
 1 

 
Condition Monitoring of Railway Turnouts and  
Other Track Components Using Machine Vision 

 
TRB 11-1442 

 
 
 
 

Submitted for publication in the Proceedings of the  
Transportation Research Board 90th Annual Meeting 

 
15 November 2010 

 
 
 
 
 
 

Luis Fernando Molina1, 3, Esther Resendiz2, J. Riley Edwards1, John M. Hart2, 
Christopher P. L. Barkan1, Narendra Ahuja2 

1Railroad Engineering Program 
Department of Civil and Environmental Engineering 

University of Illinois at Urbana-Champaign 
205 N. Mathews Ave., Urbana, IL 61801 

 

2Computer Vision and Robotics Laboratory 
Beckman Institute for Advanced Science and Technology 

405 N. Mathews Avenue, Urbana, IL, 61801 
 
 
 
 

Abstract (249 words) + Body (6178 words) + 4 Figures = 7,427 Total Words 

 
 

Luis Fernando Molina1 

molinac1@illinois.edu 
(217) 244-6063 

Esther Resendiz2 
eresendi@illinois.edu  

(217) 244-4174 

J. Riley Edwards1 
jedward2@illinois.edu 

(217) 244-7417 
 

John M. Hart2 
j-hart3@illinois.edu 

(217) 244-4174 

Christopher P. L. Barkan1 
cbarkan@illinois.edu 

(217) 244-6338 

Narendra Ahuja2 

ahuja@illinois.edu  
(217) 333-1837 

 
3 Corresponding author



Molina et al. 11-1442 2 

ABSTRACT 
Individual railroad track maintenance standards and the Federal Railroad Administration (FRA) 
Track Safety Standards require periodic inspection of railway infrastructure to ensure safe and 
efficient operation.  This inspection is a critical, but labor-intensive task that results in large 
annual operating expenditures and has limitations in speed, quality, objectivity, and scope.  To 
improve the cost-effectiveness of the current inspection process, machine vision technology can 
be developed and used as a robust supplement to manual inspections.  This paper focuses on the 
development and performance of machine vision algorithms designed to recognize turnout 
components, as well as the performance of algorithms designed to recognize and detect defects 
in other track components.  In order to prioritize which components are the most critical for the 
safe operation of trains, a risk-based analysis of the FRA Accident Database was performed.  
Additionally, an overview of current technologies for track and turnout component condition 
assessment is presented. 

The machine vision system consists of a video acquisition system for recording digital 
images of track and customized algorithms to identify defects and symptomatic conditions within 
the images.  A prototype machine vision system has been developed for automated inspection of 
rail anchors and cut spikes, as well as tie recognition.  Experimental test results from the system 
have shown good reliability for recognizing ties, anchors, and cut spikes.  This machine vision 
system, in conjunction with defect analysis and trending of historical data, will enhance the 
ability for longer-term predictive assessment of the health of the track system and its 
components. 
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INTRODUCTION 
Railroads conduct regular inspections of their track in order to maintain safe and efficient 
operation.  In addition to internal railroad inspection procedures, periodic track inspections are 
required under the Federal Railroad Administration (FRA) Track Safety Standards.  The 
objective of this research is to investigate the feasibility of developing a machine vision system 
to make track inspection more efficient, effective, and objective.  In addition, interim approaches 
to automated track inspection are possible, which will potentially lead to greater inspection 
effectiveness and efficiency prior to full machine vision system development and 
implementation.  Interim solutions include video capture using vehicle-mounted cameras, image 
enhancement using image-processing software, and assisted automation using machine vision 
algorithms (1). 

The primary focus of this research is inspection of North American Class I railroad 
mainline and siding tracks, as these generally experience the highest traffic densities.  High 
traffic densities necessitate frequent inspection and more stringent maintenance requirements, 
and leave railroads less time to accomplish it.  This makes them the most likely locations for 
cost-effective investment in new, more efficient, but potentially more capital-intensive inspection 
technology.  The algorithms currently under development will also be adaptable to many types of 
infrastructure and usage, including transit and some components of high-speed rail (HSR) 
infrastructure. 

The machine vision system described in this paper was developed through an 
interdisciplinary research collaboration at the University of Illinois at Urbana-Champaign 
(UIUC) between the Computer Vision and Robotics Laboratory (CVRL) at the Beckman 
Institute for Advanced Science and Technology and the Railroad Engineering Program in the 
Department of Civil and Environmental Engineering. 
 
CURRENT TRACK INSPECTION TECHNOLOGIES USING MACHINE VISION 
The international railroad community has undertaken significant research to develop innovative 
applications for advanced technologies with the objective of improving the process of visual 
track inspection.  The development of machine vision, one such inspection technology which 
uses video cameras, optical sensors, and custom designed algorithms, began in the early 1990’s 
with work analyzing rail surface defects (2). 

Machine vision systems are currently in use or under development for a variety of 
railroad inspection tasks, both wayside and mobile, including inspection of joint bars, surface 
defects in the rail, rail profile, ballast profile, track gauge, intermodal loading efficiency, railcar 
structural components, and railcar safety appliances (1, 3-21, 23).  The University of Illinois at 
Urbana-Champaign (UIUC) has been involved in multiple railroad machine-vision research 
projects sponsored by the Association of American Railroads (AAR), BNSF Railway, 
NEXTRANS Region V Transportation Center, and the Transportation Research Board (TRB) 
High-Speed Rail IDEA Program (6-11). 

In this section, we provide a brief overview of machine vision condition monitoring 
applications currently in use or under development for inspection of railway infrastructure.  
Railway applications of machine vision technology have three main elements: the image 
acquisition system, the image analysis system, and the data analysis system (1).  The attributes 
and performance of each of these individual components determines the overall performance of a 
machine vision system.  Therefore, the following review includes a discussion of the overall 
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machine vision system, as well as approaches to image acquisition, algorithm development 
techniques, lighting methodologies, and experimental results. 
 
Rail Surface Defects 
The Institute of Digital Image Processing (IDIP) in Austria has developed a machine vision 
system for rail surface inspection during the rail manufacturing process (12).  Currently, rail 
inspection is carried out by humans and complemented with eddy current systems.  The objective 
of this machine vision system is to replace visual inspections on rail production lines.  The 
machine vision system uses spectral image differencing procedure (SIDP) to generate three-
dimensional (3D) images and detect surface defects in the rails.  Additionally, the cameras can 
capture images at speeds up to 37 miles per hour (mph) (60 kilometers per hour (kph)).  
Although the system is currently being used only in rail production lines, it can also be attached 
to an inspection vehicle for field inspection of rail. 

Additionally, the Institute of Intelligent Systems for Automation (ISSIA) in Italy has 
been researching and developing a system for detecting rail corrugation (13).  The system uses 
images of 512x2048 pixels in resolution, artificial light, and classification of texture to identify 
surface defects.  The system is capable of acquiring images at speeds of up to 125 mph (200 
kph).  Three image-processing methods have been proposed and evaluated by IISA: Gabor, 
wavelet, and Gabor wavelet.  Gabor was selected as the preferred processing technique.  
Currently, the technology has been implemented through the patented system known as Visual 
Inspection System for Railways (VISyR). 
 
Rail Wear 
The Moscow Metro and the State of Common Means of Moscow developed photonic system to 
measure railhead wear (14).  The system consists of 4 CCD cameras and 4 laser lights mounted 
on an inspection vehicle.  The cameras are connected to a central computer that receives images 
every 20 nanoseconds (ns).  The system extracts the profile of the rail using two methods (cut-off 
and tangent) and the results are ultimately compared with pre-established rail wear templates. 
 
Tie Condition  
The Georgetown Rail Equipment Company (GREX) has developed and commercialized a 
crosstie inspection system called AURORA (15).  The objective of the system is to inspect and 
classify the condition of timber and concrete crossties.  Additionally, the system can be adapted 
to measure rail seat abrasion (RSA) and detect defects in fastening systems.  AURORA uses 
high-definition cameras and high-voltage lasers as part of the lighting arrangement and is 
capable of inspecting 70,000 ties per hour at a speed of 30-45 mph (48-72 kph).  The system has 
been shown to replicate results obtained by track inspectors with an accuracy of 88%. 

Since 2008, Napier University in Sweden has been researching the use of machine vision 
technology for inspection of timber crossties (16).  Their system evaluates the condition of the 
ends of the ties and classifies them into one of two categories: good or bad.  This classification is 
performed by evaluating quantitative parameters such as the number, length, and depth of cracks, 
as well as the condition of the tie plate.  Experimental results showed that the system has an 
accuracy of 90% with respect to the correct classification of ties.  Future research work includes 
evaluation of the center portion of the ties and integration with other non-destructive testing 
(NDT) applications. 
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In 2003, the University of Zaragoza in Spain began research on the development of 
machine vision techniques to inspect concrete crossties using a stereo-metric system to measure 
different surface shapes (17).  The system is used to estimate the deviation from the required 
dimensional tolerances of the concrete ties in production lines.  Two CCD cameras with a 
resolution of 768x512 pixels are used for image capture and lasers are used for artificial lighting.  
The system has been shown to produce reliable results, but quantifiable results were not found in 
the available literature. 
 
Ballast 
The ISSIA has also been developing a system capable of reconstructing 3D surfaces of the 
ballast section (18).  The objective of the system is to detect anomalous conditions within the 
ballast surface that are indicative of situations that could result in a loss of track stability.  The 
system finds the depth of ballast voids from a set of 2D images.  Next, the system uses high 
definition cameras of 2048 pixels per line and uses stereo matching techniques to generate the 
3D images.  Since the method employed to process images requires significant computational 
power, future work will be aimed at improving the analysis technique in order to make the 
system feasible for revenue service. 
 
Fastening Systems 
Visual Inspection System for Railways (VISyR) is a patented commercial system that has been 
developed for detecting hexagonal bolts in European fastening systems (19).  VISyR collects 
real-time image data at a maximum speed of 125 mph (200 kph).  Cameras capture images of 
1,024 pixels per line and artificial lighting (OSRAM 41 850 FL) is used to provide adequate 
illumination for image capture.  The image processing system uses discrete wavelet transforms 
for bolt detection in real-time.  VISyR also includes a module for detecting rail surface defects.  
The system has an accuracy of 99.6% for detecting visible bolts and 95% for detecting missing 
bolts.  It has also been tested for the detection of elastic fasteners with similar accuracies. 

The University of Loughborough (England) has developed a machine vision system 
capable of detecting missing elastic fastening clips on concrete ties (20).  The system was tested 
using a camera mounted near a train wheel and it also incorporated artificial lighting.  The 
images were obtained using a resolution of 384x288 pixels.  Experimental results showed 
accuracies of 84.7% in detecting missing clips and 95.3% in clip recognition. 
 
General Track Structure Inspection 
The University of Central Florida has been developing a system for measuring track gauge and 
inspecting fasteners (21).  The system uses high-speed CCD cameras with a resolution of 
1,024x768 pixels.  The camera is synchronized with strobe lights to minimize the difference in 
contrast during the day.  Additionally, sun shields were mounted in the cart to eliminate the 
effect of shadows in the images.  The system detects the edges of the rails, and by exploiting the 
known distance between the two cameras, provides an estimate for track gauge.  Future work 
includes the implementation of the system for revenue service and the development of 
algorithms to detect other type of track component defects. 

The FRA and ENSCO began development of a machine-vision-based joint bar inspection 
system in 2002 (22).  The system uses high-resolution cameras with high-powered xenon lights 
to capture images of joint bars.  It collects images at a maximum speed if 65 mph (105 kph).  
ENSCO has incorporated this technology into their VisiRailTM Joint Bar Inspection System.  The 
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system primarily finds external cracks in joint bars.  Currently, the system requires manual 
interpretation of image data to determine true joint condition.  Experimental results showed an 
accuracy of 98%, but under non-ideal track conditions the joint detection accuracy rate declines 
to 85%.  ENSCO is continuing work on improving their algorithms to increase the crack 
detection rate without increasing the number of false positives. 

Cybernétix, in conjunction with the French National Railways (SNCF), has developed a 
commercial system for inspecting rails, fastening systems, the rail gap in joint bars, and 
reconstructing the ballast profile (23).  The system uses an optical system and machine vision 
algorithms to capture data at speeds of up to 200 mph (320 kph).  The system is currently being 
used by SNCF for track inspection. 
 
Summary of Inspection Technologies 
Many machine vision techniques have been investigated and systems developed throughout the 
world to inspect railroad track components including: rail, ties, fastening systems, joint bars, and 
ballast.  These systems have demonstrated the potential for machine vision to enhance the 
inspection of railway infrastructure.  In many cases, experimental results have shown accuracies 
greater than 80% and measurement speeds of up to 200 mph (320 kph).  Future work includes 
further experimentation with variable lighting conditions, especially adverse situations such as 
weather-related events and darkness.  Additionally, more research is needed to improve 
algorithm-processing speeds and study the integration of machine vision with other NDT 
systems to perform real-time data analysis and improve reliability. 
 
RISK-BASED PRIORITIZATION OF TURNOUT COMPONENTS 
Safe and efficient network operation is of utmost importance to the rail industry.  In order to 
determine which infrastructure components are most critical to the safe operation of trains, an 
analysis of the FRA Accident Database was conducted (3, 4, 24).  Previous research direction 
and prioritization was based on the frequency of derailments, available technology, severity of 
defects and their potential contribution to accident prevention, and input from railway industry 
experts (3, 4, 5).  This approach provided the following initial priorities for machine vision 
inspection of railway infrastructure: 

1. Raised, missing, or inappropriate patterns of cut spikes 
2. Displaced, missing, or inappropriate patterns of rail anchors 
3. Turnout component inspection 
Although the initial approach is valid, other variables, such as the number of cars 

derailed, can provide additional information on the risk associated with specific derailment 
causes and track component failures (25).  Therefore, a risk-based prioritization approach was 
used to select the turnout components that are most critical to the safe operation.  It should also 
be noted that none of the aforementioned machine vision railway applications addressed turnout 
component inspection, hence our interest in researching this area of the railway infrastructure. 
 
Analysis of the FRA Accident Database 
The initial data analysis for the risk-based prioritization of track components used track-caused 
derailment data from 1998 to 2009.  The data were classified into five FRA-established 
derailment cause categories (Figure 1).  Some components, such as those associated with 
roadbed and geometry, are currently being inspected by other technologies including 
autonomous track geometry cars and ground penetrating radar (GPR).  Additionally, defects 
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related to category one (rail, joint bar, and rail anchoring) were taken into account in the initial 
prioritization and subsequent research.  For this reason, category three (frog, switches and track 
appliances) was selected for further evaluation.  Most of these components are currently 
inspected using manual, visual inspection and may be amenable to machine vision inspection (1, 
4). 
 

0 400 800 1200 1600 

Rail, Joint Bar and Rail Anchoring 

Track Geometry 

Frogs, Switches and Track 
Appliances 

Roadbed 

Other Way and Structure 

Numer of Accidents 
 

FIGURE 1 Top Track-Related Derailment Causes by Track Category from 1998-2009,  
Used for Track Component Inspection Prioritization. 

 
Risk-Based Turnout Component Inspection Prioritization 
Using data from the FRA Accident Database, a detailed evaluation of derailment data for track 
classes 4 and 5 was performed to quantify the risk of derailments at turnouts.  Risk can be 
defined as the probability of an accident occurring multiplied by its consequence (25).  With this 
being said, we selected the number of cars derailed as a proxy for consequence. 

For the period of 1998 through 2009, the number of derailments (derailment frequency) 
was plotted against the number of cars derailed (consequence) for each derailment cause.  Figure 
2 was divided into four quadrants based on the average value of each axis.  The vertical dotted 
line represents the average derailment frequency and the horizontal dotted line represents the 
average number of cars derailed for all turnout-related derailment causes.  
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FIGURE 2 Railroad Track-Caused Derailments by Cause Severity on 

Track Classes 4 and 5, from 1998 – 2009. 
 
Each quadrant in Figure 2 has a different meaning, and provides valuable insight into the 

prioritization of turnout components for machine vision inspection.  For example, the lower left 
quadrant represents infrequent accident causes that result in low consequence derailments.  The 
causes contained in the upper left quadrant are also rare, but their consequences are higher than 
average.  The values in the lower right quadrant are more common but they are associated with 
low-consequence derailments.  Of greatest importance are the accident causes in the upper right 
quadrant, as they occur at above-average frequencies and result in high-consequence 
derailments. 

The causes contained in the upper quadrants were included in our priorities for inspection 
primarily due to the severity of these types of defects.  Additionally, they account for almost 
80% of turnout derailments on track classes 4 and 5.  It is interesting to note that no causes were 
classified in the lower right (high frequency / low severity) quadrant.  The end result of the 
analysis was the selection of the following rank-ordered turnout components/defects for 
inspection using machine vision: 

1. Switch point  - worn or broken  
2. Other frog, switch, and track appliance defects  
3. Turnout frog - worn or broken  
4. Switch connecting or operating rod - broken or defective  
5. Switch point  - gap between switch point and stock rail 
In addition to the five tasks selected for inspection, missing bolts and cotter pins were 

included into our initial turnout inspection priority, since the inspection of these components in 
turnouts is conducted primarily using visual means and they are suitable candidates for 
inspection using machine vision. 
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Track inspection requirements for turnout components  
The FRA Track Safety Standards (26) contain specific regulations for the inspection of track and 
turnout components, and provide guidance as to which components should be inspected using 
machine vision.  According to the regulations for worn or broken switch points (section 
213.135(h)): “Unusually chipped or worn switch points shall be repaired or replaced” (26).  For 
this particular case, the criterion for the allowable magnitude of cracks is not established.  This is 
partially because these defects may cause a derailment in conjunction with other conditions, such 
as the improper wheel/rail interaction, thus it is harder to define an acceptable defect threshold.  
Therefore, experience of the inspector and railway management must be used to determine 
specific conditions that should be repaired to reduce the risk of derailments (27).  Alternatively, 
in the case of frogs points (section 213.137(b)), regulations are more specific and frogs worn or 
broken more than 5/8 inch downward and 6 inches back from the point of frog are not allowed 
for track classes with speeds greater that 10 mph (16 kph).  Moreover, it is required that the 
flangeway may not be less than 1 1/2” in depth and width for FRA track classes 2 through 5.  
Finally, section 213.137(c) restricts the maximum operational speed over a frog to 10 mph (16 
kph) if the tread is worm more than 3/8”. 

Additionally, the FRA Track Safety Standards provide regulatory guidance as to how to 
maintain the switch stand and rods and state that: “Each switch stand and connecting rod shall be 
securely fastened and operable without excessive lost motion” (26).  In this case, a broken or 
defective connecting switch road could generate (in conjunction with the train movement) a gap 
between the switch points and the stock rail, resulting in a possible derailment.  Specific defects 
are dependant on the switch stand design, thus different types of conditions and component 
designs should be incorporated into the machine vision inspection system. 

Finally, the FRA requires that the switch points fit securely against the stock rail when 
the switch is operating in either position.  This will allow the wheels to pass safely through the 
switch points.  An mandated range of values for measuring the gap between switch point and 
stock rail is not provided, but the FRA Track Safety Standards Compliance Manual (27) states 
that most industry standards have defined 4¾ inches between switch point and stock rail 
measured at rod number 1 as acceptable. 

In addition to the FRA Track Safety Standards, Class I track engineering standards and 
the Track Safety and Condition Index (TSCI) were used to determine guidelines and procedures 
for turnout component inspection (28, 29, 30).  Similar considerations were made in previous 
work (1, 3, 4, 5) focusing on anchor and cut spike inspection, taking into account the expertise of 
track inspectors, researchers, and track maintenance managers at Class I railroads. 
 
OVERVIEW OF PREVIOUS WORK 
Collecting images and video of track components is a critical part in the development of a 
machine vision system.  There are important trade-offs between where the candidate components 
are located in the view, how many components can be seen in a single view, and how many 
unique views are required to perform the desired inspections.  Views of the components must not 
only show the entire component in its functional position(s), but also be conducive to 
distinguishing the component from background objects and be oriented properly for obtaining 
necessary measurements during the inspection of these components.  In addition, the cameras 
must be placed to provide views that permit the machine vision algorithms to consistently and 
reliably detect the track components of interest under various conditions. 
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Experimental Data Acquisition System 
Securing time to test the image acquisition system on active track during the developmental 
phases proved difficult, thus a Virtual Track Model (VTM) was created using North American 
recommended practices for track design (1, 31). 

Initial experimentation with the VTM camera angles resulted in the selection of two 
camera views for inspection: the lateral view (Figure 3A) and the over-the-rail view (Figure 3B) 
(1, 3, 4, 5).  The lateral view provides a suitable view of tie plates, spikes and anchors.  The over-
the-rail view provides perpendicular views of the spike and anchors.  In addition, virtual views 
were used to generate synthetic images from these views for initial development of machine 
vision algorithms.  They provided insight into challenges such as non-uniform lighting, variation 
in component design, and defect recognition (1). 

 
 

        
        A: Lateral View.       B: Over-the-rail View. 

 
FIGURE 3 Camera Views. 

 
Beyond the virtual images, a method to capture video that would be representative of 

future cameras attached to a track inspection vehicle was needed for further development of the 
machine-vision inspection algorithms.  For this reason an experimental data acquisition system 
called the Video Track Cart (VTC) was designed for collecting continuous video of track 
sections of interest on low-density track (1). 

Three main components were considered in developing the experimental video 
acquisition system: the camera, lens, and imaging hardware.  A detailed evaluation of different 
factors (1) led to the selection of a Dragonfly®2 DR2-COL camera for video data collection.  
This camera has an image resolution of 640x480 pixels (VGA) and can record video at up to 60 
frames per second (fps) with shutter speeds as fast as 1/100,000 seconds (32).  The camera is 
equipped with a 6 mm (wide-angle) lens.  The laptop selected uses a Microsoft Windows XP 
Professional operating system, has 4 GB of RAM, an Intel® Core ™ 2 Duo P9600 2.66 GHz 
processor, and a High Performance Solid State Drive. 

Additional considerations are being studied in the approach to lighting.  Currently, we are 
investigating low-wattage LED lighting, which will be powered by our VTC on-board battery 
system.  The addition of lighting should improve the consistency and reliably in detecting the 
components of interest against a background of similar color and texture (e.g. steel). 
 
Field Work 
The VTC has been used on low-density track, where track occupancy time is easier to obtain.  
Video recording sessions have taken place at the Monticello Railway Museum in Monticello, IL 
as well as Class I track.  During these field visits, we captured video of tangent track as well as 
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turnouts of varying designs and conditions.  In addition, we captured video under a variety of 
natural lighting conditions, levels of vegetation, ballast types, and levels of ballast fouling in 
order to develop statistics on consistent component recognition under realistic field conditions.  
Additionally, experimentation to identify the transition between the tangent and turnout sections 
of track was performed in order to invoke the appropriate inspection algorithms (1). 
 
Early Algorithm Development and Spike and Anchor Inspection  
Early algorithm development focused on spike, anchor, and tie detection and defect recognition.  
These algorithms can be summarized as a coarse-to-fine approach for detecting objects.  We first 
locate the track components with low variability in appearance and predictable locations (e.g. the 
rail), and then locate objects that are subject to high appearance variability (e.g. spike heads and 
anchors) in subsequent stages.  To increase robustness to changing environmental conditions and 
changes in object appearance, local features such as edges and texture information were also 
included in the model (1, 3, 4, 5). 

The spikes are located using spatial correlation with a previously developed template (1, 
3, 4).  The search area for the spikes is limited after the tie plate and rail are both delineated 
given that spikes will only be found in certain positions.  The search area for the anchors is 
restricted to where the rail meets the ballast.  Anchors are detected by identifying their parallel 
edges (1, 3, 4, 5). 
 
Experimental Results for Spikes, Anchors and Ties 
To measure the system’s performance, we monitor the accuracy of the system as it identifies 
raised spikes.  In order to identify raised spikes, the distance from the base-of-rail to the spike 
head is measured.  This requires that both the spike head and the base-of-rail are correctly 
localized, but localization is only possible after the components are first detected. 
 Since our algorithms identify defects in components that are near or over a tie (e.g. spikes 
and anchors) it is important to detect the tie and tie components reliably before localizing the 
exact parts of the components that will be used in distance measurements.  For evaluating the 
detection algorithms, we differentiate between precision and recall, since precision penalizes the 
erroneous detection of an object that is not present (i.e. false positives), and recall penalizes the 
missed detection of an object that is in fact present (i.e. false negatives). 

We also measure the accuracy of the localization of certain parts of the components.  Our 
goal is to correctly localize the base-of-rail and the edge of the spike head.  Detecting the base-
of-rail is trivial since all rails will have a base, but accurately localizing the exact line in the 
image that corresponds to the base-of-rail is more challenging. 

Experimental results show an accuracy of 100% for the base-of-rail localization using the 
lateral view, and 76% for the over-the-rail-view.  In the case of spikes, both views resulted in 
71% accuracy for spike head localization.  For individual components, 93% of the ties were 
detected without false positives in the lateral view.  For over-the-rail view, all ties were detected, 
however 8% of the detected ties were false positives.  Finally, 100% of the anchors were 
detected (100% recall), however only 80% of objects that were detected as "anchors" were in 
fact anchors (80% precision). 
 
APPROACH FOR TURNOUT INSPECTION USING MACHINE VISION  
Track components in turnouts differ in both size and shape from those found in normal tangent 
or curved track.  For this reason we must correctly identify the specific section of the track the 
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system is inspecting and whether it contains special trackwork.  To accomplish this, we have 
developed algorithms to look for periodic components (T) indicative of turnouts, such as frog 
bolts or joint bar bolts (Figure 4A). 
 

 
A: Original Image Switch Point Bolts. 

 
 

B: Panoramic Mosaic from the Mid-rail Area. 
 

 
C: Gabor Frequency of the Panoramic Mosaic. 

 

 
D: One-dimensional Signal from Gabor Frequency of Panoramic Mosaic. 

 
E: Spectral Analysis on One-dimensional Signal. 

 
FIGURE 4 Turnout Component Recognition. 

 
The estimation of periodic component location within turnouts is carried out by 

converting the middle portion of the video, containing the rail web, into a panoramic mosaic 
(Figure 4B).  The periodicity of the components in the panoramic mosaic is then estimated, and 
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the components subsequently localized.  Detecting periodicity in the spatial domain is unreliable 
due to the variability of component appearances and the sporadic noise from non-periodic 
components (or similar components in other areas of the track structure – e.g. insulated rail 
joints).  Alternatively, it is more reliable to investigate periodicity in a domain of texture 
responses, since each component typically has a characteristic shape that is captured as a texture 
response in the Gabor frequency domain (33). 

The image is transformed in a block-wise manner into the Gabor frequency domain 
(Figure 4C).  Each block’s height is identical to the height of the rail web area shown in Figure 
4B, and each block’s response is computed using an overlapping width with its right neighboring 
block (Figure 4C).  This block-wise Gabor response is then processed as a one-dimensional 
signal (Figure 4D).  Spectral analysis is subsequently performed to find periodic components 
(Figure 4E).  Spectral analysis is a technique in which a received signal is analyzed for the 
frequency components that it contains.  We use the Multiple Signal Classification (MUSIC) 
algorithm due to its ability to extract frequencies from a signal containing multiple superimposed 
signals of different frequencies (34). 

The MUSIC algorithm outputs a frequency analysis, in which the input signal’s 
frequency response is computed for each frequency (Figure 4E).  Dominant frequencies are then 
detected.  The output of Figure 4E shows the power at each radial frequency, ω.  Each radial 
frequency relates to the period, T, by the formula ω=2π/T.  Hence, when the peak is located at 
T=0.14π, the component repeats every T=14.3 blocks (35).  This is a satisfactory approximation 
since the distance between bolts is not always constant (Figure 4A), and can vary depending on 
the turnout angle, component and turnout design, and turnout manufacturer.  Nevertheless, this 
approximation allows us to reliably identify the switch area in a section of track (Figure 4B). 

Spectral estimation provides frequency detection, but not phase estimation.  Because of 
this, we are able to detect the presence of a turnout, but we are not able to localize the repeating 
component using only spectral estimation.  In the future, if localization is needed, then 
autocorrelation can be performed on the blocks in the Gabor frequency domain.  Candidate 
blocks would be proposed that have a strong Gabor frequency response (Figure 4C).  The 
autocorrelation between a candidate block and all blocks that are nT blocks apart would be 
measured, where n is a positive integer.  Blocks that yield a strong Gabor response and that are 
highly correlated to blocks nT away are considered repeating components. 

The use of this periodicity detection algorithm, which can identify specific sections of 
track based on the appearance of periodic component locations, will be key to invoking distinct 
machine vision algorithms to identify and inspect unique components found in track. 
 
FUTURE WORK 
Future work involves refinement of the machine vision algorithms to improve the reliability of 
spike and anchor detection.  Also, we will experiment with several machine learning methods to 
perform component detection in the presence of anomalies such as leaves.  Additionally, since 
machine vision algorithms require previously stored models of the textures and components, we 
will research methods of dynamically updating the models.  Once the algorithms and lighting for 
inspection of spikes, anchors and turnout components have been refined, the system will be 
adapted for testing on a high-rail vehicle. 
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CONCLUSION  
The inspection of most railroad track components is currently conducted using manual, visual 
inspections.  These inspections are labor intensive and lack the ability to easily record and 
compare data to perform adequate trend analyses.  Moreover, they are subject to variability and 
subjectivity in different inspectors’ abilities and interpretation of what they observe.  
Additionally, it is impractical to manually catalog the condition of such a large number of track 
components, thus it is difficult to develop a quantitative understanding of exactly how the non-
critical or symptomatic defects may contribute to the occurrence of critical defects or other track 
problems.  Based on analysis of railroad derailment statistics and input from subject-matter 
experts, we have focused our research efforts on inspection of cut spikes, rail anchors, and 
turnout components.  Our algorithms use edge detection and texture information to provide a 
robust means of detecting track components, which narrows the search area.  Within this 
restricted area, knowledge of probable component locations allows the algorithms to determine 
the presence of spikes and rail anchors even when there are variations in the appearance of the 
components.  Experimental results using this approach have shown good reliability for 
component inspection using machine vision.  Recent work on periodicity detection methods, for 
automatically identifying transitions from tangent or curved track into special trackwork (e.g.  
turnouts), can now be used to initiate specialized machine vision algorithms to inspect particular 
components critical to these areas. 
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