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ABSTRACT

A multivariate statistical model was developed to improve the ability to predict the
occurrence of broken rails, (aka "service failures").  Broken rails are the leading cause
of major accidents on US railroads and service failures are a frequent cause of delays.
The model uses a combination of engineering and traffic data commonly recorded by
major railroads.  The Service Failure Prediction Model (SFPM) enables railroads to
identify the conditions that are predictive of the occurrence of broken rails.  This can
help them allocate inspection, detection and preventive resources more efficiently,
thereby enhancing safety, reducing risk and service interruptions, and potentially
extracting more use from their rail assets.



INTRODUCTION

Derailments caused by broken rails have been a safety concern of the railway industry
for over a century (1,2).  Improvements in rail manufacturing, inspection and rail defect
detection have greatly reduced the incidence of broken rails; however, they remain a
frequent cause of service interruptions and one of the leading causes of derailments.
Improving the ability to predict where broken rails are likely to occur has both economic
and safety benefits because it would enable more effective allocation of resources to
detect and prevent broken rails (3,4).  Previous models have not had the benefit of the
availability of large, readily accessible, databases containing extensive detail on many
key parameters likely to effect the occurrence of broken rails (5,6,7).

Definition of Severe Derailments

We were interested in identifying the derailment causes most likely to lead to a severe
accident.  Severe derailments were defined as those in which a large number of cars
derailed at speed.  Such accidents will, in general, have the greatest potential for harm
to persons, property, equipment and track.  Furthermore, analyses of Federal Railroad
Administration (FRA) accident data showed that accidents with these characteristics
were strongly correlated with release of hazardous materials if they were present in the
derailed portion of the train (8).  Consequently, for both safety and economic reasons,
prioritizing attention on these types of derailments was of interest.

Derailment Severity-Frequency Analysis

To determine the causes of accidents most likely to lead to severe derailments, we
conducted a simple risk analysis using FRA data (9) for 3,504 mainline derailments that
occurred during the five-year interval 1994 - 1998.  The FRA reporting system requires
identification of a primary cause (and other contributing causes if applicable).  Data on
accident causes are grouped hierarchically by FRA and we used data at the FRA
“subcause” level (the second-highest level of aggregation).  We calculated the average
number of cars derailed in accidents attributed to each subcause and plotted these
against the frequency of derailments caused by the same subcause (Figure 1).

Figure 1 is divided into four quadrants by vertical and horizontal lines that
represent the average value of the two variables with respect to the X and Y axes,
respectively.  The vertical line represents the average frequency of accidents for all
recorded causes combined, and the horizontal line is the average number of cars
derailed due to each cause.  Causes above or below these lines are, by definition,
above or below average for the respective axis.

The causes in the upper right quadrant are most interesting and pose the
greatest risk because they are both more frequent and more severe than average.  The
FRA cause code "Rail and joint bars" is clearly the highest consequence, high
frequency cause of accidents.  Further analysis of the FRA accidents attributed to this
cause reveals that most were due to broken rails.  Based on these results we undertook
a more detailed analysis of the factors contributing to the occurrence of broken rails (8).
Several recent hazardous materials accidents have underscored the importance of this
particular aspect of the risk from broken rails.



Broken Rails

Most broken rails do not result in derailments.  Instead the break is detected, usually by
the track circuit system or by track inspectors, and repaired (on several North American
railroads these detected broken rails are referred to as "service failures").  Broken rail
derailments appear to be correlated with the occurrence of service failures (8).
Therefore predicting the occurrence of service failures has a potential safety benefit
because it could enable railroads to allocate broken rail prevention measures, detection
technology or inspection efforts, more effectively (3,4,6).  Furthermore, understanding
the factors correlated with service failure occurrence could help identify contributing
causal factors, thereby enabling better preventive measures.  The objective of this
research was to develop a probabilistic model to predict the circumstances most likely to
lead to the occurrence of a service failure.

Model Form and Data Set

Ideally, the model we developed would enable the user to input values for the relevant
parameters at a specific location on the railroad and determine a measure of the
probability of a service failure there.  The output of the model is an index value between
0 and 1, with 0 indicating the lowest probability of service failure and 1 representing the
highest.  Since a probability is the desired output and there are only two possible
outcomes, service failure or no service failure, at each location, the model can be
constructed as a discrete choice model.

A discrete choice model, such as the logit model, fits an appropriate equation to
the data and uses this equation to score each location relative to a threshold value,
above which failure is predicted to occur.  The logit model then uses a logistic
distribution to consider the uncertainty and error in the estimated score and threshold
value, and determine the probability that the score is above the threshold value.  The
calculated probability is then used as an estimate of the service failure probability at that
particular location.

In order to fit a discrete choice logit model, two sets of data were required; one to
characterize locations where service failures occurred and a second set of data to
characterize locations where service failures had not occurred.  Development of these
data began with information the Burlington Northern and Santa Fe Railway had
developed containing detailed information on the date, location and type of 1,903
service failures that occurred over a two-year interval.  These data were supplemented
with engineering and operational data pertaining to each service failure location.  A new
dependent variable was created and assigned the value "1" for each of these records
signifying that a service failure had occurred there.

The second set of data was created with records for locations where no service
failure occurred during the same interval.  An approximately equal-sized set of data was
developed by selecting a random sample of locations from the railroad and assembling
identical information as had been developed for the service failure locations.  The
dependent variable for these records was assigned a value of "0".



Ultimately, we developed a test database comprising 3,676 records with
complete service failure and descriptive parameter information.  Based on a univariate
analysis of the service failure data and review of literature on the circumstances of rail
defect growth and broken rail occurrence (7,10,11), track structure and dynamic effects
(12,13,14), and the fracture mechanics of rail (5,15) the following parameters were
selected to be considered in the multivariate service failure model:

• Rail Age
• Rail Weight
• Degree of curve
• Speed
• Average Tons Per Car
• Average Dynamic Tons Per Car
• Percent Grade
• Annual Gross Tonnage
• Annual Wheel Passes
• Insulated Joints
• Mainline Turnouts

All of the parameters are continuous variables except the last two, insulated joints and
mainline turnouts, which are both discrete.  These were assigned a value of "1" if
present at a location, and "0" if not.

Model Development

The service failure probability model was developed using Statistical Analysis Software
(SAS) and the LOGISTIC procedure.  The LOGISTIC procedure fit a discrete choice
logit model to the test database.  Stepwise regression was used to determine the most
relevant parameters and combinations of parameters (two-factor interaction terms) for
inclusion in the model.  The stepwise regression procedure uses an iterative process to
select variables on the basis of their ability to explain the variance in the input data.  The
model conducts a "goodness-of-fit" test for each step and adds or subtracts variables or
combinations of variables, until the addition of another parameter does not significantly
improve the fit.  At this point the last version of the model is considered the "best" and
the resultant parameters, coefficients, and functional relationships comprise the final
model.

Retrospective and Prospective Models

Development of the service failure model was a two step process.  First the model was
fit to the test database described above.  Recall that this database comprised 3,676
locations, approximately half of which experienced a service failure during the two-year
period encompassed, and the other half were a random sample of locations that did not.
Because the model is making predictions about the past, we termed it the "retrospective
model".  This version of the model is used primarily to assess the accuracy of the
model's predictions with respect to the test database.

The second step of the process is development of a "prospective model".  It is
modified from the retrospective model by adjusting a constant term to reflect the actual



average service failure probability over whatever portion of a railroad system is of
interest.  Once this adjustment is made, the prospective model can be used to calculate
the annual probability of a service failure at particular locations, or along any portion of
track that is of interest.

Retrospective Service Failure Model.  The retrospective service failure probability
model was developed using the LOGISTIC procedure:

pSF2 = eU / (1+eU)

Where:
pSF2 = probability that a service failure occurred at a particular point during the study
interval
U = Z + Y
Z = -4.569, model specific constant, (discussed below)
Y =  0.059A + 0.025AC – 0.00008A 2C2 + 5.101T/S + 217.9W/S – 3861.6W 2/S2 +
0.897(2N-1) - 1.108P/S
A = rail age in years
C = degree of curvature (= 0 for tangent)
T = annual traffic in million gross tons (MGT)
S = rail weight in pounds
W = 4T/L = annual number of wheel passes (millions)
P = L(1 + V/100) = dynamic wheel load
N = 1 if at turnout, 0 if not at turnout
L = tons per car
V = track speed

The fitted model includes a model-specific constant or intercept term, Z, that is related
to the average service failure probability.  Recall that the retrospective model is fit to a
data set in which approximately half of the records were for locations that experienced
service failures.  The average service failure probability on an actual system would be
far lower, so this term would be adjusted to reflect this (see discussion of prospective
model below).

Interpretation of Model Terms.  The service failure probability model contains terms that
describe different effects and relationships between service failure probability,
infrastructure characteristics and traffic characteristics.

The first term in the model, 0.059A, reflects the effect of rail age.  As rail age
increases, service failure probability increases.  This result is consistent with extensive
industry experience.  Older rail is likely to have carried more tonnage, experienced more
thermal stress cycles and may have been manufactured using processes that allowed
more flaws in the rail.  A recent study of rail failures on Railtrack in Great Britain (16)
supports the importance of this parameter.

The second and third terms in the model, 0.025AC – 0.00008 A2C2, reflect the
interaction between rail age and degree of curve.  As either rail age or degree of curve
increases, service failure probability is predicted to increase.  Since the interaction
between rail age and curvature is multiplicative, the model indicates that in terms of



service failure probability, higher degree (sharper) curves are more sensitive to the
effects of rail age, and vice versa.

The fourth term in the model, 5.101T/S, reflects the effect of annual traffic (MGT)
normalized by rail weight.  As annual gross tonnage increases, service failure probability
increases.  However, the form of the interaction with rail weight indicates that the
increase in service failure probability associated with a unit increase in annual traffic is
greater on segments of track with relatively light rail.

The fifth and sixth terms in the model, 217.9W/S – 3861.6 W 2 /S 2 ,  describe the
effect of annual wheel passes or load cycles normalized by rail weight. Service failure
probability increases as the number of wheel passes or load cycles increases.  However
just as with gross tonnage, the increase in service failure probability associated with a
unit increase in the annual number of wheel passes is greater on segments of track with
relatively light rail.  This is probably due to the fact that lighter rail experiences more
stress under a given load than heavier rail.  Thus, the amount of crack growth per
fatigue cycle is greater in lighter rail than heavier rail.

It is interesting that the model includes terms that describe annual traffic in terms
of gross tonnage and the number of wheel passes.  The relationship between annual
traffic and service failure probability is a function of both the total amount of load applied
to a section of rail and the number of times the load is applied.  This relationship is
consistent with fracture mechanics models of fatigue crack growth in rails that depend
on both the applied stress and the number of load cycles (15).

The seventh term in the model, 0.897(2N-1), describes the effects of mainline
turnouts.  Since N = 1 near a turnout, the presence of a turnout increases the probability
of a service failure.  There are several possible explanations related to inferences about
rail stress.  Turnouts may tend to anchor the track structure thereby causing greater
thermal stress cycling as the nearby rail expands and contracts.  Also, to the extent that
turnouts tend to be associated with locations where trains slow down, stop or start, rails
in these locations may tend to experience more traction-induced stresses.

The final term in the model, -1.108P/S, describes the effect of dynamic load on
service failure probability.  The term is negative indicating that as dynamic load
increases, service failure probability decreases.  This is an unexpected result and is the
opposite of what was suggested by a single variable analysis conducted prior to
development of the multi-variate model.  However, the relative effect of this term is
weak.  For example at an annual tonnage level of 50 MGT, on 136 lb. rail, in tangent
track, varying the annual wheel passes between the highest and lowest possible values
changes pSF2 by approximately 0.17.  Under the same conditions, varying the dynamic
load term between its extreme values only changes pSF2 by 0.03.  In the stepwise
regression this term was the final term added to the model (Table 1) and has the least
predictive ability of the included terms (as indicated by the low chi-squared value).  Thus
we do not think that this term represents an actual physical relationship.  The regression
model development procedure may have included this term in the model to capture
additional, unexplained variance resulting from various effects, and possibly to balance
over-predictions of service failure probability caused by the linear nature of other effects
in the model.



Table 1 also indicates that during the stepwise regression process, an interaction
term between rail age and annual gross tonnage was initially included in the model.  By
multiplying rail age by annual gross tonnage, the term estimated the effect of cumulative
tonnage.  Although the cumulative tonnage effect was initially significant, as more
detailed terms describing the effects of rail age, turnouts and curvature were added to
the model, the cumulative tonnage effect became less significant and was finally
removed from the model.  Thus, the variance in service failure probability that was
initially explained by cumulative tonnage in a model with two terms could be better
explained by a model with more terms and a combination of effects involving other
variables.  We would like to have included actual accumulated tonnage, but this variable
was not consistently available on a system-wide basis.

It is also interesting which parameters did not appear in the final model.  The
effects of grade, speed, average wheel load and insulated joints were not found to
significantly improve the predictive ability of the model and were not included.  Some
variables that we would have liked to consider were, rail steel type, rail surface
roughness, neutral temperature, and actual temperature at the time of the break, but
these data were not available.

Retrospective Service Failure Model Performance.  We used two methods to evaluate
the ability of the retrospective model to predict locations where service failures occurred.
The first calculates a “goodness of fit” statistic for the model based on the service failure
probability (pSF2) computed for each of the records in the input data.  If the model
completely accounted for all of the sources of variance, one would expect pSF2 = 1 at all
of the service failure locations and pSF2 = 0 at all of the locations where service failures
did not occur.  In this case the summation of pSF2 over all service failure locations should
equal the total number of service failures and the summation of 1- pSF2 over all locations
where service failures did not occur should equal the total number of locations where
service failures did not occur.  It is highly unlikely that all sources of variance will have
been accounted for by any statistical model.  Therefore, when the summations are
computed for actual values of pSF2, they will correctly account for only a percentage of
the total.  This percentage reflects the "goodness of fit" or the amount of variance
explained by the retrospective model (17).  Using this approach, the goodness-of-fit
statistic is calculated using the expression below, where nsf is the actual number of
locations where service failures occurred, and nnosf is the number of locations where
they did not.

Goodness of fit = 

= (1,507 + 1,462) / (1,861 + 1,815)

= 0.808

Based on this analysis, the retrospective model accounted for 80.8 percent of the
variance in the service failure data.



The second method we used to evaluate the performance of the model is to
compare the value of pSF2 to the event that actually occurred at that location. The
decision criteria, or threshold value, for service failure prediction was a pSF2 value of 0.5.
If pSF2 was less than 0.5, it was classified as predicting “no failure” and if it was greater
than 0.5 it was classified as predicting a service failure.  87.4 percent of these
predictions were correct (Table 2). Of the incorrect predictions, there were twice as
many false positives than missed service failures. This indicates that the model is
somewhat conservative as it is more likely to provide a false positive than miss a service
failure.  The decision criteria of 0.5 could be adjusted by users of the model to make
results more or less conservative (8).

These two evaluations indicate that the model had a reasonably high level of
accuracy in predicting the occurrence of service failures in the database from which it
was developed.  The next steps in assessing the model's accuracy would be to apply it
to data for a subsequent time period on the same railroad, and to apply it to data from a
different railroad.

Prospective Service Failure Model.  As explained above, in order to use the model to
predict the annual probability of a service failure at a particular location, the
retrospective model must be transformed into a prospective model.  This transformation
is accomplished by adjusting the value of the model specific constant, Z, to reflect the
average service failure probability across the entire system of interest.  There were
1,861 service failures in the test database over a two-year period for which complete
records were available.  The probability that one of these service failures falls into any
given segment of track is a function of the length of the segment.  To capture as much
detail as possible, and to avoid the use of average values over a segment that may
introduce additional variance, the segments should be kept relatively short.  The
maximum resolution in the data available for most of the parameters of interest was
0.01 miles (16.09 m).  The total system represented by the database was approximately
23,750 miles of mainline.  Thus, there were 2,375,000 segments 0.01 miles in length.
Given this value, the average probability that a service failure is found in any one of
those segments over a two-year period is approximately 0.00078.  This probability can
be converted into a new model-specific constant, Z*, through the use of the log-odds
operator (18):

Z* =  Z + ln [ pSFavg / (1 – p SFavg) ]

= -4.569 + ln [ 0.00078 / (1 – 0.00078) ]

= -11.763

This new model specific constant, Z*, adjusts the scale of the probability calculated by
the prospective service failure model so that the model predicts service failures at a rate
that is comparable to the actual observed rate.

The retrospective model described above calculated the probability of a service
failure over a two-year period.  This can be converted to an annual probability simply by
dividing by two when transforming the U-score into a probability. Once these two
adjustments are made, the annual service failure probability for any 0.01 mile segment



on the system can be calculated with the prospective service failure model. The
prospective service failure probability model has the following form:

pSF = eU / [ 2(1+eU) ]

Where:

pSF = annual probability of a service failure in the 0.01-mile segment of interest

U = Z* + Y

 Z* = -11.763, prospective model specific constant, described above
(all other terms and variables are the same as defined previously)

Service Failure Probability and Expected Service Failures per Mile

Cursory review of the annual service failure probabilities calculated by the
prospective model might suggest they are too low.  However, the probability is based on
a segment of track that is only 0.01 miles in length.  The calculated probability is
approximately equal to the expected number of service failures per year in that 0.01
mile segment.  Annual service failures per mile is a metric more typically used by North
American railroads, so it is useful to calculate a per-mile rate by multiplying pSF by 100.

SF/MI/YR = 100eU / [ 2(1+eU) ]

Where:

SF/MI/YR = expected service failure rate on segment of interest (service failures per
mile per year)

This rate can be applied to a segment of track of any length as long as the values
of the parameters in the service failure model remain constant along the section of the
track.  A service failure rate of 2 SF/MI/YR indicates that for every mile of track for which
the rate applies, two service failures are expected to occur.  If the track section to which
this rate applied is 0.5 miles in length, then one service failure is expected along this
length and if the section is two miles in length, four service failures are expected along
the two-mile length.  Note that in all three cases the service failure rate, 2 SF/MI/YR, is
the same but the number of service failures expected in a section of track is a linear
function of the length of the section.  The number of service failures expected in a given
section of track where the service failure rate is constant can be calculated by
multiplying the length of the section by the service failure rate.

Example of Service Failure Model Application

The following example illustrates how the prospective service failure prediction model
(SFPM) can be used to obtain a measure of service failure probability and rate.  A
hypothetical 1.5-mile, single track portion of a railroad mainline is illustrated in Figure 2
and the relevant parameters are presented in Table 3.  The segment has been broken
into several sub-segments over which the input parameters are constant.



Some of the rail in the segment of interest is 47 years old and weighs 132
pounds per yard.  The remaining rail is five years old and weighs 136 pounds per yard.
Mainline turnouts are located at mile zero and also at mile 0.7 where another mainline
connects to the line under study.  A one-degree curve is located between mile 0.25 and
mile 0.45.  Track speed on the segment is 50 miles per hour.  The annual traffic is 80
million gross tons between mile 0.0 and mile 0.7.  At mile 0.7, 40 million gross tons is
routed on the connecting mainline with the remaining 40 million gross tons being routed
on the segment under consideration between mile 0.7 and 1.5. The average gross rail
load is 100 tons in the eastbound direction and 80 tons in the westbound direction for a
maximum of 100 tons.  The dynamic load computes to 150 tons per car, and the annual
traffic of 80 MGT and 100-ton average per car results in an estimated 3.2 million wheel
passes.

The U-score was calculated for each portion of the segment of interest and then
transformed into an estimate of service failure rate.  The estimated service failure rate
(service failures per mile per year) for each sub-segment is summarized in Table 4 and
presented graphically in Figure 3.  Multiplying the service failure rate on each sub-
segment by the actual length of each sub-segment provides an estimate of the expected
number of service failures on an annual basis per mile in that sub-segment.  Summing
all of the individual sub-segment values provides an estimate of the expected number of
service failures per year on all 1.5 miles of the segment of interest.  In this case, the
expected number of service failures for the segment is 0.316.

The service failure profile in Figure 3 highlights how interactions between the
various parameters affects service failure rate.  Between mile 0 and 0.1, the rail is
relatively old and a turnout is present. The combination of these two factors results in a
relatively high predicted service failure rate.  At mile 0.1, the service failure rate drops as
the rail is no longer close enough to the turnout to be subject to its effects.  Between
mile 0.1 and 0.25, the track is tangent but the old rail produces a higher service failure
rate than on the segment between mile 0.45 and 0.6 where the track is tangent but the
rail is relatively new.  This difference in service failure rate illustrates the importance of
rail age.  Under the traffic conditions in this example, the age difference of 42 years
results in a service failure rate that is 16 times higher on the older section of rail.  At mile
0.25, the track transitions from tangent to a one-degree curve and the service failure
rate increases approximately three times.  When compared to mile 0.45, where the new
rail transitions from curve to tangent and the service failure rate only increases by a
factor of 1.5, the increase in service failure rate at mile 0.25 is large.  This is due to the
interaction of rail age and curvature that makes the old rail on this sub-section of track
sensitive to curvature.  At mile 0.3, the rail on the one degree curve changes from rail
that is 47 years old to rail that is 5 years old.  The model suggests that newer rail is less
sensitive to curvature, so the service failure rate drops from 0.86 to 0.03 service failures
per mile per year.  Since there is one half the traffic between mile 0.7 and 1.5 than there
is between mile 0.0 and 0.7, the service failure rate is also correspondingly lower.

CONCLUSIONS

A simple risk analysis showed that broken rails are the leading cause of severe
accidents as measured by number of cars derailing.  Improved detection and prevention



of broken rails has important potential safety and economic benefits.  Furthermore,
there are service quality and reliability benefits if the incidence of broken rails can be
reduced.  Improving the ability to predict the conditions that can lead to broken rails can
help railroads allocate inspection, detection and preventive resources more efficiently,
thereby enhancing safety and reducing service interruptions due to broken rails.

We developed a statistical model that provides probabilistic estimates of the
likelihood of service failure occurrence based on engineering and operational input
parameters.  Although further validation needs to be conducted, the service failure
prediction model described here shows promise of being able to provide improved
ability to predict the occurrence of broken rails.  If the requisite data for a railway system
can be systematically developed in a consistent, easily accessed, electronic format, the
model described in this paper can be applied to any portion of the system to generate
probabilistic estimates of service failure probability.  If the data include appropriate
geographical information, then the service failure model presented here could be
incorporated into a geographic information system that would generate service failure
and broken rail derailment profiles automatically from railway databases.

Previous models have been based on a combination of fundamental principles
and a limited number of variables available on rail in service.  The information
technology and computer revolution has led to the availability of much larger,
comprehensive databases and made feasible the use of more powerful statistical tools.
The research described here would not have been feasible 10 years ago.  The results of
these analyses, coupled with sophisticated graphical output, can improve managers’
access to information and enhance the quality and pace of decision-making.  The
potential benefit of the approach is greater precision in predicting the occurrence of
broken rails, along with wider availability and enhanced interpretation of the results.
This is important as railroads strive to improve safety, while at the same time make
more efficient use of their resources and extract more value from assets such as rail.
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FIGURE 1.  Frequency/severity graph of mainline derailments 1994-1998



FIGURE 2:  Schematic of hypothetical section of mainline track



FIGURE 3.  Graphical representation of service failure probability along a
hypothetical track segment



TABLE 1:  Model term selection order

Step Term Added Term Removed Chi-Squared

1 Wheel Passes / Rail Weight -- 155

2 Annual Gross Tonnage x Rail Age -- --

3 (Wheel Passes / Rail Weight)2 -- 202

4 Annual Gross Tonnage / Rail Weight -- 63

5 Rail Age -- 204

6 Turnout -- 41

7 Degree of Curve x Rail Age -- 47

8 (Degree of Curve x Rail Age)2 -- 33

9 Dynamic Load / Rail Weight -- 8

10 -- Annual Gross Tonnage x Rail
Age

--



TABLE 2.  Results of goodness-of-fit test for a threshold value of pSF2=0.5

Model Prediction Actual Event Events Percent of Total Outcome

Service Failure (pSF2 > 0.5) Service Failure 1,700 87.4 Correct

No Failure (pSF2 < 0.5) No Failure 1,513 Prediction

Service Failure (pSF2 > 0.5) No Failure 302 8.2 False Positive

No Failure (pSF2 < 0.5) Service Failure 161 4.4 Missed Failure



TABLE 3: Input parameters for hypothetical section of mainline track

Start
MP

End
MP

Z A
(age)

C
(degree)

T
(MGT)

S
(pounds)

W
(million)

P
(tons)

N
(turnout)

U

0.00 0.10 -11.763 47 0 80 132 3.2 150 1 -3.25

0.10 0.25 -11.763 47 0 80 132 3.2 150 0 -5.04

0.25 0.30 -11.763 47 1 80 132 3.2 150 0 -4.04

0.30 0.45 -11.763 5 1 80 136 3.2 150 0 -7.47

0.45 0.60 -11.763 5 0 80 136 3.2 150 0 -7.60

0.60 0.70 -11.763 5 0 80 136 3.2 150 1 -5.80

0.70 0.80 -11.763 5 0 40 136 1.6 150 1 -8.26

0.80 1.00 -11.763 5 0 40 136 1.6 150 0 -10.05

1.00 1.50 -11.763 47 0 40 132 1.6 150 0 -7.53



TABLE 4. Service failure probabilities along hypothetical track section

Start MP End MP Length U SF/MI/YR Expected SF

0.00 0.10 0.10 -3.25 1.866 0.187

0.10 0.25 0.15 -5.04 0.322 0.048

0.25 0.30 0.05 -4.04 0.865 0.043

0.30 0.45 0.15 -7.47 0.028 0.004

0.45 0.60 0.15 -7.60 0.025 0.004

0.60 0.70 0.10 -5.80 0.151 0.015

0.70 0.80 0.10 -8.26 0.013 0.001

0.80 1.00 0.20 -10.05 0.002 0.000

1.00 1.50 0.50 -7.53 0.027 0.014

Total (0.0 to 1.5) 0.211 0.316
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