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Abstract
Railroad track inspections conducted in accordance with federal regulations and internal railway operating practices result in
significant labor costs and occupy valuable network capacity. These factors, combined with advancements in the field of machine
vision, have encouraged a transition from human visual inspections to machine-based alternatives. Commercial machine vision
technologies for railway inspection currently exist,  and automated analysis approaches—which deliver objective results—are
available in some systems. However, they are limited to a “pass/fail” approach through the detection of components which fail to
meet maintenance or geometry thresholds, as opposed to being able to detect  subtle  changes in track conditions to identify
evolving problems. To overcome these limitations, this paper presents results from the field deployment and validation of a
system that pairs three-dimensional (3D) machine vision with automated change detection technology. The change detection
approach uses  a  deep convolution neural  network (DCNN) to  accurately characterize track conditions  between repeat runs.
Current automated track inspection technologies were studied, and the applicability of change detection is discussed. The paper
presents the process for 3D image capture, DCNN training, and evaluation by comparing DCNN results to an expert human
evaluator. Finally, it presents change detection results for fastener presence and spike height. Results indicate that this technology
can successfully identify fasteners and spikes with percent accuracies greater than 98% and that it  can successfully generate
change detection results for comparison of track condition among runs.
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Introduction

Background

In the United States, the Department of Transportation (DOT) Federal Railroad Administration (FRA) regulates track inspection

intervals based on track class. As track class increases, so does the inspection frequency requirements—as often as twice per

week for  FRA Classes  4  and  5.1  Additionally,  railroads  often  impose  more  restrictive  inspection practices  than  the  FRA’s

minimum requirements.

To perform these inspections, railroad staff typically perform visual inspections from hi-rail vehicles. While inspectors often

possess significant knowledge and experience, their inspections are subjective and challenging given the logistics of performing

detailed inspections at hi-rail speeds. These challenges drove the industry to seek the development of machine-based inspection

tools which leverage digital imaging, image processing, and artificial intelligence (AI) to augment human inspections.
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Several companies have developed machine vision inspection systems that focus on defect identification and the exceedance

of  maintenance  threshold  values  or  FRA-mandated  safety  threshold.  Aurora   inspects  and  grades  timber  and  concrete

crossties, identifies rail base corrosion, and quantifies ballast levels by capturing light reflected off the track.2,3 High powered

xenon lights have been employed in a track imaging system to illuminate rails, where the reflected light is captured by a set of

two-dimensional (2D) cameras to identify joint bar cracks.4 Similarly, Railcheck also captures reflected light from light emitting

diodes to produce 2D images which are analyzed to identify rail, concrete crosstie, fastener, and ballast level anomalies.5 The

chord-based Rail Corrugation System employs optics to identify rail corrugations through 2D laser profiling.6 Lastly, LRAIL

captures three-dimensional (3D) profiles and 2D images simultaneously (along with inertial data) to measure rail geometry, and

inspect rail surfaces, fasteners, spikes, ballast, and crossties.7

The AI deployed in this research involves deep convolution neural networks (DCNNs), which are machine learning programs

that  use  deep  learning  for  image recognition.  Over  the  last  two  decades,  these  programs  have  outperformed other  pattern

recognition methods given they incorporate reinforcement learning to interact with unknown environments.8 Several studies pair

DCNNs with image capture technology to identify specific features of interest along the railway. Chen et al. employed a DCNN

to identify catenary system support defects.9 Similarly, DCNNs have also been used to detect other features along the track from

2D images (e.g.  rail  surface defects,10 fasteners,11 and concrete crosstie  cracks).12,13 Despite  the success  of  DCNN feature

identification demonstrations, comparatively little research has investigated how DCNNs can be paired with other algorithms to

expand their utility beyond binary “pass/fail” inspections to more sophisticated tasks such as change detection.

Change detection programs automatically identify changes in features over a given period by comparing new and preexisting

datasets which were processed through image recognition software. This potential benefit led to the development of two FRA-

funded change detection research programs. The first—conducted by ENSCO—comprised of a study collecting and evaluating

2D “before” and “after” images within two time intervals to identify alterations in fastener condition, crosstie condition, and rail

surface in 2D track images.14 Railmetrics conducted the second FRA research program through the execution of two project

phases, with the first documenting an initial proof of concept and the second showing a further-developed prototype of a 3D

imaging and scanning system.15,16 In the first project, LRAIL technology was used to evaluate datasets captured two months

apart on Amtrak’s Northeast Corridor (NEC). The prototype system was shown to be capable of identifying changes to crosstie

skew angle, fastener presence, joint gap, joint bar bolt count and ballast levels with repeatability in excess of 95%.16 The success

of the LRAIL prototype led the FRA to sponsor further development of this technology.

Objective and scope

Due to the success of the LRAIL prototype as demonstrated in preliminary field tests conducted on Amtrak and the desire for

further refinement, this paper documents the use of an updated version of LRAIL to collect field data during the fall 2019 cycle of

the Facility  for  Accelerated  Service Testing  (FAST)  at  the  Transportation Technology Center’s  (TTC) High  Tonnage Loop

(HTL). Thus, the focus of this research is the development and field validation of a 3D laser-based approach which uses AI to

objectively analyze 3D scans to create an input into change detection algorithms. The scope of this paper includes a description of

the measurement system, data processing methods, and detailed results for spikes and fasteners from the collected data.

Methodology

Overall approach

The research team deployed the LRAIL system for data collection on the HTL at TTC six times over a  seven-week period

between September 10, 2019 and October 23, 2019. This period overlapped with the fall 2019 FAST train operating schedule.

Each deployment involved two or more scans of the HTL captured in the forward and/or reverse direction for a total of thirty-five

3D scans of  the HTL.  For certain deployments,  a  subset  of  the HTL was unavailable  due to  maintenance operations,  thus

comparisons were not feasible on those sections. Among the selected novel datasets used for DCNN evaluation, the amount of

overlapping data between them represented approximately 66% of the HTL.

The project team collected five scans of the HTL on the first day of field testing (September 10) which provided sufficient

data to permit one inspection run to serve as a change baseline dataset and a separate dataset to serve for training the DCNN. The

team also performed a physical walking inspection of the HTL loop on the first day of field testing to provide ground-truth

information to assist with subsequent data interpretation.

Once a DCNN was trained for a particular feature, the research team evaluated its performance against an expert human
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evaluator (a University of Illinois at Urbana-Champaign employee) with a performance target of 75% agreement. Following the

performance evaluation, the trained DCNN processed a track scan from each deployment to create datasets to compare against

the September  10  baseline  for  change detection  purposes.  The  team developed  a change detecting  sensitivity  target  which

reported present fastener counts per kilometer as a percentage (±1%), and changes in the position of multiple fasteners (≥10 mm

for three consecutive fasteners in the same position along the same rail). These thresholds and the performance target  were

established prior to the start of the project through discussion with the project team and a subset of industry partner railroads.

Field data collection

Data  collection  at  the  HTL involved  both a  walking  ground-truth  inspection  (initial  deployment  only)  as  well  as  3D laser

scanning for DCNN training and change detection analysis.

Three-dimensional laser scan data collection

Three-dimensional (3D) scans were captured via two 3D laser sensor heads mounted on a hi-rail test trailer that was pulled by a

hi-rail  pick-up truck (Figure 1).  The sensors  project  high speed (up to 28,000 Hertz)  laser lines across the track bed while

synchronized  cameras  use  custom filters  to  capture  images  of  each  projected  line.  During  capture,  software  automatically

compiled and merged successive lines into a continuous 3.6 m (11.8 ft) wide image of the track.

An optical encoder mounted on a rear wheel of the hi-rail trailer measured vehicle speed and triggered image capture on a

distance basis (every 2 m, 6.6 ft, of travel along the track). Additionally, a blended inertial navigation system (GPS coupled with

an Inertial Measurement Unit) captured and integrated the test trailer’s latitude, longitude, and elevation into each 3D profile.

The resulting dataset contained geo-referenced 2D intensity and 3D range data with a longitudinal, transverse, and vertical

resolution of one millimeter by one millimeter by 0.1 mm (0.039 in by 0.039 in by 0.0039 in) respectively, which is consistent

with previous research.16 Range data usable in both as 3D point cloud (LAS) and JPEG formats (grayscale image)— wherein the

shade of pixels corresponds to the distance between the sensor and the surface—are shown in Figure 2  (light-shaded pixels

corresponded to higher elevations).

Latitude, longitude, and elevation data were subsequently used to preliminarily align repeat runs for change detection with 3D

shape matching of  components (e.g.,  crossties  and fasteners),  which helped refine positions  and precisely match runs on a

crosstie-by-crosstie basis.

Field test site characteristics

Figure 1. Hi-rail pick-up truck pulling hi-rail test trailer.

Figure 2. Images from system, 2D intensity (left) and 3D rectified range (right).
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Beyond FAST’s expedited accumulation of tonnage, one of the primary benefits of collecting data on the HTL was the high level

of variability in track components. This variability permitted inspections of several identified features of interest including spikes

and several clip types. The increased wear rate due to FAST operations provided quantifiable changes in feature condition each

week of FAST train operations, which shortened this research program’s timeline by decreasing the gap between necessary data

collection deployments.  In  total,  the HTL accumulated approximately  57  million  gross  tons  (MGT) during the seven-week

period.

Deep convolutional neural network (DCNN) training

Configuration

The DCNN consists of a multilayer region proposal network (RPN) and a multilayer classifier network based on fast region

based convolutional neural network architecture. The output layers of both the RPN and the classifier network are softmax and

regressor classifiers.

Training data preparation

The project team selected the second inspection run from the first deployment as the DCNN training set. This dataset contained

3800 images (1900 2D intensity and 1900 3D range) and formed a continuous run that the ground-truth inspection could validate.

These 1900 images comprise a larger portion of the HTL (87%) than the subsequent testing data (66% of the HTL) due to

improved track availability on the day that test data were collected.

To prepare a DCNN training set, the inspection data was first automatically inspected using a preliminarily-trained DCNN

used by LRAIL. Following this initial processing, the team individually reviewed each resulting processed image to visually mark

features that the preliminary DCNN missed or incorrectly classified (Figure 3). The research team also used the ground-truth

inspection data during this task to add supplemental information when necessary.

This process reproduced the expert evaluator’s assessment in a digital format with the exact pixel position of each feature

demarcated as well as the relevant conditions noted (e.g. broken e-clip, missing spike, etc.) in both 2D intensity as well as 3D

range data. The DCNN training process used this enhanced dataset to align AI evaluations with that of the expert evaluator.

DCNN training

TensorFlow Core was used as both a training and validation tool with manually-labeled intensity and range datasets used as an

input for the DCNN training process. In total three rounds of training and validation were repeated with more than 1,200,000

epochs (a complete cycle through the training images) completed in each round.

Figure 3. Intensity image showing DCNN-detected bounding boxes (blue) and expert review correction bounding boxes (red).
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Elastic fastener (clip) training

Training for clip inspection first involved clip identification and then classification of clips into five numeric types which mapped

to Pandrol e-clips and similar variants (e.g. PR clips), Safelok clips (including Safelok I and III), Skl tension clamps, and Pandrol

Fastclips. While other clip types were present in the HTL, these five types made up most of the data collected and represent most

of the systems currently used in North America. Clip “status” categorizations derived by the algorithm included: present, missing,

loose, covered, and damaged. The missing classification was straight-forward for standard installations which involved just one

clip on each side of each rail.  However,  unique components such as full  and half-frame crossties provided instances where

multiple possible clip positions existed for one or both sides of each rail, making identification by the DCNN harder.

Spike training

Training for spikes involved the detection of spike presence for each tie plate and the detection of missing spikes using pattern

analysis. The DCNN was trained to compare the spiking pattern in place for the left rail against the right rail, with non-equal

patterns (e.g. number of spikes) being flagged as either “missing spike” (when DCNN does not detect a spike) or “broken spike”

(when the DCNN does not detect a proper head size). Additionally, a second pattern analysis involved the comparison of the

spiking pattern for a given plate to the pattern present on both preceding as well as following crosstie plates (Figure 4). The final

analysis simplifies the results to “missing spike” for the results.

Retraining and performance tracking

Following  each  round  of  training,  the  DCNN  models  were  implemented  into  the  inspection  software  and  again  used  to

automatically process a dataset that was separate from the training set but captured on the same day. After automated processing,

the research team (again) manually reviewed the results to mark features which the DCNN missed or incorrectly classified.

Following this manual review, the DCNNs underwent retraining to account for errors. This process was repeated until DCNN

detection precision could not be significantly improved through additional training cycles.

DCNN Performance was tracked in terms of the precision and recall. Precision indicates the level of false positives (FP)

which the DCNN generates; or the tendency to report a condition as true when it is actually false (TN) (equation (1)).  Recall

indicates the level of false negatives (FN) which the DCNN generates; or the tendency to report a condition as false when it is

actually true (TP) (equation (2)).

(1)

Figure 4. Two missing spikes detected since the surrounding crosstie plates have five spikes.
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(2)

Overall performance of the DCNN was evaluated in terms of the combined precision and recall performance by plotting

precision against recall and calculating the area under the curve with the result being expressed as mAP Loss, a general metric for

algorithm error. Thus, mAP Loss achieved for each round of training was used as an indicator of the overall effectiveness and

progress of training; with lower mAP Loss values indicating improved performance. An example of this practice from the project

is presented in Figure 5, which presents the mAP loss (Y-axis) for each complete cycle (X-axis) through the training images.

As can be expected, at the start of the training cycle (e.g., cycles 0–10,000) the general level of error (mAP Loss) for the

DCNN was high across all aspect that were being trained (indicating poor DCNN performance). However, as cycles increase, the

DCNN model error (mAP Loss) decreases which indicates a successful training approach (low FP and low FN).

DCNN detection results

The final performance evaluation of the DCNNs used the standard metrics of sensitivity (equation (3)), specificity (equation (4)),

and percent agreement (equation (5)). These results are described later in the data analysis section.

(3)

(4)

(5)

Figure 5. Summary of mAP losses (level of accuracy) for each competed cycle.
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Change detection process

As a first step in the change analysis, the algorithm positionally aligned inspection pairs to ensure that each run compared the

same position along the track to report changes between them. The change detection algorithm first used latitude, longitude, and

elevation of each dataset to create a preliminary rough match (within ±1 mm on average) in position between runs. A second

automated step conclusively matches positions between runs using 3D shape analysis of components (crossties, fasteners, tie

plates, etc.) which the algorithm detects in the rough match region. The result was a crosstie-by-crosstie match between runs

allowing for the development of change statistics on a crosstie-by-crosstie basis as well as using higher summary values.

Data analysis

DCNN detection results

Following training, the project team generated inspection results for two novel datasets; the first from the initial deployment

(September 10) and the second from the final deployment (October 23). The research team selected bounding (initial and final)

data given the accumulated tonnage (57 MGT) and maintenance operations between the initial and final deployment would likely

produce the greatest change in the overall track condition and feature detection quantities. The first dataset came from a different

run on the same day as the training dataset and facilitated evaluation of the DCNN under track conditions that were essentially

unchanged from the training dataset but that had not been used for actual training.

The values for sensitivity, specificity, and percent agreement can be easily calculated when summarizing DCNN and expert

evaluator results in a confusion matrix (Figure 6).  Subsequent confusion matrices within Figure 6 display the results, which

compares the results between features that were present or covered to those that were missing, loose, or damaged.

Percent agreement and sensitivity results greatly exceeded the pre-established project goal of 75% regardless of feature type

and time of deployment. However, the discrepancy between absent and present features and the low sample size for these absent

Figure 6. Generalized confusion matrix and performance evaluation.
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features may have caused specificity values to be under 75%. The overall quality of the DCNNs proved encouraging, and the data

were used for subsequent change detection.

Change detection results

To evaluate track changes, DCNNs analyzed data from the first day (September 10) of fall 2019 FAST operations to produce a

baseline dataset. Next, the change detection algorithm compared that dataset to a subsequent dataset (October 3) and the final

dataset (October 23).

Fastener count

Change detection regarding clips involved run-to-run comparisons related to the number of acceptable (present and properly

seated/installed)  fasteners  versus  unacceptable  fasteners  (missing  or  loose).  Fastener  counts  from  the  deployments  were

compared, and clusters of three or more fastener status changes within 10 meter (33 ft) segments of track are summarized in

Table 1 for September 10 versus October 3 and October 23. The evaluator confirmed these results produced by the DCNN and

the change detection algorithm. Despite obtaining maintenance data being obtained and reviewed for the HTL, no explanation

could be found for the large cluster of fastener changes 2316 meters from the starting location.

Two change detection results from the second cluster are shown in Figure 7. While at first a fastener is incorrectly classified

as present on September 10, its condition changes (further deteriorates) leading up to October 23. This change was detected, and

the fastener is now correctly evaluated as missing/damaged (Figure 7). Additionally, a change is detected in fastener status as two

fasteners which were covered as of September 10 are subsequently uncovered as of October 23.
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Spike height

Spike height changes (measured directly from detected spikes) greater than seven millimeters between September 10 and October

23 are displayed in Figure 8 with large red triangles representing spike height increases and small green triangles representing

spike height decreases. An example of a large spike height change is shown in Figure 9 where a spike saw a 19.01 mm increase

between September 10 and October 23.

Discussion

DCNN agreement for spike and fastener condition between initial and final deployments was 98%; exceeding the 75% target.

Additionally, while there were decreases in percent agreement between the initial and final deployments for spikes and fasteners,

the difference between these percent agreement values was less than 1%.

These data indicate that the DCNNs were successful in determining when features were present regardless of fastener type

given the high sensitivity results (99% or greater). It is possible that the DCNNs were biased towards detecting positive results

due to the sample size discrepancy between present and absent features (e.g. more spikes present than absent in a tie plate), which

reflects in the low values for specificity. This can be attributed to the small sample sizes for missing spikes when compared to the

number of present spikes and that the sample size for missing spikes may have proved too small to be properly trained by the

DCNN. This imbalance increased difficultly for the DCNN to properly define missing spikes. Considering that present spike

sensitivity values for both deployments was 99%, improvement with missing spike identification through increased sample size

is fully expected.

A similar sample size challenge affected the results for Safelok and Pandrol Fastclip detection. Since the number of candidate

examples for absent fasteners is very small (just 10 Safelok fasteners out of 2552 and just four Pandrol Fastclip out of 395), type

one and type two errors are skewed. Additionally, since the HTL’s sample size for present Safelok fasteners (2552 or just 9% of

the total) and present Pandrol Fastclips (just 395, or 1%, of the total) remained small, improved assessments for DCNN accuracy

may be reliant on further DCNN training for these features.

Figure 7. Fastener change identification examples (Sep. 10 vs Oct. 23).

Figure 8. Areas with significant spike height changes (Sep. 10 vs Oct. 23).

Figure 9. Example of spike height increase (Sep. 10 vs Oct. 23).
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Despite  the  potential  for  training  the  DCNN to  detect  spiking  patterns,  the  unique  environment  of  the  HTL presented

challenges with respect to the training dataset. Many unique track components and configurations are tested on the HTL, and

many different  spiking patterns  are present  over  a relatively  short  distance.  For instance,  while  spiking patterns  on Class  I

railroads are mostly consistent over many crossties, the HTL’s patterns change within very short distances (e.g. as little as 10 to

20 ft) for which the DCNN sees spiking anomalies instead of the spiking patterns. While these patterns could be theoretically

trained-for by using data from revenue service Class I track with longer and more homogenous track, the best alternative involves

consultation  with  the  operating railroad  for  their preferred spike pattern  and setting  thresholds for  spike requirements  (e.g.

minimum number of spikes on gauge and field side).

Change detection analysis using DCNN results as inputs for both fastener and spike presence and condition proved successful,

with the program properly aligning all crossties and correctly comparing almost all conditions. While some inaccuracies exist

between spike and  fastener  changes,  these  errors  are  the  result  of  DCNN detection  accuracy and not  the change detection

algorithm. Further detection refinement should correspond with greater change detection accuracy.

Conclusions

The objective of this study was to evaluate the potential for the use of 3D laser triangulation, DCNN, and change detection

technology to provide value-added inspection data to existing geometry car inspection systems.

In this study, 3D laser triangulation and DCNN analysis proved to be an accurate and reliable inspection method for fasteners

and spikes. The agreement between the DCNNs and the expert evaluator for both spike and fastener presence showed 98%

agreement;  exceeding  the  75%  target.  Change  detection  analysis  using  DCNN  results  as  inputs  was  also  successfully

demonstrated for fastener and spike presence and condition.

This research has demonstrated encouraging progress in automating the track inspection process to help meet and exceed

current FRA track inspection standards, with the ultimate objective of improving both safety and efficiency of rail operations.

The system can detect subtle changes in track condition and goes beyond the traditional “pass/fail” approach to meet maintenance

and safety thresholds. With sample size increases stemming from revenue service deployments on Class I track, DCNNs will be

further refined to build on this prototype concept.

Based on this project’s results, this technology may be used to develop a condition change index to facilitate track condition

assessment and to provide continuous change-detection capabilities across an entire division or network. Additionally, the team

plans to deploy this technology on a revenue service Class I railroad to collect data and evaluate DCNN performance under

differing environmental conditions.
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