Analysis of the temperature effect on concrete crosstie flexural behavior

Alvaro E. Canga Ruiz, Yu Qian, J. Riley Edwards, Marcus S. Dersch

HIGHLIGHTS

- Temperature at top and base of concrete crossties are linearly related to ambient.
- Change in support conditions due to temperature gradient affects flexural behavior of crossties.
- Relation between temperature gradient and bending moment variation under train loading is linear.
- Curling due to temperature gradient can increase flexural demand up to 38 kip-in at center and rail seats.
- Temperature gradient can lead to a reduction of the flexural capacity of concrete crossties as high as 21%.

ABSTRACT

The manner in which temperature affects concrete components or structures has been studied extensively for many applications, such as pavements, bridges, and frames. However, little attention has been given to the temperature effects on concrete railroad crossties. Recent research at the University of Illinois at Urbana-Champaign revealed the relationship between temperature gradient and curling on freight railroad concrete crossties, which showed that temperature gradient could change the support conditions of the crossties, affecting their flexural performance. This paper presents the results from an extensive field study of temperature effects on the flexural behavior of rail transit concrete crossties, part of a larger research program aimed at designing more efficient and resilient concrete crossties for rail transit applications. Field instrumentation was installed on light, heavy, and commuter rail systems to monitor temperature variation and corresponding concrete crosstie flexural behavior for up to 10 months at each location. A linear relationship between the temperature in the crosstie and the ambient temperature is observed. Additionally, the bending moment distribution under revenue service loading conditions is found to be directly affected by the temperature gradient between top and bottom of the crosstie. This effect is believed to be a consequence of the variation in the support condition due to curling, and is thought to be independent of the crosstie design or loading environment. A linear correlation between the temperature gradient variation in the crosstie and the flexural behavior of the crosstie is observed. A maximum difference of 38 kip-in (4.29 kN-m) for the center negative bending moment of the concrete crosstie was found due to a change in the temperature gradient from -10 °F (-23.3 °C) to 37 °F (20.6 °C), which represents 21% of the design capacity. Based on the analysis of field observations, a correction factor of 1 kip-in/°F (0.023 kN-m/°C) is recommended to account for the temperature gradient as a design variable for future rail transit concrete crossties.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Ballasted track is the most extensive type of railroad track structure both in North America and throughout the world. As one of the key components in the ballasted track, crossties (also known as sleepers) are installed perpendicular to the track. They are embedded in the ballast and the rail is connected to them with fasteners. Crossties are expected to transfer and distribute wheel loads from the rail to the ballast, restrain the track against lateral, longitudinal, and vertical movement, and maintain track gauge [1]. Crossties are primarily subjected to bending due to their loading and support conditions, similar to beam elements. Even though
concrete cross ties represent a small portion of the market when compared with timber cross ties, the number of concrete cross ties is increasing and concrete cross ties are typically installed in demanding track locations having high curvature and high axle loads [2].

Temperature imposed strains and stresses have been shown to have a significant influence on concrete structures. Studies on prestressed concrete girders [3], concrete frames [4,5], concrete slabs [6–11], and concrete cross ties [12] have been conducted in the past, addressing the specific problems and challenges that each component incurs. Issues such as excessive stresses due to the indeterminacy of the structure [3,4,9], excessive deformation or deflection [3,7,13], or the effect in the variation of support conditions [10] are found on different concrete components. Unfortunately, the design of concrete cross ties still relies heavily on both experience and empirical results [14]. The current design standards or recommendations are load-based approaches, such as the American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering (MRE), EuroNorm (EN) 13230, International Union of Railways (UIC) 713R, and Australian Standard (AS) 1085.14. The support conditions for cross ties are oversimplified in those standards or recommendations. Moreover, the influence of temperature on concrete cross tie flexural performance has not been investigated thoroughly, which could lead to unexpected, premature failure. Different from the design approaches for concrete cross ties, design standards used for other concrete components or structures in North America do consider the effects of support conditions and temperature variation. For example, the American Association of State Highway and Transportation Officials (AASHTO) includes a chapter in the highway bridge design specifications that addresses the loads induced by temperature effects [15]. Additionally, previous research conducted on the effect of temperature on concrete cross ties did prove that the temperature gradient would affect the cross tie bending stress distribution [12]. However, a solution to compensate for the temperature effect was not proposed.

This paper presents the results from an extensive field study of temperature effects on the flexural behavior of rail transit concrete cross ties. It is part of a large research program funded by the Federal Transit Administration (FTA), aimed at designing more efficient and resilient concrete cross ties for rail transit applications. Specifically, the temperature distribution in concrete cross ties exposed to different environmental conditions and the effect of temperature on concrete cross tie flexural performance under rail transit revenue service train operation was investigated. Based on the analysis from field observations, a correction factor is recommended to account for the temperature gradient as a design variable for future rail transit concrete cross ties.

2. Field experimentation

In this study, field instrumentation was deployed on tracks owned and operated by three different rail transit agencies during normal revenue service operations (Fig. 1).

Track sections in a light rail system (St. Louis MetroLink), a heavy rail system (MTA New York City Transit Authority), and a commuter rail system (Chicago Metra) operating on infrastructure owned by a Class I freight railroad, were selected. The light rail site at St. Louis MetroLink (hereafter referred as MetroLink) is located in East St. Louis, IL. It is located in a tangent with a speed limit of 55 mph (89 km/h). The heavy rail site (NYCTA) is a curve site at Far Rockaway, NY, where the track speed is limited to 30 mph (48 km/h). The commuter rail site, which is part of the Chicago Metra system (hereafter referred as Metra), is a shared corridor where both freight and commuter rail trains operate. The test site is near Elburn, IL, and it is a tangent track where the track speed is 70 mph (113 km/h).

Each system uses different types of concrete cross ties based on the expected loading conditions. In the case of the commuter rail system, instrumentation was installed on two different cross tie designs. However, the design philosophy for all the cross ties are the same. Some key geometrical and material properties of each of the cross ties studied in this project are shown in Table 1. As shown in Table 1, similar high strength concrete and prestressing steel are used in all the different cross ties according to the suppliers. While a cross tie spacing of 30 in. (76.20 cm) is used in MetroLink, both NYCTA and Metra use 24 in. spacing (60.96 cm). No obvious cracking of the cross ties was observed during instrumentation at all three sites.

An automated data collection system was installed at each site. This yielded exhaustive databases of information spanning long periods of time (up to 10 months). Fig. 2(a) shows a typical instrumentation plan. Additionally, Fig. 2(b) presents a photo of one of the sites after installation of the proposed instrumentation.
Surface strain gauges were installed at the top chamfer of the selected concrete crossties. Through calibration with laboratory experimentation, the bending moment imposed by revenue service loads can be calculated from the measured strain as described in Eq. (1) [16]. Based on the application of the Euler-Bernoulli beam theory for small deformations, the stress distribution within the critical cross sections of the crossties is known.

\[M_t = \frac{d_s E_s l_s}{d_t} = k \bar{e}_t \]

(1)

where:

- \(M_t \) is the sleeper bending moment at section “s” (kip-in (kN-m))
- \(\bar{e}_t \) is strain measurement taken from the surface strain gauge at section “s” (in/in (m/m))
- \(E_s \) is the elastic modulus of the concrete (psi (kPa))
- \(I_s \) is the moment of inertia at section “s” (in⁴ (m⁴))
- \(d_s \) is the distance from the surface strain gauge to the neutral axis of bending of the sleeper at section “s” (in (m))
- \(k \) is the calibration factor at section “s” (kip-in (kN-m)).

The corresponding calibration factors for each crosstie design used to convert field-obtained strains into bending moments were obtained in the laboratory following procedures described in a previous publication [16]. This methodology was used to obtain all the field bending moment data presented in this paper. The strain gauges were installed at critical sections of the crossties, the center and the rail seats. These locations are hereafter referred as “center”, “rail seat A” and “rail seat B” respectively. The strain gauge configuration can be found in Fig. 3(a). The strain gauges used in this study are PFL-30-22-3LT, which are manufactured by Tokyo Sokki Kenkyujo Co., Ltd. These gauges are designed for concrete surface applications. Calibration factors used in this investigation are shown in Table 2.

Thermocouples were installed on the top chamfer and the base of crosstie 6 as marked in Fig. 2(a). The thermocouples arrangement on the crosstie is sketched in Fig. 3(b). The thermocouples were installed to measure the temperature variation at the top and bottom of the center of the crosstie only due to the limited availability of channels feeding into the data acquisition system. However, all the measured crossties presented direct exposure to exterior conditions, and, as shown in Table 1, crossties are not particularly long. Therefore, constant temperature along the whole length of the crossties at top and bottom was assumed for the presented analysis. Additionally, the ambient temperature was recorded to address its relationship with the temperature of the crossties. The temperature was recorded in 5-15 min intervals. National Instruments (NI) 9135 Automated Compact Data Acquisition (cDAQ) system was used to collect data automatically with a laser trigger supplied by Micro-Epsilon whenever a train passed by the site.

3. Results and discussion

3.1. Temperature variation in concrete crossties placed in track

Table 3 shows the start and end date of temperature data collection at each site, as well as the total number of days with stored data. Note that temporary interruptions occurred occasionally during data collection.

Fig. 4 depicts the ambient, crosstie top, and crosstie bottom temperature data collected from each site. Highest temperatures are found at the top of the crosstie where it is exposed to solar radiation. Fig. 4(a) shows an overview of the collected tempera-
over 10 months, the temperature database presents similar trends to the data that was found at MetroLink. It is shown that the ambient temperature drives the temperature variation along the crosstie, both top and bottom. Additionally, the largest temperatures are found at the top of the crosstie, where wide temperature variation takes place. The temperature variation over time at Metra is presented in Fig. 4(c). Despite the shorter monitoring period with respect to the previous cases, this site gives the possibility of comparing two different types of crossties subjected to the same environmental and loading conditions. The temperature distribution at the top and bottom of the crossties shows very similar patterns for the two different designs of crossties. In this case, it should be noted that the temperature at the top of the crossties is quite similar to the temperature at the bottom, which usually falls below the ambient temperature.

The three sites present similar types of track and field instrumentation setups. However, when comparing the three different site results, the most remarkable difference is the correlation between the top and ambient temperature. For MetroLink and NYCTA, the data shows that typically the crosstie top temperature is higher than the ambient temperature. This is not the case for Metra. The difference can be explained by the presence of ballast particles laying on top of the crossties. Due to the different track maintenance practices, it shows an effect on the temperature of the crosstie when the crosstie is covered by ballast particles or

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory obtained calibration factors.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MetroLink “Design 1”</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NYCTA “Design 2”</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Metra “Design 3”</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of data collection at the different studied rail transit locations.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MetroLink</td>
</tr>
<tr>
<td>NYCTA</td>
</tr>
<tr>
<td>Metra</td>
</tr>
</tbody>
</table>

Fig. 2. Example of the field instrumentation.
not. When the crosstie is directly exposed to the solar radiation, higher temperatures on top of the crosstie can be reached, up to 144.1 °F (62.3 °C) in this study. On the other hand, when the ballast particles are laid on top of the crosstie, the aggregates absorb a considerable portion of the radiation, having a lower temperature in the middle portion of the crosstie with respect to the ambient.
that corresponds to the warmest and coolest week respectively is presented in Fig. 5. The crosstie top and bottom temperature variation with respect to the ambient temperature for the two extreme cases can be compared.

Fig. 5 indicates that for higher ambient temperatures, the temperature gradient within the crosstie (i.e. the temperature difference between the top and bottom) is larger. Note that the bottom temperature tends to be higher than the ambient temperature during warmer periods too. Daily temperature fluctuations are observed and a clear pattern can be identified for the temperature measured at the three different locations.

When focusing on one day instead of one week, it can be observed in Fig. 5 that the top temperatures increase at a higher rate than the bottom temperatures toward the middle of the day. Hence, the maximum temperature gradient is found around noon to the early afternoon due to a large increase of the temperature at the top of the crosstie. Given that this period is coincident with the period of intense solar radiation, a qualitative relation can be inferred. A consistent trend is discovered as, during the daytime, the crossties undergo positive temperature gradients. These trends are specifically related to the solar radiation heating up the top of the crosstie. Moreover, the night periods present the smallest positive gradients and a large number of negative gradients. Table 4 summarizes the maximum, minimum, and average of the recorded ambient temperatures, crosstie top and bottom temperature, and the corresponding temperature gradient for the four different crossties in this study.

As shown in Table 4, the ambient temperature shows similar values for the three sites with the exception of significantly colder temperatures found in Metra in late December 2016. Nonetheless, the maximum values of the temperature are larger at top and bottom of the crosstie for MetroLink and NYCTA. This difference, that has been explained earlier, is a result of the placement of ballast on top of the crossties at the track crib or not. In a similar way, maximum positive gradients (i.e. top temperature minus bottom temperature) are found to be higher for MetroLink and NYCTA.

In Fig. 6, the top and bottom temperatures are plotted versus the ambient temperature for the four types of crossties. The top temperature regression slope is higher as it varies more rapidly (or at a higher rate) than the one at the bottom. In other words, the temperature at the top of the crosstie is more sensitive to the ambient temperature as compared to the temperature at the bottom of the crosstie. An apparent linearity of all the datasets can be observed when comparing temperature at the crosstie versus ambient temperature. Hence, to describe the relationship between top and bottom temperature at the different crossties along with corresponding ambient temperatures, linear regression was performed. The obtained equations and the coefficient of determina-

![Graph showing temperature fluctuation during the warmest and coolest week in MetroLink.](image)

Fig. 5. Ambient, crosstie top, and bottom temperature variation in MetroLink during the warmest and coolest weeks of the recorded dataset.

![Graph showing temperature fluctuation during the coolest week in MetroLink.](image)

temperature. The direct radiation to the crosstie not only causes temperature on top of the crosstie to increase, but also propagates to the bottom of the crosstie. In consequence, higher temperatures along the middle section of the crosstie are observed.

Other than the temperature variation throughout the entire data collection period, it is also necessary to understand daily temperature fluctuations. A week of temperature data from Metrolink

<table>
<thead>
<tr>
<th>Site</th>
<th>Ambient</th>
<th>Top</th>
<th>Bottom</th>
<th>Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MetroLink (Design 1)</td>
<td>Maximum</td>
<td>105.1 °F, 40.6 °C</td>
<td>144.1 °F, 62.3 °C</td>
<td>121.0 °F, 40.9 °C</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>31.0 °F, -0.6 °C</td>
<td>31.7 °F, -0.2 °C</td>
<td>35.3 °F, 1.8 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>67.3 °F, 19.6 °C</td>
<td>70.8 °F, 21.6 °C</td>
<td>68.0 °F, 20.0 °C</td>
</tr>
<tr>
<td>New York NYCTA (Design 2)</td>
<td>Maximum</td>
<td>98.3 °F, 36.8 °C</td>
<td>132.7 °F, 55.9 °C</td>
<td>108.1 °F, 42.3 °C</td>
</tr>
<tr>
<td></td>
<td>MinimSum</td>
<td>18.2 °F, -7.7 °C</td>
<td>20.4 °F, -6.4 °C</td>
<td>24.3 °F, -4.3 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>60.6 °F, 15.9 °C</td>
<td>67.0 °F, 19.4 °C</td>
<td>64.7 °F, 18.2 °C</td>
</tr>
<tr>
<td>Metra (Design 3)</td>
<td>Maximum</td>
<td>106.2 °F, 41.2 °C</td>
<td>115.2 °F, 46.2 °C</td>
<td>103.6 °F, 39.8 °C</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>-8.5 °F, -22.5 °C</td>
<td>5.6 °F, -14.7 °C</td>
<td>13.1 °F, -10.5 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>41.8 °F, 5.4 °C</td>
<td>39.7 °F, 4.3 °C</td>
<td>40.6 °F, 4.8 °C</td>
</tr>
<tr>
<td>Metra (Design 4)</td>
<td>Maximum</td>
<td>106.2 °F, 41.2 °C</td>
<td>121.1 °F, 49.5 °C</td>
<td>101.1 °F, 38.4 °C</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>-8.5 °F, -22.5 °C</td>
<td>6.2 °F, -14.3 °C</td>
<td>17.6 °F, -8.0 °C</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>41.8 °F, 5.4 °C</td>
<td>39.1 °F, 3.9 °C</td>
<td>39.4 °F, 4.1 °C</td>
</tr>
</tbody>
</table>
The equations and coefficient of determination represent the dispersion of data with respect to the linear regression.

Values of R^2 were found to range from 0.61 to 0.93. Given the large dataset, the extensive monitoring period, and the repetition in this study for different cases, it is safe to say that the relationship between top temperature and ambient temperature, as well as bottom temperature and ambient temperature, can be deemed as linear. In addition, it can be observed that the presence of ballast on the top of the crib makes a difference in the overall temperature distribution of the crottie. The direct solar radiation on the crottie yields consistently higher top temperatures than the ambient temperature. This is expressed through a larger slope of the linear trend line. Because the top of the crottie is warmer, and the bottom is colder, heat can propagate from the top to the bottom of the crottie. This results in slopes greater than one for MetroLink and NYCTA. The results for the two crottie designs at Metra present very similar results. For both cases, the top temperature tends to
fall below the value of the ambient temperature as the solar radiation does not directly hit the middle portion of the crosstie. The relationship between ambient temperatures and temperatures within crossties could assist the concrete crosstie industry in future designs for specific regions considering the temperature in a similar approach to what has been used for concrete girder, pavement, and frame designs.

3.2. Temperature effect on crosstie support conditions and flexural behavior

The flexural behavior of crossties heavily depends on the support conditions. Previous research on concrete crosstie flexural behavior has proven the importance of ballast support conditions. Ballast support conditions largely affect the resultant bending moment [17,18]. The effect of the temperature gradient on the support conditions has been proven in an earlier study [12], which is explained in Fig. 7. In Fig. 7, the higher temperatures are marked in red and the lower temperatures are marked in blue. When the top of the crosstie gets warmer than the bottom due to solar radiation, a higher elongation occurs on the top causing the crosstie to lose contact with the support at the center. The opposite case happens during nighttime, or under cold temperatures induced by weather conditions (e.g. wind, snow), that causes the top to be colder than the bottom. This leads to an opposite effect, shifting the support conditions towards center binding scenario, as the crosstie starts to lose contact from the two ends. However, while the temperature gradient between top and bottom plays a key role on the variation of the support conditions, the uniform deformation of the crosstie (i.e. expansion or retraction) also affects the contact between the ballast and the crosstie.

Fig. 8 presents the variation of the concrete crosstie center bending moments under revenue service along with the corresponding temperature gradient for MetroLink and NYCTA over a
period of 20 days. As mentioned earlier, insufficient bending moment data was collected from Metra to plot a similar graph due to track access issues and other field challenges. While MetroLink presents similar bending moment results among crossties, the same trend was not found at NYCTA. It is interesting to note that the variation of concrete crosstie center bending moments and the variation of the corresponding temperature gradient follow exactly the same pattern, suggesting a strong relationship between both variables.

In order to quantify the possible relationship indicated by Fig. 8, concrete crosstie bending moment versus temperature gradient for all the data collected from MetroLink, NYCTA, and Metra “Design 3” crossties is presented in Fig. 9. Strong linear correlations are seen as shown in Fig. 9 and details are summarized in Table 5, including the regression equations as well as the corresponding R^2 values.

Not only there is a strong linear correlation between bending moment and temperature gradient shown in Fig. 9, it is also remarkable that the center bending moment at the light rail system shifts from negative to positive values. An absolute variation of 30 kip-in (3.39 kN-m), from −17 kip-in (−1.92 kN-m) to 13 kip-in (1.47 kN-m), is found for a shift in the temperature gradient from −7 °F (−3.9 °C) to 30 °F (16.7 °C). When compared with the design capacity for the center negative bending moment of the “Design 1”, used for MetroLink, this bending moment variation due to temperature effects represents 21% of the design capacity.
For the heavy rail system, similar slopes are found for 4 out of the 5 crossties at the center, where crosstie 4 shows the highest percentage of the overall bending moment variation. An increase of 38 kip-in (4.29 kN-m) is found for a shift in the temperature gradient from −10 °F (−23.3 °C) to 37 °F (20.6 °C). As noted before, NYCTA uses “Design 2”, whose center negative bending moment capacity is 194 kip-in (21.69 kN-m). Hence, an increase in the flexural demand in the center as found in the field would represent up to 20% of the design capacity of the crosstie. Results from the Metra site using “Design 3” under both commuter rail and freight revenue service loading also presents similar linear trends as the other transit modes. A higher level of dispersion is present in these data. This could be due to a smaller dataset, higher variation in the loading environment (mixed commuter trains and freight train operation), or lower quality of the data. Nevertheless, a maximum center bending moment variation of 13 kip-in (1.47 kN-m) over a temperature gradient variation of 22 °F (12.2 °C) is observed, which represents up to 11% of the design capacity.

With the exception of crosstie 3 in the NYCTA’s field setup, the data shows strong linearity according to the R² values. This linearity is more blatant for the center bending moment, as fewer factors affect the results at this section with respect to the rail seat. First, the deformation of the crosstie under revenue service loading can change support conditions, showing larger variability in the rail seat results. In addition to this, the rail seat load distribution, usually idealized as point load or distributed load, varies [19], affecting the bending moment at the cross section. It is known that deep beam behavior is found at the rail seat cross section, and the angle of dispersion of the compressive field has been proven to be function of the load and the support conditions [20]. Besides, from the instrumentation point of view, it is extremely difficult to install strain gauges under the rail seat in the field under traffic, likely resulting in less precise positioning and alignment compared to installation of center gauges. In addition, variability in the field testing, homogeneous temperature variation in the crosstie, or the change in the dynamic input load are factors that cause dispersion in the data.

As a linear relation between bending moment and the temperature gradient is shown based on field results, additional research was conducted to develop a numerical simulation to provide further insight into these trends. A finite element (FE) model developed under previous research [12,21,22] was used to analyze the relation between temperature gradient and crosstie curling [12]. This FE model developed in ABAQUS, defines the crosstie-ballast interaction using contact pairs. The used coefficient of friction (COF) was 0.7, based on experimental data. Details of the previously developed FE model can be found in the aforementioned literature. Several cases were run for gradients ranging from −10 °F (−23.3 °C) to 30 °F (16.7 °C) to quantify the bending moment at the crosstie center with the assumption that the crosstie is evenly supported along its length. Fig. 10 shows the results of the FE analysis.

It can be observed in Fig. 10 that a linear relation between bending moment and temperature gradient is confirmed when keeping the loading the same. Note that the loading environment was determined to be consistent for all sites in this study through
long-term monitoring [23]. The slope of the linear regression, shown in Fig. 10, also falls within the range of values derived from the field data presented in Table 5. Thus, it is reasonable to conclude that the effect of the temperature on the flexural behavior of concrete crossties under revenue service loading conditions has a linear correlation. This correlation is primarily dependent on the temperature difference between top and bottom of the crosstie.

As discussed earlier, based on the data collected from the field in this study, the variation of crosstie bending moment could be
up to 20% of the design capacity due to the temperature gradient. It is expected that with a higher temperature gradient, the variation of bending moment would account for a higher percentage of the designed capacity. Therefore, it is not safe to ignore the effect of temperature gradients in the design process of concrete cross ties considering they are usually placed in demanding territories. Based on the field data collected in this study, the results presented in Table 5, and the numerical simulations results shown in Fig. 10, a Correction Factor of 1 kip-in/°F (0.203 kN-mm/°C) is proposed. Hence, for bending moment capacity design, an increment equal to the temperature gradient between the top and bottom times the proposed coefficient should be added to account for bending moment variation due to the temperature induced support conditions changes. A comparison of the maximum effect on the center bending moment found in the field and the proposed Correction Factor is shown in Fig. 11. The proposed correction factor represents a slightly conservative approach. For design purposes, the proposed correction factor should be coupled with a predicted temperature gradient considering the most extreme environmental conditions in specific regions.

4. Conclusions

An extensive field study of temperature effects on concrete cross ties for rail transit applications has been conducted. Using instrumentation installed on three different transit properties for collection of revenue service train data, the investigation comprised different loading scenarios as well as support conditions. The following conclusions can be drawn:

The temperature at the top and bottom of the four types of crossties showed a close linear relation with the ambient temperature. Additionally, the temperature at the top chamfer of the crosstie is generally higher than the temperature at the base. The presence of ballast on the top of the crib prevents the top of the crosstie from direct solar radiation yielding lower temperatures at the top chamfer and base for similar ambient temperatures.

The largest positive gradients are found towards the middle of the day (12:00 noon) and are associated with solar radiation. Negative gradients are often found during the nighttime hours. With the selected instrumentation sites, the maximum positive temperature gradient (top chamfer temperature minus base temperature) found in the field was 38.1 °F (21.2 °C). The largest negative temperature gradient found in the field was −12.1 °F (−6.7 °C). When comparing absolute values, positive temperature gradients are larger than the negative temperature gradients.

The relation between temperature variation and flexural behavior of concrete crossties under revenue service loading conditions has been shown to be linear and consistent among different sites. The bending moment variation at the center and the rail seats for a given temperature gradient variation is found to be similar for different loading environments and concrete crosstie designs. Positive temperature gradients cause a reduction of the center negative bending moment, and an increase of the rail seat positive bending moment. This has been attributed to a loss of contact around the center region (and increase towards the rail seats) of the crosstie with the ballast due to the positive bowing of the element.

Variation of bending moment at the center of the crosstie due to temperature gradient ranges from 11% to 21% of the crosstie design capacity based on the field data collected in this study. Design methodologies should acknowledge the importance of temperature-related effects on crossties flexural behavior. A Correction Factor of 1 kip-in/°F (0.203 kN-mm/°C) is proposed to account for the change in support conditions due to the temperature gradient. The proposed Correction Factor needs to be coupled with a predicted temperature gradient considering the most extreme environmental conditions in specific regions.

Conflict of interest

None.

Acknowledgments

 Portions of this research effort were funded by the Federal Railroad Administration (FRA) and the Federal Transit Administration (FTA), both part of the United States Department of Transportation (US DOT). The material in this paper represents the position of the authors and is not necessarily that of FRA or FTA. Track access was granted by MetroLink, NYCTA, and Union Pacific Railroad. The authors would like to express their gratitude for the financial and field instrumentation support. The authors would also like to thank Matt Csendes, Xiaolin Lin, Aaron Cook, and other research assistants in RailTEC at UIUC for their assistance in field instrumentation. J. Riley Edwards has been supported in part by grants to UIUC’s RailTEC from CN and Hanson Professional Services, Inc.

References

sensors Milan, Italy, Proceedings of the 11th World Congress on Railway Research, 2016.

[22] Z. Chen, Mechanistic analysis of concrete crosstie and fastening system using field-validated finite element model, (Doctoral Thesis), University of Illinois at Urbana-Champaign, Department of Civil and Environmental Engineering, 2015.
