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ABSTRACT 
Two-track passenger rail lines typically operate with all trains 

serving every station. Without additional infrastructure, transit 

planners have limited options to improve travel times. Service 

could be improved by operating a skip-stop service where trains 

only serve a subset of all the station stops. A skip-stop pattern 

must find an optimal balance between faster passenger travel 

times and lower service frequencies at each station. A mixed 

integer formulation is proposed to analyze this tradeoff; 

however, the mixed integer formulation could not scale 

efficiently to analyze a large scale commuter line. A genetic 

algorithm is presented to search the solution space 

incorporating a larger problem scope and complexity. In a case 

study of a Midwest commuter line, overall passenger travel 

time could be decreased by 9.5%. Both analyses can give 

insights to transit operators on how to improve their service to 

their customers and increase ridership. 
 
INTRODUCTION 
To improve service for passengers, rail service planners have 

limited options for reducing overall travel time. Most two track 

passenger rail and transit lines operate with trains stopping at 

all stations. Full express service is often not possible because of 

high traffic density coupled with infrastructure constraints. For 

passenger lines with frequent stops, enhanced train acceleration 

or maximum speed is only useful up to a point. One way of 

reducing passenger travel time is to introduce service that, on 

occasion, skips stops at stations with lower demand. By 

eliminating the delay incurred by decelerating, dwelling at a 

station, and then accelerating, average speed on a line can be 

increased. On a line with many trains and stations, it is a 

nontrivial problem to develop an optimal stopping pattern and 

schedule.  

 Two methods of developing an optimal skip-stop schedule 

are investigated. First, a mixed integer program is presented to 

solve the problem. The computational complexity of this 

method led to the development of a second heuristic method to 

search the solution space of lines with large numbers of stations 

and trains. After developing a random schedule, a genetic 

algorithm will iteratively crossover and mutate schedules with 

the goal of reducing overall travel time. A case study line was 

used to help develop both the mixed integer and heuristic 

search methods. The Metra Union Pacific (UP) North Line 

serving Chicago’s north suburbs was selected because of the 

current lack of significant express service in the existing 

schedule. The subsequent analysis focuses solely on the 

morning inbound commute as this moves the most passengers 

in a short amount of time. In addition, the analysis was 

constrained to operating the same number of trains as the 

existing schedule in the case study time period. All methods 

proposed could be applied to the outbound commute or 

afternoon rush hour. 

After inputting data from the case study line, the genetic 

algorithm was able to converge to a solution. The solution 

generated is dependent on the tradeoff between overall 

passenger travel time, and the convenience of having several 

trains to choose from. This tradeoff coefficient β could change 

depending on the passengers’ value of time waiting for a train 

at a station. A sensitivity analysis is also presented showing the 

tradeoff between passenger convenience and total travel time. 

The methods presented here could be applied to a variety 

of passenger rail transportation scenarios outside of the heavy 

rail commuter line in the case study. Although high speed and 
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intercity passenger rail typically feature fewer stations than 

most commuter lines, skip-stop service could be a way of 

increasing passenger access to the line. New stations can be 

constructed along the line at low demand areas while stop-

skipping preserves low travel times between high demand 

stations .  

LITERATURE REVIEW 
In this segment we present a literature review of other 

papers covering train routing and scheduling optimization 

problems.   

Bodin et al. developed a mixed-integer program with the 

goal of optimizing operations within yards as well as between-

yard movements [1]. The authors incorporate real-world 

constraints such as yard capacity and minimum block size. The 

model includes a delay function describing the length of time a 

car will wait at its origin before leaving for its destination, 

given the number of other cars going to that destination.  

Ghoneim et al. analyzed zone scheduling for the Calgary 

Light Rail system using dynamic programming to determine 

the number and location of zones [2]. The authors incorporated 

headway constraints but did not consider the inconvenience to 

passengers of less O-D pair service. 

Haghani developed a time space network model to 

examine the interaction between train routing, makeup, and 

empty car distribution decisions [3]. The routing network 

included both local and express links.  The model incorporates 

a penalty cost for unfilled demand of empty cars.  The model 

uses a heuristic decomposition algorithm to develop train 

routing and makeup decisions. 

Bussieck et al developed models for both routing and 

scheduling passenger rail service [4]. The train routing problem 

is formulated as a mixed integer program with two alternate 

objective functions, one that minimizes the service cost of a 

capacity-adequate schedule and a second that maximizes the 

number of direct passengers not changing trains. For passengers 

without a direct train, it is assumed that they switch from a 

faster to a slower train at the earliest possible point and switch 

back to a slower train at the latest possible point.  The 

scheduling model minimizes passenger waiting time in 

transfers.  

Gorman analyzed the Santa Fe railroad network for 

improved operational cost and service to its customers [5]. The 

author used a combination of a genetic algorithm and tableau 

search to determine the number of necessary train frequencies 

on the intermodal network over a set of pre-generated routes 

that were both all-stop, and a subset of skip-stop routes. 

Chang et al. analyzed the Taiwan High Speed Rail 

operating plan to select station stopping patterns using a linear 

approximation [6]. The proposed technique considers the dual 

objectives of minimizing passenger travel time and the 

operating cost to the railroad. The analysis assumed a pre-

determined set of stopping patterns and did not consider the 

waiting time of passengers between train frequencies. 

INPUT DATA 
 Data from an existing rail operation was first collected to 

serve as a baseline scenario for comparison with any new 

alternatives developed through the mixed integer or heuristic 

search methods. Ridership information from Chicago-area 

Metra lines was collected from the Chicago Regional Transit 

Asset Management System (RTAMS) website. RTAMS is 

maintained with the support of all major Regional Transit 

Authority (RTA) agencies, including Metra. Detailed passenger 

counts of both boardings and alightings for each station are 

available on the site. The most recent data for the Metra UP 

North Line is from the year 2006 [7]. 

Although information is available that shows the total 

boardings and alightings at each station, there is not 

information on the distribution of destinations for a given origin 

station. To develop this information, a gravity model ridership 

distribution was created using the product of boardings and 

alightings for an O-D pair divided by the segment distance 

raised to a coefficient. For this study, a distance coefficient of 

0.5 was used. Using the gravity distribution, along with total 

line ridership from 2010, an updated ridership matrix was 

created [8]. 

 

��� = ����
√���  

 ��� = OD travel demand ��  = Total boardings at origin �� = Total alightings at destination ��� = Distance between points O and D 

 

The equation above is used to provide relative weights 

describing where passengers are travelling at each station. The 

demand distribution was normalized by the number of people 

who boarded the train at the origin. This ensured that every 

person who boarded the train also disembarked at a 

downstream station. 

 In addition to passenger information, minimum travel 

times must be generated between any OD pair on the line. The 

present Metra schedule has some examples of skipped stops, 

but not enough to populate a full OD matrix of travel times [9]. 

Using the existing schedule, all cases of skipped stops were 

analyzed to determine an average stop delay τavg of 1 minute, 

26 seconds. Ideally, τ should be a function of train speed, 

acceleration characteristics, and the number of boarding and 

alighting passengers. In the interest of simplicity we assumed 

the average station delay held true for all stations. Using a 

baseline schedule and τavg, a complete set of minimum express 

travel times was created. In the existing schedule, there is a 

travel time difference between inbound and outbound trains; 

the constructed table also reflects this difference. 
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MIXED INTEGER OPTIMIZATION 
The Optimal Skip-Stop Optimization Problem could be 

formulated as a mixed integer program (MIP). The station 

pattern can be considered to be a directed network as shown in 

Figure 1. Each station is represented by a node, and each link 

represents the next downstream station at which a train could 

stop. The form of this problem is similar to a shortest path 

network problem. Each train will start at the exurb terminal and 

find the shortest path to the central business district (CBD) 

while minimizing the total time of passengers on the train. 

 

 
Figure 1: Skip-Stop Network Representation 

 

Formulation 

Let the set {S} represent the set of stations being 

considered and let the directed links be represented by {i,j} 

where a train departs station i and arrives at station j. The set 

{O,D} represents the origin and destination pairs. Lastly, let 

{k} be the set of trains that are travelling in the morning rush-

hour service where k corresponds to the k
th

 train to leave the 

suburbs for the CBD. Tij is the time to travel directly from 

station i to station j including acceleration, braking, and stop 

delay to load passengers. To simplify the problem, all trains are 

considered to originate at the furthest station from the CBD and 

terminate at the CBD.  

 

Table 1: Definition of Sets Used in MIP 

Set Description 
{i,j,O,D} Set of nodes representing stations 

{k} Set of trains in morning rush hours 
{ ij } Links between stations 

{OD} Origination-Destination pairs 
 

 xijk is a binary variable that represents the choice of 

whether train k will provide direct service from upstream 

station i to downstream station j. yijk
OD

 represents the flow of 

passengers travelling between station i and station j on train k 

who boarded at station O and will disembark at station D. 

There is also the possibility of unfilled demand where a station 

will not receive any service from the scheduled trains. The 

unfilled demand for an origin destination pair is Z
OD

. 

 

Table 2: Decision Variables in MIP 

Variable Description 	
�� = { 1 if transit service is provided for link ij for train k; 

0 otherwise} 
���� = Flow of people on link ij using train k to travel from 

O to D ��� = Unfilled demand 

 

The MIP Skip Stop Optimization can now be formulated as 

follows: 

 Minimize: � � � � � �
�
����
�:��
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The objective function (1) serves to minimize total 

passenger travel time using the commuter rail service as well as 

any unfilled demand. The γ term is determined by the planning 

agency and is a cost coefficient to transform unfilled demand to 

units of time. γ should be set high enough such that it is more 

cost efficient to run trains than not serve passengers. With more 

morning trains, the estimation of γ is not as important as it 

becomes more likely for low demand stations to be served by 
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one or more trains. Constraint (2) states that each train can 

leave its current station for only one downstream station. 

Constraint (3) is a mass conservation flow constraint for the 

trains travelling through the network. Constraint (4) defines the 

unfilled demand by setting the total actual flow of travelers for 

an origin-destination (O-D) pair across all trains equal to the 

theoretical demand minus the unfilled demand for that 

particular O-D pair. Constraints (5) and (6) guarantee that a 

train must service both the origin and destination of an O-D 

pair for passengers to utilize the commuter railroad. Constraint 

(7) is a mass conservation flow constraint for passengers. 

Lastly, constraints (8) through (10) define the variable types. 

 

Case Study 

A hypothetical commuter rail line is studied to demonstrate 

the potential of the proposed skip stop optimization framework. 

This line has 8 total stations including the terminals and 6 trains 

in the morning rush hour. The MIP was coded in GAMS and 

solved using CPLEX. The fastest run time from the suburban 

terminal to the CBD is 8 minute express service and the slowest 

run time is 14 minute local service. Table 3 shows the time 

between stations and Table 4 is the demand for each O-D pair. 

 

Table 3: Travel Times Between Stations 

 

Origination Station 

1 2 3 4 5 6 7 

D
e
st
in
a
ti
o
n
 S
ta
ti
o
n
 2 2             

3 3 2           

4 4 3 2       
 

5 5 4 3 2     
 

6 6 5 4 3 2   
 

7 7 6 5 4 3 2   

8 8 7 6 5 4 3 2 

 

Table 4: Passenger Demand Between Stations 

  

  

Origination Station 

1 2 3 4 5 6 7 

D
e
st
in
a
ti
o
n
 S
ta
ti
o
n
 2 10             

3 10 5           

4 10 10 5         

5 50 100 25 15       

6 10 10 5 0 5     

7 10 5 5 0 20 2   

8 200 150 25 175 125 90 50 

 

Table 5: Optimal Schedule 

Station 

↓ 

Train 

#1 

Train 

#2 

Train 

#3 

Train 

#4 

Train 

#5 

Train 

#6 

STA 1 0 0 0 0 0 0 

STA 2 2 2 - 2 - 2 

STA 3 4 - - 4 3 - 

STA 4 6 - - 6 5 - 

STA 5 - - - 8 - 6 

STA 6 - - - 10 - 8 

STA 7 - - - 12 - - 

STA 8 11 9 8 14 10 10 

 

Limitations 

This model provides the optimal stopping pattern that 

minimizes travel time; however it does not address rider 

behavior. The model assumes that an individual passenger 

travelling from an origin to a destination will ride the train that 

takes him to his destination the fastest, not necessarily the most 

convenient. For example, there are six options to travel from 

Station 1 to Station 8. However, under this model, all the 

passengers who need to travel from Station 1 to Station 8 will 

take Train #3 because it is the fastest train. A skip-stop model 

should have passengers utilize all services between Station 1 

and Station 8 with more passengers using the faster trains than 

the slower trains. In the hypothetical line studied, only one train 

served Station 7. These passengers do have their demand 

fulfilled by the schedule, but are still inconvenienced by only 

having the one service. A more advanced skip-stop model 

should incorporate the average waiting time between trains. 

These additions to the model quickly transform this into a non-

linear mixed integer program. Lastly, the model becomes too 

large for GAMS and CPLEX to solve if more than 15 stations 

are considered.  

HEURISTIC SEARCH 
 In order to address the limitation of the MIP model, a 

heuristic search based of a genetic algorithm was developed in 

PYTHON [10]. The stopping pattern of a train can be 

represented by a binary string. The length of the string is the 

number of stations. An entry of “1” indicates that the train stops 

at that station, and a “0” indicates that the station was skipped 

[6]. The strings for the proposed stopping pattern can then be 

merged into one string representing a potential schedule. Table 

6 takes the last 7 stations on the Metra Union Pacific North 

Line in Chicago and encodes the binary representation of the 

schedule from the stopping pattern of 4 trains.  

 

Table 6: Binary Encoding of Skip Stop Service 

Central  Davis Main 
Rogers 

Park 

Raven-

swood 
Clybourn Ogilvie 

Binary 

String 

Train #1 7:34 7:38 – – – 7:51 8:02 1100011 

Train #2 7:41 7:44 7:47 7:50 7:55 8:02 8:12 1111111 

Train #3 – 7:51 – – 8:01 8:08 8:18 0100111 

Train #4 8:13 – 8:18 8:22 – 8:31 8:41 1011011 

Schedule Code: 1100011111111101001111011011 
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Search Algorithm Formulation 

 

The final search algorithm is described in Figure 2. 

 

 
Figure 2: Proposed genetic algorithm to search for improved 

skip-stop service schedules 

 

Generate Random Sample 

An initial sample of potential schedules is generated 

randomly with a restriction that the train must serve the 

terminals in the farthest suburb and the CBD.  

 

Score Schedules 

The score of any schedule is based off total riding time of 

all the passengers riding the train plus any unfilled demand, and 

an inconvenience penalty experienced by the passengers. This 

inconvenience penalty for an O-D pair is derived from a 

tradeoff coefficient E, the passenger demand for that O-D pair, 

and the average headway for the O-D pair. The E coefficient in 

the inconvenience penalty incorporates both a time value of 

passengers waiting at stations and the degree that the algorithm 

is allowed to skip low demand stations.  Total score of each 

schedule is calculated as follows: 

 

� � � ���FG��F���
+ E � � ���HI����

+ � � � �����
 

 7 = Originations 8 = Destinations J = Train Services ���F = Time for train K to travel from O to D G��F = Number of passengers going from O to D on train K  I��F = Number of trains serving O to D on train K ��� = Passenger demand from O to D ��� = Unfilled demand between O and D H = Length of rush hour E = Inconvenience cost penalty � = Cost of unfilled demand 

 

 Unlike the MIP formulations, passengers are allowed to 

take any train to travel from their respective origins to their 

destinations. The passengers are not limited to just the fastest 

train. Passengers are split across all trains that serve their origin 

and destination with faster services carrying more passengers 

than slower services. The split of passengers between train 

services to the same destination is calculated as follows: 

 

G��F = ��� (���F)KL
∑ (���F)KL�  

 

For example, consider if there were only four trains serving 

an O-D pair having run times 24, 20, 20, and 16 minutes. The 

ridership would be split at 20% for the slowest train, 25% each 

for the average trains, and the fastest train would carry 30% of 

the total ridership. 

 

Selection 

Schedules were selected randomly based on their total 

score determined in the scoring module. Initially, all schedules 

have a relatively equal chance of being selected for the next 

iteration. As the algorithm iterates, schedules that better 

minimize travel time and inconvenience are more likely to be 

selected. This selection behavior is modeled by using a fitness 

function to scale the raw scores of schedules. Initially, the 

fitness function equalizes the schedule score to explore more of 

the solution space early in the search process. Later in the 

process, the fitness function will increase the disparity between 

schedules. This allows for very small improvements to be 

exaggerated late in the search process to ensure that these small 

improvements are not overlooked by the algorithm. The fitness 

value is calculated as follows: 

N = (9 − O)L.Q
R  N = Fitness score 9 = Maximum score of sample O = Current score of schedule being analyzed � = Current iteration index S = Iteration limit 

 

The probability of selecting a schedule out of the current 

pool is then calculated based off the fitness scores of individual 

schedules. Higher fitness scores will be more likely to be 

selected. 

T� = N�∑ N� 

 

The schedule with the smallest score in any sample will 

automatically be selected for the next generation for further 

analysis. 

 

Crossover 

Once the schedules are selected, they will then be paired 

off. A random number is chosen to split the binary 

representation of the schedule. The pair of schedules will then 

swap their binary bits after this point. The crossover module 

creates new schedules based off the best of previous schedules. 

Figure 3 demonstrates how this works between the stopping 

patterns of two trains. Train #1 initially skips stations 3 through 

5, and Train #2 stops at each station. The next generation of 

stopping patterns incorporates Train #1 skipping stations 4 and 

5, while Train #2 stops at all stations except station #3. 
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Figure 3: Crossover of Schedules 

Mutation 

The new schedules created in the crossover module are 

then passed through the mutation module. There’s a very small 

probability that the mutation module will flip a random station 

from being skipped to being served and vice versa. This allows 

the search algorithm to search for new schedules if the current 

sample becomes too homogenous. The new schedule is checked 

to make sure that all trains start and stop at terminals before it is 

allowed to continue on to the next iteration. If the maximum 

score of the sample converged to the minimum, then the 

mutation probability increases significantly to generate a new 

search pool. In this case, 98% of the current pool is thrown out 

and replaced with mutant schedules and the previous minimum 

is retained.  

 

Proof of Concept 

There are 2
350

 possible solutions for the Union Pacific 

North Line problem. One major drawback of using a genetic 

algorithm to find a solution is that it is difficult to verify if the 

search has actually found the optimal solution. One way to 

verify that the algorithm is correct is to input a problem with 

sufficient complexity but also with a known solution. To test 

the robustness of the algorithm, a hypothetical commuter rail 

line similar to that of the MIP formulation is analyzed. This 

problem differs slightly from the MIP problem because of the 

increased complexity of the assumptions. The GA considers the 

inconvenience to passengers and will distribute passengers 

across all trains that serve their origin and destination. 

Additionally, this problem simplifies the MIP problem by 

limiting the number of trains to only 3 trains. These trains will 

operate within a 60 minute period and the β tradeoff coefficient 

is assumed to be 0.25. The time between stations and origin-

destination demand are summarized in Table 3 and Table 4 

respectively. There are 262,144 possible solutions to this 

problem. Each of the solutions is evaluated for total passenger 

travel time and inconvenience time. The optimal minimum is 

248 hours, where two trains will stop at all eight stations and 

one train will skip Station 3 and Station 4. There are three 

solutions that will incorporate this stopping pattern. The genetic 

algorithm was then applied to this simple problem with a 

sample size of 8. After 11 iterations, the genetic algorithm 

found one out of the three global minima of the solution space. 

In total, only 88 potential schedules were evaluated instead of 

the 262,144 that enumeration would evaluate. The genetic 

algorithm can significantly decrease the number of 

computations needed to arrive at a solution. 

 

Case Study: Union Pacific North Line 

The search algorithm was applied to the Metra Union 

Pacific North Line for the morning commute. The current 

schedule has 14 trains between 6 AM and 9 AM serving 27 

stations with very limited skip-stop service. Each potential 

schedule for the line is represented by a 378-bit chromosome. 

The demand between stations was estimated using a gravity 

model based on the distance between stations, the number of 

boardings and number of alightings at each O-D pair. The time 

between stations was determined from Metra’s published 

timetable for its passengers, and the distance was determined 

from Google Maps. The coefficient for the headway term was 

assumed to be 0.25, assuming that passengers on Metra are 

familiar with the published schedule and show up closer to 

when the train departs their origin station. After 10,000 

iterations of the Genetic Algorithm, the best schedule found is 

shown in Appendix A.  

The total travel times for all 14 trains are within four 

minutes of each other, indicating that average speed is similar 

across all 14 stopping patterns. Having similar average speeds 

implies that there is not a need for an overtake maneuver within 

the schedule. If there was an overtake, then there would have to 

be additional tracks added to accommodate the manoeuver. 

Ravinia Park is a station for a concert venue that is only in 

service for evenings in the summer. The search algorithm was 

correct in not providing any service to Ravinia Park. In 

comparison with the existing schedule [9], the new schedule 

would reduce total passenger travel time by 9.5%. However, the 

total inconvenience (headway) penalty for the new schedule is 

24.4% higher than the existing schedule. Applying McFadden’s 

utility from the BART feasibility study, demand for the rail line 

would increase 3.8% due to the time savings [11]. The total trip 

time from Kenosha to Chicago on average is 10 minutes faster 

than the existing schedule. This improvement may not be large 

enough to allow for lower cycle times to decrease the fleet size 

of the service. 

 

Table 7: Comparison of Existing Schedule to Proposed 

Schedule with More Aggressive Skip Stop Service 

 Existing Schedule New Schedule 

Passenger Travel 

Time (Hours) 

6,845 6,194 

Frequency Penalty 

(Hours) 

1,036 1,289 

Total Utility (Hours) 7,882 7,482 

 

 

Computational Efficiency 

For passenger lines with a level of complexity similar to 

the case study presented here, the genetic algorithm is able to 

converge on an optimal solution in about 1,000 iterations as 

shown in Figure 4. This problem is looking for very small 

improvements over the base case, so the initial proposed 

solutions are already within 3% of the final value. On problems 

with higher complexity, this number could be expected to 

increase. Using an Intel Core i5 CPU at 2.8 GHz the 

computation time can vary from 2 hours using a small sample 



 7 Copyright © 2012 by ASME 

size with 3-5 simultaneous populations to 48 hours using a 

large sample size with 10-20 simultaneous populations. Larger 

iteration limits will also increase the computation time. 

 

 
Figure 4: Computational Efficiency 

 

Schedule Development 

 Before adopting a proposed schedule from the search 

algorithm, the service pattern must be tested for feasibility with 

existing conditions. To avoid building new infrastructure, the 

new schedule must be able to accommodate all planned trains 

without interference. A train schedule requiring overtaking 

moves on the adjacent 2
nd

 main track would likely not be 

feasible given current levels of outbound morning commute 

traffic.  

 The Metra Union Pacific North Line uses a three block, 

four aspect signal system. To ensure that a train does not reduce 

speed from a free flow condition, a minimum spacing of three 

block lengths must be maintained between all trains on the 

schedule. Block lengths vary slightly along the line to 

compensate for different stopping distances expected with 

changes in speed and grade. Using aerial photography, an 

average block length of 0.88 miles and minimum train spacing 

of 2.64 miles was determined [12].  

 

Figure 5: Illustration of minimum train spacing 

 

 Using the proposed stopping pattern determined by the 

search algorithm, a time space diagram is plotted and shown in 

Figure 6. Initially, a schedule was developed where train 

departures were uniformly spaced from the station of origin 

such that all of the trains completed their trips from 0600 hours 

to 0900 hours. With this initial schedule pattern, some of the 

trains experienced interference with each other along the line. 

Two methods can be used to alter the schedule and eliminate 

train interference. The first method is to change the order of 

departures from the initial station. The second method is to add 

additional time between departures at the initial station. In both 

methods it is important not to create service gaps at stations that 

are more frequently skipped. As much as possible, the 

headways at any given station should be uniform throughout 

the schedule. Using a combination of transposing stopping 

patterns and adding as many as 5 minutes to the uniform 

departure times, a final proposed schedule was developed.  

  

 
Figure 6: Time Space Diagram of Proposed Schedule 

 

Sensitivity Analysis 

 There are various sources of error within the inputs to the 

genetic algorithm. There is sample error from the 

measurements of the total boardings and alightings at each 

station. This error is difficult to correct for because there is no 

data on the variation of passengers at each station. Additionally, 

the gravity model assumed that ridership was proportional to 

the square root of distance between stations. If a larger 

exponent on the distance term was chosen, passengers would 

travel shorter distances. A smaller exponent will indicate that 

distance is not as strong of a factor between stations and more 

people will ride the line from their home to the terminal CBD 

station. The most sensitive input that a planner has to choose is 

the tradeoff coefficient, β, between travel time and 

convenience. Faster travel times will occur with smaller β 

coefficients but will result in more inconvenience to the 

passengers. Within the results from the genetic algorithm, the 

inconvenience penalty has a higher magnitude that inputs a 

larger β coefficient. The inconvenience penalty is normalized 

by the β coefficient to compare solutions that use different β 

coefficients. Figure 7 shows the nonlinear relationship between 

travel time and inconvenience with respect to the β coefficient. 

The greatest improvements in travel time are when β is small, 

in the 0.05-0.40 range.  

 The existing schedule on the Metra Union Pacific North 

Line is denoted by the star in Figure 7. While not on the 
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proposed optimal frontier, the current schedule does perform 

reasonably well. The current practices of Metra suggest that the 

β coefficient should be in the range of 0.40 - 0.55. 

 

 
Figure 7: Sensitivity analysis with regard to the tradeoff 

coefficient β 

Limitations 

Trains are assumed to be stopped at each station for the 

same stop delay independent of the number of people who 

board or alight at the station. In reality, the rush hour trains 

experience longer dwells at stations for a greater number of 

passengers to board and alight the train. The off-peak trains 

actually have a lower average stop delay at each station than the 

rush hour trains. Additionally, all trains are assumed to 

originate in Kenosha and terminate in Chicago. Under the 

current operating plan, most inbound trains originate in 

Waukegan, with 9 starting in Kenosha, 5 in Winnetka, and 1 in 

Highland Park. 

The proposed genetic algorithm is not guaranteed to find 

the optimal solution. The algorithm only searches the solution 

space for potential improved solutions. This scheduling 

problem is susceptible to local minimums. The algorithm can 

converge to a local minimum and not move towards the global 

minimum. This can be mitigated to some extent. Setting a 

higher iteration limit will allow for a higher probability of the 

mutation process finding a schedule or part of a schedule that is 

better than the current minimum. This type of search is more 

akin to a random search. Another option is to utilize a larger 

sample size which will explore more solutions. With a larger 

sample size, the algorithm will iterate more before converging 

to one value. However, a larger sample size will increase the 

computation time necessary to find a solution. The best way to 

mitigate this problem would be to run the algorithm in parallel 

with itself. Once values of each sub-population converge, they 

are combined into a master population for further analysis.  

Lastly, there could be other operational or political reasons 

why a train stops at any given station that are beyond the scope 

of this research. 

FUTURE WORK 
There are a number of areas where the search algorithm could 

be further refined. In an effort to better incorporate train 

scheduling into how a set of stopping patterns is scored, a 

signal wake model could be incorporated into the heuristic 

search. This would ensure that any minimum stopping pattern 

developed by the search would be feasible to implement as a 

schedule for different existing and proposed infrastructure 

configurations. In addition to the search algorithm alterations, a 

scheduling program could be developed that would determine 

the ideal order of stopping patterns for a schedule. In this 

analysis, the stopping patterns would be ordered so that they 

accommodate headways as uniform as possible at each station 

while minimizing interference between trains.  

The travel times between any origin-destination pair in 

Appendix C are based off an average stop delay from the Metra 

schedule. In reality, the stop delay should be related to train 

acceleration and braking rates as well as top speed. If 

subsequent stops are skipped, then the train will reach a higher 

maximum speed as well as a higher average speed. Using an 

average stop delay leads to conservative travel times in the 

analysis presented. The travel times can be updated to reflect 

the actual accelerating and braking characteristics using a train 

performance calculator (TPC). 

The demand split between train services for each O-D pair 

was determined by the relative time savings between train 

services. This split between trains could also be modeled by a 

train choice logit model that incorporates the demand 

elasticities with respect to in-train-travel-time, waiting time at 

stations, and transfer time (if modeled). Incorporating a choice 

model will more accurately describe how transit riders in a 

particular region distinguish between train services.   

In a further refinement, the heuristic search could be 

directed to modify existing schedules only to a certain degree 

instead of developing brand new schedules. In this process, an 

existing schedule would be fed into the algorithm along with 

constraints on how many additional stops could be added or 

skipped. Using this method may ease the difficulty of 

implementing a more efficient schedule over time by mitigating 

radical changes that may be initially unpopular with passengers.  

Another possibility of decreasing travel times for 

passengers is to utilize a hybrid-local-express service where 

trains will stop at 5-10 stops in the suburbs and run express to 

the central business district. The Metra line from Chicago to 

Naperville uses this type of stopping pattern. This type of 

service is usually determined analytically to minimize passing 

conflicts. If there are significant numbers of passing conflicts 

then an additional track is required. This type of stopping 

pattern can achieve higher average speeds than a skip-stop 

service. Future work could compare a hybrid-local-express and 

a skip-stop service in terms of convenience and travel time 

  



 9 Copyright © 2012 by ASME 

CONCLUSION 
Skip-stop schedules can save a significant amount of 

passenger travel time by reducing the number of stops at 

stations with lower demand. Using a case study commuter rail 

line, two approaches to creating a skip stop schedule were 

explored. The mixed integer program presented is feasible for 

small problems, but as the number of stations and trains 

increase the number of possible solutions, a heuristic search 

may be a better method. The Metra Union Pacific North line 

morning inbound weekday scenario, with 27 stations and 14 

trains, has a current passenger travel time of 6,845 passenger-

hours and frequency penalty of 1,036 passenger-hours. The 

genetic algorithm presented was able to develop a schedule 

with 6,194 passenger hours of travel time and 1,289 passenger 

hours of frequency penalty, a 9.5% decrease and a 24.4% 

increase respectively. Passenger sensitivity to train frequency, 

expressed here as β, effects how aggressively skip-stop service 

can be implemented. Running a sensitivity analysis that 

compares the passenger travel time with frequency penalty for 

different values of β , it appears that Metra is running a close to 

optimal schedule for β = 0.40-0.55. Although the methods 

presented here were developed using a case study heavy rail 

commuter line, similar methods could conceivably be applied 

to other types of urban and interurban passenger rail 

transportation.  
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APPENDIX A 
 

METRA UP NORTH LINE BASELINE 2006 RIDERSHIP 
 

Station 

Inbound Outbound 

Boardings Alightings Boardings  Alightings 

# % # % # % # % 

Kenosha 317 3.1% 0.0% 0.0% 20 1.0% 

Winthrop Harbor  77 0.8% 0.0% 0.0% 4 0.2% 

Zion  130 1.3% 0.0% 1 0.0% 9 0.4% 

Waukegan  630 6.2% 27 0.3% 2 0.1% 97 4.6% 

North Chicago  68 0.7% 10 0.1% 2 0.1% 68 3.2% 

Great Lakes 53 0.5% 20 0.2% 2 0.1% 109 5.2% 

Lake Bluff  246 2.4% 20 0.2% 4 0.2% 160 7.6% 

Lake Forest  283 2.8% 32 0.3% 7 0.3% 237 11.3% 

Fort Sheridan  199 2.0% 10 0.1% 4 0.2% 36 1.7% 

Highwood  98 1.0% 23 0.2% 32 1.5% 32 1.5% 

Highland Park  580 5.7% 83 0.8% 17 0.8% 216 10.3% 

Ravinia  219 2.1% 19 0.2% 8 0.4% 25 1.2% 

Braeside  187 1.8% 21 0.2% 2 0.1% 96 4.6% 

Glencoe  496 4.9% 44 0.4% 8 0.4% 93 4.4% 

Hubbard Woods 255 2.5% 11 0.1% 8 0.4% 32 1.5% 

Winnetka  395 3.9% 27 0.3% 14 0.7% 74 3.5% 

Indian Hill 193 1.9% 115 1.1% 2 0.1% 44 2.1% 

Kenilworth  306 3.0% 6 0.1% 20 1.0% 21 1.0% 

Wilmette  1,126 11.0% 27 0.3% 21 1.0% 103 4.9% 

Central St.  1,001 9.8% 35 0.3% 19 0.9% 54 2.6% 

Davis St.  734 7.2% 237 2.3% 109 5.2% 444 21.2% 

Main St. 618 6.1% 14 0.1% 99 4.7% 32 1.5% 

Rogers Park  814 8.0% 17 0.2% 144 6.9% 19 0.9% 

Ravenswood 1,064 10.4% 67 0.7% 540 25.7% 54 2.6% 

Clybourn 109 1.1% 165 1.6% 379 18.1% 20 1.0% 

Ogilvie  0.0% 9,168 89.9% 655 31.2% 0.0% 
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APPENDIX B 
 

METRA UP NORTH LINE PROPOSED SCHEDULE 

 

Train # 

Train 

1 

Train 

2 

Train 

3 

Train 

4 

Train 

5 

Train 

6 

Train 

7 

Train 

8 

Train 

9 

Train 

10 

Train 

11 

Train 

12 

Train 

13 

Train 

14 

AM/PM AM AM AM AM AM AM AM AM AM AM AM AM AM AM 

Kenosha 6:00 6:05 6:11 6:22 6:31 6:38 6:45 6:53 7:00 7:07 7:14 7:21 7:28 7:36 

Winthrop 

Harbor 6:12 6:17 - - 6:43 6:50 6:57 7:05 7:12 7:19 - 7:33 - 7:48 

Zion 6:16 6:21 6:26 - 6:47 6:54 7:01 7:09 7:16 7:23 7:29 7:37 - 7:52 

Waukegan 6:25 6:30 6:35 - 6:56 7:03 7:10 7:18 7:25 7:32 7:38 7:46 - 8:01 

North Chicago - - 6:40 6:48 7:01 - - - - 7:37 - - 7:54 8:06 

Great Lakes - - 6:45 6:53 - 7:12 - - - - 7:46 - 7:59 - 

Lake Bluff - - 6:49 - 7:09 7:16 - 7:29 7:36 7:45 7:50 - 8:03 8:14 

Lake Forest - 6:42 6:52 6:59 7:12 - 7:23 7:32 - 7:48 7:53 7:59 - 8:17 

Fort Sheridan 6:40 - - - 7:16 7:21 7:27 - 7:42 7:52 - 8:03 8:08 - 

Highwood 6:42 6:47 - 7:03 - 7:23 - - - - 7:58 - 8:10 - 

Highland Park - 6:50 6:58 - 7:20 7:26 7:31 7:39 7:46 7:55 8:01 8:06 - 8:23 

Ravinia 6:46 6:53 - 7:08 - - 7:34 7:42 7:49 - - - 8:15 - 

Ravinia Park - - - - - - - - - - - - - - 

Braeside 6:47 6:54 - 7:09 - - 7:35 - - - - - 8:15 8:25 

Glencoe 6:50 6:56 - - 7:23 - 7:37 7:44 7:51 - 8:05 - 8:18 8:28 

Hubbard Woods - 6:59 7:03 7:13 - 7:32 - - - - - 8:12 8:21 - 

Winnetka 6:54 - 7:06 7:16 7:28 - - - - 8:02 - - 8:24 8:32 

Indian Hill 6:56 - 7:08 7:18 - - - - 7:56 - - 8:15 8:26 - 

Kenilworth - - - 7:20 - - - 7:49 7:58 8:05 8:10 8:17 - - 

Wilmette 6:59 7:04 7:11 - 7:31 7:36 - 7:51 - - 8:12 8:19 8:29 8:36 

Evanston 

Central Street - - 7:14 7:24 7:34 - 7:45 7:54 - 8:08 8:15 - 8:32 8:39 

Evanston Davis 

Street - 7:09 7:17 7:27 - - 7:48 7:57 - 8:11 8:18 8:24 8:35 - 

Evanston Main 

Street - - - 7:30 - 7:43 7:51 - 8:05 8:14 - 8:27 - 8:43 

Rogers Park 7:07 7:13 - 7:33 7:43 7:46 7:54 - 8:08 - 8:23 - - - 

Ravenswood 7:11 - 7:24 7:37 - 7:50 - - 8:12 - - 8:32 8:42 - 

Clybourn 7:16 - - 7:42 - 7:55 - 8:08 - 8:23 - - - - 

Ogilvie 

Transportation 

Center 7:24 7:27 7:36 7:50 7:54 8:03 8:08 8:16 8:23 8:31 8:37 8:44 8:54 8:59 
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APPENDIX C 
 

O-D TRAVEL TIMES (MINUTES) 
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Kenosha -   12.0 14.6 22.1 25.7 29.3 31.8 33.4 36.0 36.6 38.1 39.7 39.3 38.8 40.4 42.0 43.5 44.1 44.7 45.2 46.8 48.4 50.0 51.5 54.1 57.7 64.2 

Winthrop Harbor 8.0   -   4.0   11.6 15.1 18.7 21.3 22.8 25.4 26.0 27.6 29.1 28.7 28.3 29.8 31.4 33.0 33.5 34.1 34.7 36.2 37.8 39.4 41.0 43.5 47.1 53.7 

Zion 9.6   3.0   -   9.0   12.6 16.1 18.7 20.3 22.8 23.4 25.0 26.6 26.1 25.7 27.3 28.8 30.4 31.0 31.5 32.1 33.7 35.2 36.8 38.4 41.0 44.5 51.1 

Waukegan 17.1 10.6 9.0   -   5.0   8.6   11.1 12.7 15.3 15.8 17.4 19.0 18.6 18.1 19.7 21.3 22.8 23.4 24.0 24.5 26.1 27.7 29.2 30.8 33.4 37.0 43.5 

North Chicago 18.7 12.1 10.6 3.0   -   5.0   7.6   9.1   11.7 12.3 13.8 15.4 15.0 14.6 16.1 17.7 19.3 19.8 20.4 21.0 22.5 24.1 25.7 27.2 29.8 33.4 40.0 

Great Lakes 21.3 14.7 13.1 5.6   4.0   -   4.0   5.6   8.1   8.7   10.3 11.8 11.4 11.0 12.6 14.1 15.7 16.3 16.8 17.4 19.0 20.5 22.1 23.7 26.2 29.8 36.4 

Lake Bluff 23.8 17.3 15.7 8.1   6.6   4.0   -   3.0   5.6   6.1   7.7   9.3   8.8   8.4   10.0 11.6 13.1 13.7 14.3 14.8 16.4 18.0 19.5 21.1 23.7 27.2 33.8 

Lake Forest 25.4 18.8 17.3 9.7   8.1   5.6   3.0   -   4.0   4.6   6.1   7.7   7.3   6.8   8.4   10.0 11.6 12.1 12.7 13.3 14.8 16.4 18.0 19.5 22.1 25.7 32.2 

Fort Sheridan 28.0 21.4 19.8 12.3 10.7 8.1   5.6   4.0   -   2.0   3.6   5.1   4.7   4.3   5.8   7.4   9.0   9.6   10.1 10.7 12.3 13.8 15.4 17.0 19.5 23.1 29.7 

Highwood 29.6 23.0 21.4 13.8 12.3 9.7   7.1   5.6   3.0   -   3.0   4.6   4.1   3.7   5.3   6.8   8.4   9.0   9.6   10.1 11.7 13.3 14.8 16.4 19.0 22.5 29.1 

Highland Park 31.1 24.6 23.0 15.4 13.8 11.3 8.7   7.1   4.6   3.0   -   3.0   2.6   2.1   3.7   5.3   6.8   7.4   8.0   8.6   10.1 11.7 13.3 14.8 17.4 21.0 27.5 

Ravinia 32.7 26.1 24.6 17.0 15.4 12.8 10.3 8.7   6.1   4.6   3.0   -   1.0   0.6   2.1   3.7   5.3   5.8   6.4   7.0   8.6   10.1 11.7 13.3 15.8 19.4 26.0 

Ravinia Park 32.3 25.7 24.1 16.6 15.0 12.4 9.8   8.3   5.7   4.1   2.6   1.0   -   1.0   2.6   4.1   5.7   6.3   6.8   7.4   9.0   10.6 12.1 13.7 16.3 19.8 26.4 

Braeside 31.8 25.3 23.7 16.1 14.6 12.0 9.4   7.8   5.3   3.7   2.1   0.6   1.0   -   3.0   4.6   6.1   6.7   7.3   7.8   9.4   11.0 12.6 14.1 16.7 20.3 26.8 

Glencoe 33.4 26.8 25.3 17.7 16.1 13.6 11.0 9.4   6.8   5.3   3.7   2.1   2.6   3.0   -   3.0   4.6   5.1   5.7   6.3   7.8   9.4   11.0 12.6 15.1 18.7 25.3 

Hubbard Woods 35.0 28.4 26.8 19.3 17.7 15.1 12.6 11.0 8.4   6.8   5.3   3.7   4.1   4.6   3.0   -   3.0   3.6   4.1   4.7   6.3   7.8   9.4   11.0 13.6 17.1 23.7 

Winnetka 36.5 30.0 28.4 20.8 19.3 16.7 14.1 12.6 10.0 8.4   6.8   5.3   5.7   6.1   4.6   3.0   -   2.0   2.6   3.1   4.7   6.3   7.8   9.4   12.0 15.6 22.1 

Indian Hill 37.1 30.5 29.0 21.4 19.8 17.3 14.7 13.1 10.6 9.0   7.4   5.8   6.3   6.7   5.1   3.6   2.0   -   2.0   2.6   4.1   5.7   7.3   8.8   11.4 15.0 21.6 

Kenilworth 37.7 31.1 29.5 22.0 20.4 17.8 15.3 13.7 11.1 9.6   8.0   6.4   6.8   7.3   5.7   4.1   2.6   2.0   -   2.0   3.6   5.1   6.7   8.3   10.8 14.4 21.0 

Wilmette 38.2 31.7 30.1 22.5 21.0 18.4 15.8 14.3 11.7 10.1 8.6   7.0   7.4   7.8   6.3   4.7   3.1   2.6   2.0   -   3.0   4.6   6.1   7.7   10.3 13.8 20.4 

Evanston Central Street 39.8 33.2 31.7 24.1 22.5 20.0 17.4 15.8 13.3 11.7 10.1 8.6   9.0   9.4   7.8   6.3   4.7   4.1   3.6   3.0   -   3.0   4.6   6.1   8.7   12.3 18.8 

Evanston Davis Street 41.4 34.8 33.2 25.7 24.1 21.5 19.0 17.4 14.8 13.3 11.7 10.1 10.6 11.0 9.4   7.8   6.3   5.7   5.1   4.6   3.0   -   3.0   4.6   7.1   10.7 17.3 

Evanston Main Street 42.0 35.4 33.8 26.2 24.7 22.1 19.5 18.0 15.4 13.8 12.3 10.7 11.1 11.6 10.0 8.4   6.8   6.3   5.7   5.1   3.6   2.0   -   3.0   5.6   9.1   15.7 

Rogers Park 43.5 37.0 35.4 27.8 26.2 23.7 21.1 19.5 17.0 15.4 13.8 12.3 12.7 13.1 11.6 10.0 8.4   7.8   7.3   6.7   5.1   3.6   3.0   -   4.0   7.6   14.1 

Ravenswood 47.1 40.5 39.0 31.4 29.8 27.2 24.7 23.1 20.5 19.0 17.4 15.8 16.3 16.7 15.1 13.6 12.0 11.4 10.8 10.3 8.7   7.1   6.6   5.0   -   5.0   11.6 

Clybourn 51.7 45.1 43.5 36.0 34.4 31.8 29.2 27.7 25.1 23.5 22.0 20.4 20.8 21.3 19.7 18.1 16.6 16.0 15.4 14.8 13.3 11.7 11.1 9.6   6.0   -   8.0   

Ogilvie Transportation 

Center
59.2 52.7 51.1 43.5 42.0 39.4 36.8 35.2 32.7 31.1 29.5 28.0 28.4 28.8 27.3 25.7 24.1 23.6 23.0 22.4 20.8 19.3 18.7 17.1 13.6 9.0   -   
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