William W. Hay Railroad Engineering Seminar

“High-Speed Rail Ballast Flight and Measures”

Dr. Guoqing Jing
Associate Professor
Beijing Jiaotong University

Date: Friday, April 29 2016
Location: Newmark Lab, Yeh Center, Room 2311
University of Illinois at Urbana-Champaign

Sponsored by

University of Illinois at Urbana-Champaign
NURail Center
Outline

Background

Research progress

Experience in China

Future development
Research Topics

1. High speed railroad ballast flight (350+)
2. Modern ballasted track structure (Composite)
3. Ballast bed mechanics and application
HSR network

20K km (125,000 miles)
China Slab track

CRTS I SLAB

CRTS II SLAB

CRTS II TWO-BLOCK

CRTS I TWO-BLOCK
Slab degradation

Water, temperature, settlement
Why China uses slab track?

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ballast flight</td>
<td>Dust drift</td>
<td>Optimization</td>
</tr>
<tr>
<td>2. Extra tough ballast resource</td>
<td>Low price</td>
<td>Increase price</td>
</tr>
<tr>
<td>3. Modern ballast rail</td>
<td>Traditional view</td>
<td>USP, PU, Geogrid, Ballast mat, Asphalt layer etc.)</td>
</tr>
<tr>
<td>4. Degradation and maintenance</td>
<td>Short life and cost</td>
<td>Maintenance period prolong 1.5 times</td>
</tr>
</tbody>
</table>
Ballasted track

Cyclic loading

Bearing ability
- Elasticity
- Drainage

Ballast redisplacement, breakage and wear

Settlement
- Rigidity
- Fouling

Function

Degradation
High Speed Ballasted track

Max 574.8 km/h (358 miles/h)

Development

<table>
<thead>
<tr>
<th>Generation</th>
<th>Speed km/h</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200+</td>
<td>Strength</td>
</tr>
<tr>
<td>2</td>
<td>300+</td>
<td>Dynamic stability</td>
</tr>
<tr>
<td>3</td>
<td>350+</td>
<td>Safety and LCC</td>
</tr>
</tbody>
</table>

Current challenge

<table>
<thead>
<tr>
<th>Environment</th>
<th>Geotechnical</th>
<th>Operation</th>
<th>Topic</th>
<th>Speed km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>Iran</td>
<td>France</td>
<td>freeze & thaw, Snow</td>
<td>400 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>desert & earthquake</td>
<td>300 km/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shared corridor</td>
<td>220 km/h</td>
</tr>
</tbody>
</table>
Ballast migration

- The displacement and accumulation.
- Void creation on ballast bed, lateral stability
- Increase ballast flight
Dust flight in existed HSR

• Dustbin and ballast fines were drifted away, especially for the 200-250km/h exited HSR, and delusion of so-called ballast flight.

 China speed up experience.

• Solutions:
• Fresh ballast add-in and undercutting.
• Prevent the foreign particle intrusion into ballast, such as cover or glue coated coal car, and train toilet updated.
Ballast flight in snow zone (Russia)

- Snow into ice, and from cold to warm zone, hit ballast or train etc.
- HA-DA HSR in China:
 - 1000 km, the minimum T: -40°C
 - Winter speed: 200 km/h
 - Summer speed: 300 km/h
- Solutions:
 - De-icing operations
 - Snow removal
 - Turnout Heating system
 - Slow down

(Norway, 2012)

(Japan, 2015)
Ballast flight

Train speeds above (300 km/h) the ballast particle acquires enough momentum from both wind and dynamic forces to hit the moving train.

- Possible consequences:
 - Damage on railhead and train
 - Potential damage to adjacent surroundings

(Bedini et al. 2012)
Ballast flight mechanism and risk

• In association with train, track, aerodynamics etc.

(Bedini et al. 2012)
Lab tests

- Vibration & wind tunnel (Gilles, 2014)
- Wind tunnel (H.B Kwon, 2010)

- Sleepers
- Sight on ballast

Air cannon (Hideyuki TAKAI, 2015)
Site tests

(P.W Powrie, 2013)
Research in practice

Theory

- Force Balance Equation
- Reliability Analysis

Lab test

- wind Tunnel Tests
- CFD simulation and optimization

Practice

- China HSR practice
- Innovative methods
Force Balance Equation Method

\[F_w + F_a = mg + ma_{\text{Total}} + F_i \]

\[ma_{\text{Total}} = F_w - mg + F_a \] \hspace{1cm} (1)

\[ma_{\text{Total}} = F_w - mg + ma = F_w - m(g - b_a) \] \hspace{1cm} (2)

\[F_w = \int \int_A v^2 f(A) f(v) dA d\nu \] \hspace{1cm} (3)

\[F_w = \alpha \int_A f(A) dA \] \hspace{1cm} (4)

Put (4) into (2), It is

\[ma_{\text{Total}} = \alpha \int_A f(A) dA - m(g - b_a) \] \hspace{1cm} (5)

Wind and vibration are main factors.

\[F_i \] is vital for ballast particle stability, compaction and bonding can be used to increase the ability.

\[g \] is gravity

\[\alpha \] is wind coefficient

\[b_a \] is ballast acceleration

vibration of ballast could be determined for the HSR.
\[a_{\text{Total}} = \frac{\alpha \int f(A) dA}{m} - (g - b_a) \] \hspace{1cm} (6)

Ballast shape, area/mass can be used to increase ballast particle stability.

\[m = \int \int \int p dx dy dz \] \hspace{1cm} (7)

\[a_{\text{Total}} = \frac{\alpha}{\int_0^z p dz} - (g - b_a) \] \hspace{1cm} (8)

Depend on the ballast acceleration and ballast flat shape, and density

\[p \] is ballast density

\[\int_0^z dz \] is ballast flat or height

✔ Ballast mass/shape/density is important for ballast flight

✔ Ballast acceleration reduction is efficient way to control ballast flight
Reliability Analysis

Based on the Force Balance Equation, by different Reliability risk assessment method, we could specify the ballast risk index, or the specific operation conditions.

- Reliability Assessment on HSR Ballast Flight Based on Monte Carlo

Condition:
- Mass
- Interlock force
- Mean wind velocity
- Acceleration

Probability of ballast flight

Risk evaluation:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10^6</td>
</tr>
<tr>
<td>Number of ballast flight grains</td>
<td>126108</td>
</tr>
<tr>
<td>Probability of ballast flight</td>
<td>12.61%</td>
</tr>
</tbody>
</table>

Monte Carlo simulation: N block ballast are simulated

JING guoqing; DING dong; SHAO SHUAI, Reliability Assessment on High Speed Railway Ballast Flight Based on Monte Carlo, Journal of Railway Science and Engineering, 2016
Ballast particle wind tunnel test

- Ballast particle start to move with the wind speed about 18m/s
- Ballast move distance correlated with shape and size of ballast particle.
Ballast bed wind tunnel test

- Bond ballast layers
- Wind force distribution
- Ballast size and shape effects
- Shoulder shape and geometry
- Wind Speed up to 30m/s,
 (equal to 350km/h train)

Wind tunnel tests on ballast bed (on-going)
Ballasted track aerodynamic by CFD

- High speed ballast bed aerodynamic effects
- Track stability vs. ballast flight risk (Computational Fluid Dynamics, CFD)
Aerodynamic shoulder

- Shoulder ballast height and shape
- Wind pressure increase with shoulder height.
Aerodynamic sleeper

Aerodynamic sleeper (ADIF)
China HSR Practice

• Reduce shoulder ballast height with speed increase

• Compact ballast bed

• Reduce crib ballast level

• Take measures to prevent ballast flight
• Reduce shoulder height

150mm for HSR 200-250km/h, lateral resistance >10 kN/sleeper (longitudinal 12)
100mm for HSR 250-300km/h, lateral resistance > 12 kN/sleeper (longitudinal 14)

My proposal and taken:
0 mm for HSR 350km/h, and -50mm for 400km/h
###Compact ballast bed

<table>
<thead>
<tr>
<th>speed (km/h)</th>
<th>Longitudinal (kN/sleeper)</th>
<th>Lateral (kN/sleeper)</th>
<th>Support stiffness (kN/mm)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200~250</td>
<td>≥12</td>
<td>≥10</td>
<td>≥110</td>
<td>≥1.75</td>
</tr>
<tr>
<td>250~300</td>
<td>≥14</td>
<td>≥12</td>
<td>≥120</td>
<td>≥1.75</td>
</tr>
</tbody>
</table>

Compaction of ballast bed is difficult, and damage to ballast aggregates.

Particle size gradation?
• Reduce ballast bed level

Compromise

Reduce crib ballast level: middle of sleeper parallel with ballast, under rail and turnout zone is 30-40mm (200-250km/h), under rail and turnout zone is 30-40mm (250-300km/h).
• Measures shall be taken

- Ballast bonding system is conventional method applied in China HSR, especially for the transition zone and long bridges.

China method

Japan method
Measures taken (Hefu HSR)

1. Zero height ballast shoulder
2. Smaller than 30mm, flat than 10mm were eliminated from bed surface.
3. Hefu HSR with 330km/h (206m/h) no ballast flight (2015).

2km once was slab track, then removed and replaced with ballast track, due to big settlement (former old lake)

Hefu HSR- the most beautiful HSR in china, operation 1 July 2015

Note: 350km/h tests on Yellow River Bridge, no ballast flight by marked color (2013)
Innovation methods

• Soft polyurethane (1)

Polyurethane (PU) at proper strength, which could be tamped

• surface application (3-5cm)

• soft polyurethane

• On-going test at BJTU
• Patented method and material (2)

1. Contribution and evolution, for example up-lift
2. Ballast-sleeper interaction optimization
Shoulder part PU application results in 3 times lateral resistance

Sleeper side part PU application results in 1 time lateral resistance
• Polyurethane at specific position, beyond the tamping zone
• Structure design (3)

1. Big or frame tie, fastener

2. -50 mm shoulder ballast

3. Asphalt sub-ballast layer
CFD coupled with FEM(DEM)

Dynamic and aerodynamic model

Wind force Vibration force Ballast bed

Risk Assessment