</tr>
<tr>
<td>23-Feb-2019 02:57:11</td>
<td>21.6</td>
<td>5</td>
<td>27.3</td>
</tr>
<tr>
<td>03-Mar-2019 18:41:53</td>
<td>22.9</td>
<td>5</td>
<td>27.2</td>
</tr>
<tr>
<td>14-Feb-2019 09:43:30</td>
<td>24.3</td>
<td>31</td>
<td>27.2</td>
</tr>
<tr>
<td>28-Feb-2019 19:50:51</td>
<td>22.5</td>
<td>30</td>
<td>26.7</td>
</tr>
</tbody>
</table>
Vertical Loads – Mode Comparison

<table>
<thead>
<tr>
<th>Mode</th>
<th>Mean</th>
<th>50%</th>
<th>95%</th>
<th>99.5%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metrolink</td>
<td>8.1</td>
<td>8.1</td>
<td>9.9</td>
<td>11.2</td>
<td>18.6</td>
</tr>
<tr>
<td>NYCTA</td>
<td>14.0</td>
<td>13.8</td>
<td>17.5</td>
<td>24.0</td>
<td>59.3</td>
</tr>
<tr>
<td>CTA</td>
<td>9.2</td>
<td>9.1</td>
<td>11.2</td>
<td>18.0</td>
<td>44.8</td>
</tr>
<tr>
<td>MARC (Nominal)</td>
<td>18.1</td>
<td>16.7</td>
<td>30.7</td>
<td>38.0</td>
<td>41.1</td>
</tr>
<tr>
<td>MARC (Peak)</td>
<td>22.7</td>
<td>20.1</td>
<td>37.8</td>
<td>46.7</td>
<td>64.6</td>
</tr>
</tbody>
</table>

- When comparing heavy rail properties, demands on CTA are lower than those measured at NYCTA
 - Note: NYCTA site was in a curve

- Similar average loads observed between CTA (heavy rail) and Metrolink (light rail), but much larger extreme values recorded at CTA
Acknowledgements

► Research Sponsor

U.S. Department of Transportation
Federal Transit Administration

► Education Program Sponsor

NURail Center

► Industry Partners

Union Pacific
Building America™
AMTRAK®
Metra®
APTA
American Public Transportation Association
New York City Transit
TRIMET
Hanson
LB Foster
Gutmann Technologies
Progress Rail
Pandrol
CTA
Thank you for your attention!

Arthur de Oliveira Lima
Research Engineer
aolima@Illinois.edu

University of Illinois at Urbana-Champaign (UIUC)
Rail Transportation and Engineering Center (RailTEC)

This project is funded by the Department of Transportation’s Federal Transit Administration and supported by the National University Rail Center (NURail), a US DOT-OST Tier 1 University Transportation Center.