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Abstract 
North American railroads and the United States Department of Transportation (US DOT) Federal 
Railroad Administration (FRA) require periodic inspection of railway infrastructure to ensure safe 
railway operation.  The primary focus of this research is the inspection of North American Class I 
railroad mainline and sidings, as these generally experience the highest traffic densities.  Tracks 
that are subjected to heavy-haul traffic necessitate frequent inspection and have more intensive 
maintenance requirements, leaving railroads with less time to accomplish these inspections.  To 
improve the current (primarily manual) inspection process in an efficient and cost effective 
manner, machine vision technology can be developed and used as a robust alternative.  The 
machine vision system consists of a video acquisition system for recording digital images, a 
mobile rail platform for allowing video capture in the field, and custom designed algorithms to 
identify defects and symptomatic conditions from these images.  Results of previously developed 
inspection algorithms have shown good reliability in identifying cut spikes and rail anchors from 
field-acquired videos.  The focus of this paper is the development of machine vision algorithms 
designed to recognize turnout components and inspect them for defects.   In order to prioritize 
which turnout components are the most critical for the safe operation of trains, a risk-based 
analysis of the FRA accident database has been performed.  From these prioritized turnout 
components, those that are best suited for vision-based inspection are being further investigated. 
Future analysis of the machine vision system results, in conjunction with a comparison of 
historical data, will enhance the ability for longer-term proactive assessment of the health of the 
track system and its components. 
 
INTRODUCTION 
Railroads conduct regular inspections of their track in order to maintain safe and efficient 
operation.  Tracks that are subjected to heavy-haul traffic necessitate frequent inspection and 
more stringent maintenance requirements, leaving these railroads with less time to accomplish 
these inspections.  This makes them the most likely locations for cost-effective investment in new, 
more efficient, but potentially more capital-intensive inspection technology.  Machine vision 
systems are currently in use or under development for a variety of railroad inspection tasks, both 
wayside and mobile, including inspection of joint bars, surface defects in the rail, rail profile, 
ballast profile, track gauge, etc [1].  The University of Illinois at Urbana-Champaign (UIUC) has 
been involved in multiple railroad machine-vision research projects sponsored by the Association 
of American Railroads (AAR) Strategic Research Initiative and Technology Driven Train 
Inspection, BNSF Railway, NEXTRANS Region V Transportation Center, and the Transportation 
Research Board (TRB) High-Speed Rail IDEA Program [2-7].  These machine vision systems 
have been developed through interdisciplinary research collaboration between the Computer 
Vision and Robotics Laboratory (CVRL) at the Beckman Institute for Advanced Science and 
Technology and the Rail Technology Engineering Center (RailTEC) in the Department of Civil 
and Environmental Engineering.  The objective of the research presented here is to investigate 
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the feasibility of developing a machine vision system to inspect track fastening and turnout 
components in a more efficient, effective, and objective manner.  
 
RISK-BASED PRIORITIZATION OF TURNOUT COMPONENTS 
In order to determine which infrastructure components are most critical to the safe operation of 
trains, an analysis of the FRA Accident Database was conducted [8].  Previous research provided 
the following initial priorities for machine vision inspection of railway infrastructure: Raised, 
missing, or inappropriate patterns of cut spikes, displaced, missing, or inappropriate patterns of 
rail anchors and turnout component inspection.  Although the initial approach is valid, other 
variables can provide additional information on the risk associated with specific derailment 
causes and track component failures [9].  Therefore, a risk-based prioritization approach was 
used to select the turnout components that are most critical to the safe operation.  
 
Using data from the FRA Accident Database, a detailed evaluation of derailment data for track 
classes 4 and 5 was performed to quantify the risk of derailments at turnouts. For the period of 
1998 through 2009, the number of derailments (derailment frequency) was plotted against the 
number of cars derailed (consequence) for each derailment cause [1].  The end result of the 
analysis was the selection of the following rank-ordered turnout components/defects for 
inspection using machine vision: 
 

1. Switch point  - worn or broken  
2. Other frog, switch, and track appliance defects  
3. Turnout frog - worn or broken  
4. Switch connecting or operating rod - broken or defective  
5. Switch point  - gap between switch point and stock rail 

 
With this new prioritization of inspection tasks, the following section describes the procedures 
used for determining and/or reevaluating the methods for obtaining images of these components. 
 
IMAGE ACQUISITION SYSTEM DEVELOPMENT ON A MOBILE TEST PLATFORM 
The collection of images and video of track components under inspection is a critical part in the 
development of a machine vision system and gives rise to several requirements.  The image 
acquisition system consists of cameras that must be properly oriented to provide views of the 
components of interest.  The system must also be capable of obtaining images under various 
environmental conditions in order for the machine vision algorithms to reliably detect the track 
components.  Finally, it must be able to traverse the track while recording videos of the 
components under actual field conditions.  These requirements have been addressed and are 
briefly described in this section, which is concluded with current experiments involving lighting to 
improve image capture. 
 
The cameras selected must be oriented to provide views that permit the machine vision 
algorithms to consistently and reliably detect the track components of interest under various 
conditions.  These views of the components must not only show the entire component in its 
functional position, but also be conducive to distinguishing the component from background 
objects and be oriented properly for obtaining necessary measurements of these components.  
Obtaining images with defective components under real-world circumstances has proven to be 
challenging.  Prior to the development of an image acquisition system, a Virtual Track Model 
(VTM) was created [11] using North American recommended practices for track design [10].  This 
model of tangent and curved track provided a virtual environment that could be modified to suit 
particular experiments.  Initial experimentation with virtual cameras in the VTM resulted in the 
selection of two camera views for inspection: the lateral view and the over-the-rail view [11].  The 
lateral view provides a suitable view of tie plates, spikes and anchors, Figure 1(a).  The over-the-
rail view provides perpendicular views of the spike and anchors, Figure 1(b).  In addition, these 
virtual views were used to generate synthetic images for initial development of machine vision 
algorithms.  These experiments with the VTM also provided insight into challenges such as non-
uniform lighting, variation in component design, and defect recognition [11]. 
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                    (a)                                                        (b) 
Figure 1:  Camera Views: (a) Lateral View, (b) Over-the-rail View 

 
Beyond the virtual images, a method to capture video that would be representative of future 
cameras attached to a track inspection vehicle was needed for further the development of the 
machine-vision inspection algorithms.  A system consisting of a digital camera, a laptop, and 
image acquisition software was developed so the system would be portable allowing it to be 
taken out in the field to capture actual track conditions.  However, securing time and equipment to 
test the image acquisition system on active track throughout the developmental phases proved 
difficult.  Therefore, a mobile data acquisition system called the Video Track Cart (VTC) was 
designed for automated collection of continuous video of entire sections of track [12].  The VTC 
has been extensively used on low-density track such as the Railway Museum in Monticello, IL as 
well as Class I track in Champaign, IL.  During these field visits, video was captured of tangent 
track as well as turnouts of varying designs and conditions.  In addition, we captured video under 
a variety of natural lighting conditions, levels of vegetation, and ballast types in order to develop 
detection statistics on consistent component recognition under realistic field conditions.   
 
Lighting Experimentation for Proper Exposure of Components 
During the capture of track videos, under various environmental conditions, several difficulties 
with properly exposing different parts of the camera view were encountered.  For example, the 
lack of contrast between the steel spikes against the steel rail provides challenges for the 
automatic identification of these components.  As a solution, the exposure level of the images 
was increased to provide better contrast between the two, which was successful.  However, this 
compensation resulted in overexposed ballast when it was made up of light colored aggregate, 
causing difficulty in tie plate identification [12].  This indicated that, even in daylight situations, 
additional lighting may be required to properly expose all of the desired components in a single 
image. 
 
Currently, we are investigating low-wattage LED lighting, which can be powered by our VTC on-
board battery system.  The lighting is intended to illuminate the web of the rail without 
overexposing the ballast section at the bottom of the image, Figure 2(a). 
                
Test runs with the VTC were conducted on Class 1 track using the lighting system during video 
acquisition.  A similar method for the algorithm evaluation testing, described in the following 
section, was used to evaluate the impact of the lighting approach.  The proper identification and 
measurement of raised spikes showed the successful use of the initial lighting setup, Figure 2(b).  
The addition of lighting to the image acquisition system should further improve the consistency 
and reliability in detecting components of interest against a background of similar color and 
texture (e.g. steel). 
 
Additional lighting considerations have been studied in the approach to lighting for the VTC, 
including a review of the lighting methods currently being used on other systems under 
development [1].  However, these methods are highly correlated to the type of camera or the 
specific application and no common solution has emerged. 
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(a)                                                              (b) 

Figure 2:  VTC Lighting Setup:  (a) Handheld Camera Image of Light Illuminating 
the Web of the Rail, (b) Lateral View Image Showing Successful Measurement of 

Raised Spike Using Illuminated Image Captured from VTC 
 
DEVELOPMENT AND TESTING OF SPIKE AND ANCHOR INSPECTION ALGORITHMS 
Early algorithm development focused on spike, anchor, and tie detection and defect recognition.  
These algorithms can be summarized as a coarse-to-fine approach for detecting objects.  We first 
locate the track components with low variability in appearance and predictable locations (e.g. the 
rail), and then locate objects that are subject to high appearance variability (e.g. spike heads and 
anchors) in subsequent stages.  To increase robustness to changing environmental conditions 
and changes in object appearance, local features such as edges and texture information were 
also included in the model [11].  The spikes are located using spatial correlation with a previously 
developed template [11].  The search area for the spikes is limited after the tie plate and rail are 
both delineated given that spikes will only be found in certain positions.  The search area for the 
anchors is restricted to where the base of rail meets the ballast.  Anchors are detected by 
identifying their parallel edges [11]. 
 
To measure the system’s performance, we monitor the accuracy of the system as it identifies 
raised spikes.  In order to identify raised spikes, the distance from the base-of-rail to the spike 
head is measured.  This requires that both the spike head and the base-of-rail are correctly 
localized.  Since our algorithms identify defects in components that are near or over a tie (e.g. 
spikes and anchors) it is important to detect the tie and tie components reliably before localizing 
the exact parts of the components that will be used in distance measurements.  For evaluating 
the detection algorithms, we differentiate between precision and recall, since precision penalizes 
the erroneous detection of an object that is not present (i.e. false positives), and recall penalizes 
the missed detection of an object that is in fact present (i.e. false negatives).  We also measure 
the accuracy of the localization of certain parts of the components.  Our goal is to correctly 
localize the base-of-rail and the edge of the spike head.  Detecting the base-of-rail is trivial since 
all rails will have a base, but accurately localizing the exact line in the image that corresponds to 
the base-of-rail is more challenging. 
 
Experimental results show an accuracy of 100% for the base-of-rail localization using the lateral 
view, and 76% for the over-the-rail-view.  In the case of spikes, both views resulted in 71% 
accuracy for spike head localization.  For individual components, 93% of the ties were detected 
without false positives in the lateral view.  For over-the-rail view, all ties were detected, however 
8% of the detected ties were false positives.  Finally, 100% of the anchors were detected (100% 
recall), however only 80% of objects that were detected as "anchors" were in fact anchors (80% 
precision). 
 
METHOD FOR TRACK TYPE IDENTIFICATION USING PERIODICITY DETECTION 
Track components in turnouts differ in both size and shape from those found in normal tangent or 
curved track.  For this reason we must correctly identify the specific section of the track the 
system is inspecting and whether it contains special trackwork.  To accomplish this, we have 
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developed algorithms to look for periodic components (T) indicative of turnouts, such as frog bolts 
or joint bar bolts [1] 
 

 
(a) 

 
 

 
(b) 

 
Figure 3: Turnout Component Recognition:  (a) Original Image Switch Point 

Bolts, (b) Panoramic Mosaic from the Mid-rail Area 
 
The estimation of periodic component location within turnouts is carried out by converting the 
middle portion of the video, containing the rail web seen in Figure 4(a), into a panoramic mosaic, 
Figure 4(b).  The periodicity of the components in the panoramic mosaic is then estimated.  
Detecting periodicity in the spatial domain is unreliable due to the variability of component 
appearances and the sporadic noise from non-periodic components (or similar components in 
other areas of the track structure – e.g. insulated rail joints).  Alternatively, it is more reliable to 
investigate periodicity in a domain of texture responses, since each component typically has a 
characteristic shape that is captured as a texture response in the Gabor frequency domain [13].  
This was reported in [1], and we successfully isolated the frames of the video that contained the 
periodic switch point bolts, which are indicative of a turnout. 
 
APPROACH FOR TURNOUT COMPONENT INSPECTION  
Once the turnout area has been isolated in the inspection video, we identify important 
components within the turnout.  Components are identified in order of robustness.  The switch rod 
is easily identifiable in both over-the-rail and lateral viewpoints, so we detect it first using spatial 
template filters to detect strong horizontal gradients in the over-the-rail viewpoint, and spatial 
filters to detect the round switch rod bolts in the lateral viewpoint.  The heel of the switch is also 
found easily using a spatial template.   
 
Both viewpoints are then registered with each other by aligning them temporally with the frames 
containing the switch rod and heel.  The ties are then detected, and each detection aligns the 
videos in another temporal location.  Once this is accomplished, the switch point is detected and 
any chips on the switch point are detected and measured. 
 
Switch Point Chip Inspection 
Our goal in turnout component inspection is to detect the end of the switch point, and 
subsequently measure the amount of chipping.  We accomplish this through an algorithm that 
involves (1) detection of the turnout area within the field-acquired video, (2) detection of the end 
of the switch point, (3) delineation of the end point of switch boundaries (which, in the case of 
severe chipping, would be a hypothesis of the boundary), and (4) measurement of any chipping 
by measuring the detected point with respect to the hypothesized boundary. 
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This detection and measurement algorithm is demonstrated on the point of the switch shown in 
Figure 4.  The initial step, (1) detection of the turnout area, was already described in the previous 
section.  The remaining steps are illustrated in Figure 4(b) - (d).  
 

      
(a)                                                                  (b) 

      
(c)                                                                  (d) 

Figure 4: Algorithm for detection and measurement of end of the switch point, (a) original image 
of the switch point, (b) detection of the end of the switch point, (c) line detection for delineation, 

(d) delineation of the hypothesized end of the switch point 
 

In Figure 4(b), the result of the Canny edge detection algorithm is shown [13].  A filter was 
created to detect the part of the image where a corner is formed by the edges, and where the 
inside of the corner contains few edges.  This filter achieved a maximum response in the area 
that contains the red edges. 
 
In Figure 4(c), the boundary lines of the point of the switch are inferred.  We use a line detection 
algorithm that proposes candidate lines in the vertical and horizontal directions, and then finds the 
candidate lines that achieve the lowest sum of absolute differences with respect to the black and 
white Canny edge image.  The resulting detected lines are shown.  In Figure 4(d), these lines are 
truncated at the corner where they intersect so that the end of the switch point is delineated. 
 
For the final step in the algorithm, the red (actual) edges that were detected in Figure 4(b) are 
measured with respect to the lines shown in Figure 4(d) to determine how much chipping is 
present at the end of the switch point. 
 
FUTURE WORK 
Future work involves refinement of the machine vision algorithms to improve the reliability of 
spike and anchor detection. We will experiment with various lighting and environmental 
conditions, and once the algorithms and lighting conditions for inspection of spikes, anchors and 
turnout components have been refined, the system will be adapted for testing on a high-rail 
vehicle. 
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When we detect turnout components, it is typically known which components we are looking for 
(e.g. switch rods, switch rod bolts, etc).  For an autonomous system, it may be useful to detect 
and segment periodic components when no prior information is known about the components.  
Spectral estimation provides frequency detection, but not phase estimation.  We propose using 
autocorrelation in addition to periodicity detection to detect and segment the periodically occurring 
components. 
 
CONCLUSION  
The inspection of most railroad track components is currently conducted using manual, visual 
inspections.  These inspections are labor intensive and lack the ability to easily record and 
compare data to perform adequate trend analyses.  Moreover, they are subject to variability and 
subjectivity in different inspectors’ abilities and interpretation of what they observe.  Additionally, it 
is impractical to manually catalog the condition of such a large number of track components, thus 
it is difficult to develop a quantitative understanding of exactly how the non-critical or symptomatic 
defects may contribute to the occurrence of critical defects or other track health problems.   
 
Based on analysis of railroad derailment statistics and input from subject-matter experts, we have 
focused our research efforts on inspection of track fasteners and turnout components.  Our 
algorithms use edge detection and texture information to provide a robust means of detecting 
track components, which narrows the search area.  Within this restricted area, knowledge of 
probable component locations allows the algorithms to determine the presence of spikes and rail 
anchors even when there are variations in the appearance of the components.   
 
Experimental results using this approach have shown good reliability for component inspection 
using machine vision.  Recent work on periodicity detection methods, for automatically identifying 
transitions from tangent or curved track into special trackwork (e.g. turnouts), can now be used to 
initiate specialized machine vision algorithms to inspect particular components critical to these 
areas.  In addition, current work on inspecting switch points for chips, described here, can also be 
invoked when the system determines it has entered a turnout.  
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