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Abstract 
Improper track geometry can lead to derailments with severe consequences, thus avoiding such 
geometric deviations is a priority in ensuring safe railway operation.  In the North American railway 
network, derailments have been caused by gauge widening due to deteriorated concrete sleepers and 
fastening systems, despite the fact that concrete sleepers generally hold gauge better than timber 
sleepers.  Similarly, a review of literature shows that sleeper cracking from center binding is among the 
most critical concrete sleeper and fastening system problems internationally.  As ballast support 
conditions are critical to sleeper performance, there is a need to fully understand the behavior of these 
poorly supported sleepers.  To quantify the influence of support conditions on sleeper deflection and 
propose a methodology to predict gauge widening, laboratory experiments were performed at the 
University of Illinois at Urbana-Champaign.  Using a static structural loading frame, new and cracked 
concrete sleepers were subjected to different supporting conditions through the use of rubber pads.  
Simulated conditions included center bound sleepers, newly tamped track, and track under high impact 
loads.  Poor support can force sleepers to bend and crack when subjected to high loads, which 
potentially makes the track more prone to geometry deviations, including gauge widening.  This paper 
presents a correlation between ballast support conditions, structural health of concrete sleepers, and 
their effect on track gauge.  Using statistical tools, it is shown that there is no significant difference 
between experimental results of new and cracked sleepers.  In addition, the gauge widening effect due 
to pure concrete sleeper bending seemed to be minimal. 
 
1. Introduction 
In the United States, more than 25% of the railway accidents on Class I railroad mainlines are caused 
by defective infrastructure conditions, which frequently result in gauge widening in both timber and 
concrete sleeper track (Bastos 2015).  Gauge widening is typically caused by rail wear, rail roll, worn 
fastening systems, rail cant deficiency, broken sleepers, or bent sleepers, contributing to wheel-drop 
derailments, especially in the presence of worn wheels (Wu 2006).  This study focuses on quantifying 
the gauge widening effect due to concrete sleeper bending for different support conditions and sleeper 
center cracks. 
 
1.1 Experimentation Plan 
Laboratory experiments were performed at the Rail Transportation and Engineering Center’s (RailTEC) 
Research and Innovation Laboratory (RAIL) in Champaign, Illinois, USA, to quantify the influence of 
support conditions and light sleeper center cracking on gauge widening due to concrete sleeper 
bending.  Individual concrete sleepers were placed in a steel loading frame where both rail seats could 
be simultaneously loaded in the vertical direction.  The sleepers were supported by different 
arrangements of rubber pads, simulating uniform ballast layer, center binding, newly tamped track, and 
track with high impact wheel loads.  All of the pads were one inch (25.4 mm) thick, 12 inches (304.8 
mm) wide, and 12 inches (304.8 mm) long, with a hardness of 50 shore A durometer.  The authors were 
comfortable with the use of rubber pads as the sleeper vertical displacements measured at the 
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laboratory were in the range of 0.05 to 0.1 inches (12.7 to 25.4 mm) under 20 kip (89 kN) loading at 
both rail seats, numbers comparable to recorded displacements measured in the field (Manda 2014). 
To quantify the vertical displacement along the sleeper span, linear potentiometers (voltage differential 
transducers) were used.  Each sleeper was monitored with 15 potentiometers: one at the sleeper center 
and seven symmetrically located on each side.  Similarly, the support and loading conditions used in 
this experiment were always symmetric.  Having both sides of the sleeper instrumented increased the 
sample size to further account for the variability associated with different support and sleeper conditions. 
 
Both rail seats of a single sleeper were simultaneously loaded with equal vertical forces up to 20 kips 
(89 kN).  A wheel load of 40 kips (177.9 kN) provides an approximate representation of the 95th 
percentile nominal wheel load for loaded freight cars in the US, based on a representative sample of 
railcars in unrestricted interchange on a Class I railroad (Van Dyk 2014).  A single sleeper bears 
approximately 50 percent of the axle load applied directly above it assuming 24 inch (610 mm) sleeper 
spacing (American Railway Engineering and Maintenance-of-way Association 2014).  Therefore, 
loading up to 20 kips (89 kN) approximates the 95th percentile nominal rail seat load imparted by a 
loaded freight car in the US.  From the passenger service perspective, a wheel load of 40 kips (177.9 
kN) represents approximately the 90th percentile of peak loads of loaded commuter railcars in the US 
Northeast Corridor based on a recent study on three different commuter rail systems (Lin 2015).  
Therefore, holding the assumption that a single sleeper bears approximately 50 percent of the axle load 
applied over it, loading up to 20 kips (89 kN) roughly represents the 90th percentile of peak rail seat 
loads that are induced by a loaded commuter rail car.  For high-speed rail, however, there is limited 
available data on wheel loads in North America.  In such case, a 13.2 kip (58.7 kN) nominal wheel load 
can be assumed for loaded Japanese Shinkansen rolling stock (Yanase 2010).  Considering that a 
speed factor of three is recommended for high-speed track design (Wang 2015), then a design wheel 
load of 39.6 kips (176.1 kN) can be assumed, leading again to approximately 20 kips (89 kN) of rail seat 
load.  Thus, the loading conditions used to collect data for this paper are representative of certain types 
of freight, commuter, and high-speed rail services. 
 
Figure 1 illustrates the support conditions used for laboratory experimentation.  The “full support” 
condition is the baseline scenario where a uniform and homogenous layer of ballast is represented by 
pads under the entire sleeper.  Three variations of “center binding” were simulated in the experiments, 
with the most severe case having the shortest length of support pads under the sleeper center.  The 
arrangement for “lack of rail seat support” takes into consideration the fact that, under field conditions, 
the ballast below the rail seat typically degrades faster than other areas under the sleeper due to impact 
loads resulting from track or wheel irregularities.  Finally, the “lack of center support” configuration 
assumes that the ballast does not provide significant support at the sleeper center area, which could 
represent newly tamped track.  This condition is simulated by including pads only at the area reached 
by the tines of a tamping machine. 
 

 
Figure 1 Experimental support conditions for concrete sleepers 

 
All experiments were conducted five times with healthy concrete sleepers and five times with center-
cracked sleepers, and all sleepers were of the same design.  The cracks were generated in the 
laboratory by simultaneously loading both rail seats of a single sleeper with equal vertical forces up to 
20 kips (89 kN) while the sleeper was supported with a severe center binding condition (Figure 1).  
Typically, after cracking, each sleeper presented seven horizontal cracks that were approximately 
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symmetric about its midspan.  All cracked sleepers had cracks going deeper than the first level of 
prestress and the deepest cracks reached approximately 3 inches (76.2 mm) below the top surface.  In 
addition, the cracks closed up after unloading the sleepers due to the presence of prestressing material.  
Since each sleeper was instrumented with symmetrically-located potentiometers, ten data points were 
collected for each support condition per potentiometer location (except for the center one), with healthy 
and cracked sleepers.  For statistical purposes, one replicate will be associated with half of a sleeper 
in this paper.  Therefore, ten replicates were performed for each potentiometer location, support 
condition, and sleeper health condition. 
 
2. Results of Experimentation 
In order to correlate the resulting sleeper shape with a corresponding gauge widening effect when the 
loading and support conditions are symmetric about the sleeper midspan, Equation 1 was derived 
based on basic geometry concepts. 
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where, 

∆𝑔: Change of gauge due to sleeper bending. 
𝑙: Rail height at gauge measurement location. 

𝑟: Distance between the two potentiometers located by each rail. 

𝜑: Rail cant angle. 
𝑤: The width of rail head at gauge measurement location. 

𝜃: Induced rail rotation angle: 
 

𝜃 = 𝑠𝑖𝑛−1 (
∆𝑑 × cot⁡(𝜑) × sin⁡(𝜑)
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All gauge widening numbers presented in this study are based on the 136RE rail considering that track 
gauge is measured 5/8 inches (15.875 mm) below the top of the rail (Federal Railroad Administration 
2015).  Figure 2 shows the results for the different support conditions and demonstrates that the gauge 
widening effect due to concrete sleeper bending is small even for extreme center binding support 
conditions. 
 

 
Figure 2 Gauge widening due to concrete sleeper bending at rail seat load of 20 kips (89 kN) 

 

To guide the process of data analysis and account for experimental variability, a statistical model was 
developed using the concept of completely randomized design (CRD) with two factors, as shown in 
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Equation 3 (Ott 2008).  The same model was used for the three locations (rail seat, center, and 
intermediate) and the rail seat load was fixed at 20 kips (89 kN).  For easier reading, Equation 3 uses 
Latin letters that are associated with their meaning (as opposed to the exclusive use of Greek letters 
that is typical of classical statistics): 
 

 ∆𝑔𝑖𝑗𝑘 = 𝜇 + 𝑠𝑖 + 𝑐𝑗 + 𝑠𝑐𝑖𝑗 + 𝜀𝑖𝑗𝑘  (3) 

 
where, 

∆𝑔𝑖𝑗𝑘: kth observation of gauge widening with the ith support condition and the jth sleeper 

health state. 
𝜇: Grand population mean for gauge widening. 
𝑠𝑖: Fixed effect of the ith support condition on gauge widening. 

𝑐𝑗: Fixed effect of the jth sleeper health state on gauge widening. 

𝑠𝑐𝑖𝑗: Effect of interaction between the ith support condition and the jth sleeper health state on 

gauge widening. 
𝜀𝑖𝑗𝑘: Random error (residual) of the kth observation with the ith support condition and the jth 

sleeper health state. 
 

To analyze the experimental results with this model, the errors must be both normally and independently 
distributed with equal variance (Ott 2008).  As no correlation was expected to be found, the 
independence assumption was not formally verified.  However, the other assumptions were confirmed 
using the Shapiro-Wilk test for normality (Shapiro 1965) and the Brown and Forsythe's test for 
homogeneity of variance (Brown 1974).  In order to meet them, however, the gauge widening data had 
to be transformed (Ott 2008).  Due to the relationship between mean and variance in this particular 
dataset, the best transformation was found to be the square root of the negative natural logarithm of 
the data.  The homogeneity of variance and normality assumptions were met at significance levels of 
0.2685 and 0.1200, respectively. 
 
As previously discussed, ten replicates were obtained for each case.  With the measured mean square 
error (MSE), the confidence interval for the population mean was estimated using Equation 4, which is 
derived from the Central Limit Theorem (Ott 2008).  Using the MSE, the deviation of the sample means 
relative to the respective population means is no greater than 0.01 in (0.254 mm) for a confidence 
interval of 96%. 
 

𝑛 ≈
(𝑧𝛼 2⁄ )2𝜎̂2

𝐷2
 (4) 

 
where, 

𝑛: Number of observations (replicates). 

𝑧𝛼 2⁄ : z-value from standard normal distribution. 

𝛼: Significance level. 

𝜎̂2: Sample variance (MSE was used in this analysis). 
𝐷: Detectable deviation of sample mean relative to population mean. 
 

The effect of center cracks and different support conditions on gauge widening due to sleeper bending 
were stated to be either significant or not significant based on a two-way analysis of variance (ANOVA) 
(Fisher 1970).  Table 1 presents the ANOVA results for the gauge widening analysis, with the last 
column showing the p-value (“Pr > F” column) that is compared to the significance level.  The interaction 
effect is not significant, which allows for a better interpretation of the main effects (Ott 2008).  Not 
surprisingly, the support condition factor has a very significant effect on gauge widening due to sleeper 
bending.  On the contrary, the sleeper health condition does not have a significant effect on the resulting 
numbers, meaning that the particular cracking pattern created at the laboratory does not contribute to 
a significant difference in gauge widening in relation to the un-cracked condition. 
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Table 1 ANOVA results 

 
 

Figure 3 shows the displacement results of healthy concrete sleepers under the rail seat load of 20 kips 
(89 kips) relative to the center displacement.  As there is no statistically significant difference between 
un-cracked and cracked sleepers, the results of the latter are not presented.  The highest center 
displacement was 0.069 in (1.7526 mm) for lack of rail seat support and the lowest was 0.039 in (0.9906 
mm) for high center binding. 
 

 
Figure 3 Average relative displacements of healthy concrete sleepers at  

rail seat load of 20 kips (89 kN) 
 

3. Conclusions 
Laboratory experiments were performed to quantify the influence of support conditions and sleeper 
cracking on sleeper deflection and an equation was derived to estimate the gauge widening due to 
sleeper bending.  The primary findings from this research were: 
 

 Light center cracks have no significant effect on the flexural performance of concrete sleepers  
(p-value less than 0.0001); 

 Support conditions of concrete sleepers have a significant effect on the flexural performance of 
concrete sleepers (p-value of 0.25); 

 Concrete sleeper bending due to center binding support conditions is minimal (maximum gauge 
widening of 0.103 inches (2.6162 mm)) even when light center cracks are present. 

 
Additional research is necessary to determine the influence of more severely deteriorated conditions of 
concrete sleepers on its performance.  However, it is clear that the track support has a major role in 

Source DF
Sum of 

Squares

Mean 

Square
F Value Pr > F

Support 5 4.4952 0.8990 66.55 <0.0001

Cracking 1 0.0178 0.0178 1.32 0.2529

Interaction support-crack 5 0.0494 0.0099 0.73 0.6017

Error 108 1.4590 0.0135

Corrected Total 119 6.0214
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affecting sleeper behavior and maintaining proper support conditions and it should be of greater concern 
than light sleeper center cracking. 
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