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Abstract
With recent (prepandemic) growth in both transit ridership and the number of passenger rail systems nationwide, research-
ers have been increasingly interested in quantifying the rail transit loading environment. Research that stemmed from this
renewed interest provided engineers with greater insights into the loading demands placed on the track structure of heavy,
light, and commuter rail systems. Although results from this earlier work were useful in a general manner, it was not possible
to provide agencies with immediately actionable information on wheel loads, since the relevant data were analyzed and
reported at a later date. As a result, agencies were unable to monitor their rolling stock wheel health in real time. In addition,
trend analysis was not possible because it was not feasible to track specific wheels over time. To address these limitations,
researchers at the University of Illinois have developed an economical system that both provides real-time notifications to
transit agencies when it detects problematic loading conditions, and tracks specific wheels over time. This paper provides a
framework for installing and launching this real-time wheel health monitoring system that transit agencies can replicate, as
well as presents some preliminary data that have been collected. By receiving actionable wheel load data and better under-
standing the wheel deterioration trends present on their networks, agencies can remove bad actor wheels from service
before they damage the track structure, improving the state of good repair. In addition, a more thorough understanding of
the loading environment will allow them to plan maintenance and design more effectively.
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From 1990 to 2016, both rail transit ridership and the
number of rail transit systems in the United States
almost doubled (1), prompting increases in investment
for both new and existing transit systems. Policy mak-
ers at all levels of government have highlighted the role
that rail transit can play in developing economically
robust, healthy communities, as well as in mitigating
climate change. This renewed national interest in rail
transit has in some ways outpaced research on the
environments that these systems operate in, with one of
the shortcomings remaining a lack of understanding of
the loading conditions present on transit networks (2,
3). The lack of a firm grasp of the magnitudes and
types of loads that rail transit vehicles impart on the
track structure can generate inefficiencies in everything
from design to maintenance.

Recent work by Edwards et al. (3) and Lima et al. (4)
has improved this understanding by quantifying the
loading environment of passenger rail systems through
field instrumentation and data from existing Wheel
Impact Load Detector (WILD) sites, which are wayside
wheel load sensors that measure the force imparted by
each wheel as it passes by the site (5). Models to predict
dynamic loads were developed, allowing transit agencies
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and suppliers to design and maintain their systems more
efficiently.

Nevertheless, the data used in this previous research
were not analyzed in real time and did not include
vehicle-identifying information, since WILD data were
anonymized. This made it impossible to match recorded
loads to specific wheels or axles. As a result, the findings
presented were useful for engineering and maintenance
purposes using total distributions and maximum loads
but did not provide immediately actionable information
for rolling stock maintenance needs. Further, it did not
allow for long-term trend analysis of wheel health.

In the North American freight industry, rolling stock
wheel maintenance is augmented by the widespread use
of WILD sites. These sites are up to 50 ft long and cap-
ture multiple full wheel rotations, which ensures that
wheel imperfections will immediately be detected (3).
The main purpose of a WILD site is to flag wheels that
generate high-impact loads, which are short-term, high-
frequency forces created by irregularities in the track or
wheel itself (6). Although rare, high-impact loads can
damage the track structure or rolling stock because of
their magnitude, as well as create high levels of noise and
vibration (7, 8). In the United States, interchange rules
from the Association of American Railroads dictate that
if a WILD site detects an impact load above 65 kips (kip
= 1,000 lbf), the wheel in question may be flagged, and
if it detects a load above 80 kips, the wheel may be con-
demned the next time the car is in a repair track. Wheels
that generate impact loads of 90 kips or above may be
condemned immediately (9). In addition, some railroads
have set additional safety rules by which cars with wheels
that generate impact loads greater than 140 kips must be
immediately removed from the train and the wheel
replaced (10). By detecting these problematic wheels and
taking corrective action, freight railroads can minimize
the damage that out-of-round wheels cause to the track
structure and rolling stock (11).

Although WILDs are common in the freight industry,
the nature of transit agencies often renders them eco-
nomically unviable. On freight networks, the free inter-
change of railcars ensures that almost every car will
periodically pass a WILD site, even if the frequency with
which this occurs is low. Transit networks, on the other
hand, are often organized such that each commuter or
rapid transit line is a closed system, with rolling stock
that does not move to other lines. As a result, to collect
information on systemwide wheel health, the agency
would have to install a WILD site on each line, which in
many cases is neither an efficient use of resources nor
economically feasible. Because of these limitations, many
transit agencies’ wheel maintenance programs are time-
or mileage-based, allowing some damaged wheels to
remain in service for extended periods of time.

The goal of this research was to expand on previous
work by developing a real-time wheel health monitoring
system that is economical, easy to install, and that also
has the capability of tracking specific wheels over time.
Systems were installed at two transit agencies (one com-
muter and one heavy rail transit) to evaluate their perfor-
mance and capability to provide the agencies with timely
data on their rolling stock wheel health. If proven, this
technology would help transit networks to increase the
efficiency of their resource allocation by enabling them
to target wheels that either currently create high-impact
loads or are likely to create high-impact loads in the
future, as well as to gain important insights into the spe-
cific loading conditions that the track is subjected to.
This paper describes the developed system along with an
analysis of the preliminary data generated by the technol-
ogy. Additional work is ongoing to evaluate the integra-
tion of the system into the agencies’ wheel maintenance
practices and will be reported in subsequent papers.

Methodology

Transit networks’ closed system design makes them
unsuitable for typical WILD sites, but it also presents an
advantage that can be exploited in the development of a
transit-targeted wheel health monitoring system. In
closed transit networks, the same trains pass a specific
point several times per day, meaning that even if the sys-
tem does not detect a wheel imperfection during one
pass, statistically it is likely to be caught eventually. This
could make it possible to efficiently identify tread imper-
fections with a significantly smaller system (i.e., one or
two instrumented cribs) than a typical WILD site (i.e.,
50 ft of instrumented cribs). Compact instrumentation
design with a lower cost and simpler installation proce-
dure could allow transit agencies to monitor a higher
percentage of their rolling stock by installing such a sys-
tem on multiple lines.

The real-time wheel health monitoring technology
described in this paper is a complex system that involves
several different components working in parallel. In
essence, however, the process entails automatically quan-
tifying wheel loads through track-mounted instrumenta-
tion, cleaning and analyzing the data, and notifying
stakeholders if anomalies are detected. The next sections
describe each of the components of the overall real-time
monitoring system installed by the researchers, and the
various ways in which they interface with each other.

Instrumentation Sites

To acquire the data necessary for wheel health monitor-
ing, field sites were installed at two partner transit agen-
cies, one commuter rail and one heavy rail transit. At
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these sites, a data acquisition system (DAQ) records data
from various sensors each time a train passes by, creating
the raw data used throughout the real-time reporting
process.

This section describes the general layout of the instru-
mentation sites. For simplicity, only the commuter rail
site is described in detail. However, it should be noted
that the heavy rail site is similar, with only minor differ-
ences to the substantive components of the instrumenta-
tion. As shown in Figure 1, the commuter rail
installation comprises eight total strain gauge bridges
spread across three cribs. Vertical measurements are
taken on both rails of two cribs, such that when a train
passes the site there are two opportunities for the system
to catch an imperfection on each wheel. It is important
that the spacing of the instrumented cribs do not coin-
cide with a full rotation of a passing wheel, so that multi-
ple areas of the wheel tread can be captured during a
pass. Although it is unnecessary to measure a full wheel
rotation with every train pass, using two well-spaced
cribs is likely to decrease the amount of time it takes to
identify damaged wheels. In addition to the principal
vertical strain gauge bridges, another vertical bridge was
installed on the south rail of the center crib and con-
nected to the XNode data acquisition system. A proto-
type vertical bridge was also overlaid with a traditional
bridge on the eastmost crib of the south rail. Lastly, lat-
eral strain gauge bridges were installed on both rails of
one full crib. In addition to the strain gauge bridges,
Figure 1 also shows the location of the radio frequency
identification (RFID) reader, as well as the wheel sensor
(i.e., trigger). The heavy rail site includes all the afore-
mentioned sensors, as well as a microphone to measure
train-pass sound pressures.

Both instrumentation sites were installed under traffic
using appropriate track protection provided by the part-
ner agencies. Most of the necessary equipment was
mobile enough to simply remove it from the right of way
when the team was notified of an approaching train,

allowing the installation to be performed in a single shift,
with minimal disturbance to traffic. The only activity
requiring dedicated track occupancy was the calibration
of the bridges, since the calibration frame attaches to the
rail head and may also shunt the track (3).

Data Collection

All data captured at the site is collected by a compact
DAQ (cDAQ), which consists of a National
InstrumentsTM (NI) chassis and associated modules. The
cDAQ at the commuter rail site records data at 2 kHz,
whereas the heavy rail location uses a much higher 25
kHz rate because of the need to accurately capture sound
pressure data. In total, there are three signals that are
monitored and recorded at both sites: voltage data from
the strain gauge bridges, which the NI system converts
to strain; voltage data from the wheel sensor that are
used to trigger data collection; and RFID data that are
brought into the cDAQ using an RS-232 serial port. In
addition, the system at the heavy rail site also records
sound pressure data and ambient temperature.

Incoming data are continuously monitored by the sys-
tem, but only saved to a file when a train passes the site.
To trigger data collection, the sites employ a Frauscher
RSR110 induction wheel sensor. The sensor is also used
to calculate the speed of the trains by dividing the known
wheel spacing by the elapsed time between two adjacent
wheels, as recorded by the sensor.

Once the data have been recorded by the cDAQ, a
Sierra Wireless RV55 AirLink LTE modem uploads each
train-pass file over the LTE cellular network to a cloud
folder for further processing and offsite analysis. Owing
to inconsistent cellular coverage at the commuter rail
site, external high-gain antennas were also used to ensure
a reliable network connection.

Wheel Load Quantification

The loading data that are captured at the instrumenta-
tion sites are generated by strain gauges attached to the
rail (Figure 2a). Both vertical and lateral loads are mea-
sured by strain gauges arranged into a Wheatstone bridge
pattern, as described in Cook et al. (12).

A portable strain gauge welding unit was used to
attach the gauges to the rail. Once the gauges were
affixed, silicone caulk and aluminum tape were applied
to provide environmental protection. A detailed descrip-
tion of the installation process can be found in Edwards
et al. (3). The final installed system at the commuter rail
site is shown in Figure 2b.

All sensors were calibrated by applying known loads
to the track through a self-reacting calibration device
known as the delta frame (3), and recording the response

Figure 1. Layout of heavy rail instrumentation site.
Note: RFID = radio frequency identification.
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generated in the strain gauge bridges. Using the applied
load magnitude and the strain gauge bridge response, a
calibration factor was calculated for each sensor that
relates any raw strain measurement to a wheel–rail
applied load.

Train Identification

RFID systems are used at both sites to identify individual
train cars. Using this information, problematic wheels
can be flagged, and specific wheels can be tracked over
time for trend analysis. The RFID system used at the
commuter rail site is a TransCore Encompass 4 RFID
reader, installed trackside as shown in Figure 3a. The
heavy rail site uses a TagMaster S1569 Heavy Duty
Track Reader, mounted in the gauge, as depicted in
Figure 3b. As trains pass the instrumentation, the RFID
reader collects information that uniquely identifies each
car equipped with an RFID tag and relays this informa-
tion to the data acquisition system.

Experimental Data Collection Methods

In addition to the established methods and systems
described, this study also deployed and evaluated two
novel forms of instrumentation at the commuter rail
installation site with the goal of further reducing costs
and increasing the ease of installation.

Prototype Strain Gauge. The prototype gauge (Figure 4) has
the same purpose and functionality as a traditional strain
gauge bridge (Figure 2a) but is smaller and more com-
pact. As shown in Figure 4, the prototype gauge covers
6.5 in. of the crib, whereas the traditional gauge spans 10
in. To verify that the prototype does not react differently
when subjected to the same wheel load as the traditional
gauge, both gauges were tested using a simulated wheel
pass in the laboratory. The two gauges registered similar
responses to the wheel load, suggesting that the proto-
type gauge would perform satisfactorily in the field. It
should be noted that, although the response was similar,
the total distance over which a high-impact load can be
recorded remained shorter in the case of the prototype
gauge (i.e., 6.5 in. as opposed to 10 in.).

The principal advantage of the prototype gauge is that
the two individual strain gauges stemming from the ter-
minal connector are constrained laterally, which makes
locating their correct position on the rail much easier. In
addition, the prototype gauge uses fewer connecting
wires than a traditional gauge. The compact size and
simpler design results in a sensor that is both quicker to
install and easier to protect from the elements. These fea-
tures are important on transit systems for which work
windows are extremely constrained. Experience from the
commuter railroad site suggests that ease of installation
was improved.

XNode. The XNode is a proprietary device developed at
the University of Illinois specifically for remote monitor-
ing of infrastructure (13–15). As shown in Figure 5, it

Figure 2. (a) Strain gauge bridges attached to rail and (b) the commuter railroad instrumentation site, as installed.

Figure 3. (a) RFID readers as installed at the commuter rail site
and (b) the heavy rail site.
Note: RFID = radio frequency identification.
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consists of the XNode and breakout box installed on
track, and a gateway installed trackside (not pictured).
All three components are compact and easily installed.
The system is powered by internal batteries and a solar
panel, though the gateway was hard-wired for this trial
installation. The breakout box allows up to five external
analog sensors to be connected to the XNode without the
need for a custom cable, through several terminal block
connections built into the box. In contrast to the cDAQ
system, the XNode system is woken up from power-
saving sleep mode by a built-in, low-power trigger

accelerometer that senses the vibration of incoming
trains. The XNode then collects and records incoming
strain gauge data from the breakout box, transfers the
data to the gateway via Zigbee radio, and then returns to
deep-sleep mode. After receiving the data, the gateway
uploads them to the cloud using a cellular connection.
Owing to its compact and wireless design, the XNode
data acquisition system can further increase ease of
installation while reducing the footprint of the data
acquisition system. In addition, the wireless design makes
it easier to troubleshoot and maintain the site since the
gateway can be installed in an accessible location without
the need for wired connections to the sensors.

Sound Level Monitoring

Sound pressure data were also collected at the heavy rail
site to investigate the frequency of the noise generated by
passing trains, as well as the relationship between load
magnitude (vertical and lateral) and the associated sound
pressure level. Instrumentation to measure the sound
pressure is depicted in Figure 6. The system includes a
precision condenser microphone (PCB 377B02), preamp
(PCB PRM2103-FF), and sound level meter (Model
831C). The sound level meter is used to run environmen-
tal protection features in the microphone/preamp system
and it outputs sound pressure readings as proportional
voltage, which is then read by the NI cDAQ. The sound
pressure data analysis is still underway and will be pre-
sented in a future paper.

Figure 4. Prototype gauge overlaid on traditional strain gauge.

Figure 5. XNode data acquisition system as installed at the
commuter railroad.

Figure 6. Sound pressure measurement equipment: (a) as
installed in the heavy rail site and (b) sound level meter.
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Real-Time Processing and Data Visualization

Because of the volume of data that the system collects
and the desire to provide timely exception reporting to
agencies, it is vital that all components of the real-time
monitoring system be automated. Once the data have
been collected at the field site, the cDAQ uploads them
to the cloud via a cellular connection, from which the
files are downloaded to a local server. A series of Python
scripts automatically run to clean (i.e., filter) and cali-
brate the data as well as identify train characteristics such
as number of axels, speed, and, for commuter trains, the
division between locomotives and coaches. Lastly, the
code then identifies each wheel load peak and records the
values in a separate file.

After the wheel loads have been extracted, the pro-
gram examines each peak load and compares it with a
threshold value that is set by the agencies. If any of the
wheel loads on a given train exceed that threshold, the
system automatically generates a notification email that
is sent to selected stakeholders within the agency so that
the wheel can be flagged for inspection, repair, or
removal. The generated email includes the time the
impact load was detected, as well as the train, car, and
axle numbers, so that the exact wheel can be easily iden-
tified by maintenance personnel.

The data, both raw and processed, are compiled and
uploaded to a cloud-based SQL database. The contents
of this database are then displayed in an online interac-
tive dashboard interface that gives agencies real-time
access to their data through a secure login. The website
uses visualization techniques such as tables, charts, and
graphs to display information on both aggregate and
individual train passes. This system will also allow for
tracking of individual wheels over time and the evalua-
tion of trends once sufficient data have been amassed.

Preliminary Data

The following section presents several examples of pre-
liminary data that have been processed by the system to-
date. This section focuses on data from the commuter rail
instrumentation site, however, all analysis and features
discussed are also applicable to the heavy rail agency’s
site. Although long-term trend analyses remain to be per-
formed once enough data have been accumulated, an
analysis of the preliminary results will provide a general
sense of the data that have been captured by the instru-
mentation and will offer insights into the value of the col-
lected data. Through the web portal, a subset of the
graphs displayed in the following figures will be available
to the agencies and updated automatically.

Figure 7 presents a time-history of the vertical loads
from a representative train pass captured by a single
strain gauge bridge, in which each vertical spike

represents an individual wheel. Here, a four-axle loco-
motive leads the train followed by eight coaches, each
with four axles. As expected, the locomotive displays
much higher average wheel loads than the coaches,
given the difference in gross static weight (i.e., 260,000
lb and between 102,000 and 126,000 lb, respectively).
The average locomotive wheel load during this train
pass was 33.9 kips, compared with an average coach
wheel load of 16.1 kips. Note that the second wheel on
the last coach generated a high-impact load of 35.2
kips, which is greater than the average coach wheel
load by a factor of 2.2. This impact load would even
exceed the static maximum passenger capacity load
(i.e., AW3), as defined by FTA (16) and explored by
Lin (2), by a factor of 1.7. These elevated dynamic fac-
tors suggested an imperfection was likely present on
this wheel’s tread, and that it should be inspected and
repaired if confirmed. Since locomotives regularly
impart loads of similar magnitude onto the track struc-
ture, immediate concern is not warranted, but the real-
time notification system would allow the commuter
railroad to flag the wheel for repair the next time that
the coach is in the yard.

Figure 8 presents a distribution of around 17,000
coach wheel loads recorded at the commuter rail site to-
date. On the X-axis, a bracket indicates that the associ-
ated value is included in the bin, whereas a parenthesis
indicates that it is not. The identified AW0 loading rep-
resents the weight of a static, empty passenger railcar.
This commuter railroad employs several different coach
models, therefore, the shading represents the range of
empty weights of these coaches. Wheel loads that fall
under the lower limit of the AW0 range are likely to be
the result of dynamic rocking caused by track geometry
imperfections and the rolling stock’s suspension system,
showing one of the disadvantages of the smaller instru-
mentation. Likewise, the AW3 shading represents the

Figure 7. Example commuter rail train-pass.
Note: AW3 = static weight of a railcar at its maximum passenger capacity.
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range of possible weights of the cars at maximum carry-
ing capacity. The data revealed that coach wheel loads
were concentrated, with the vast majority (i.e., 97%) of
wheel loads falling within a 10-kip range from 12.0 to
22.0 kips. Only 139 wheel loads were observed in this
data set that were greater than 24.0 kips, or about 1.5
times the average coach wheel load, and only eight wheel
loads exceeded the average coach wheel load by a factor
of two or greater. Because RFID tracking was not fully
operational at the commuter rail site, it was not possible
to identify how many different wheels generated this set
of eight impact loads, but given the frequency with which
every car passed the site and the size of the data set, it is
plausible that the majority of these loads were caused by
only one or two wheels.

That most of the data were concentrated within a
relatively narrow load range, coupled with the very low
number of wheel loads that exceeded twice the average
coach wheel load, suggested that the rolling stock in
question had good wheel health. The commuter rail-
road’s current wheel maintenance program was suc-
cessfully removing damaged wheels from service or
maintaining them before they deteriorated to unaccep-
table levels. Figure 8 also serves as a preliminary check
on the accuracy of the data generated by the system.
The measured wheel loads conformed well with the
known static loads, and the shape of the frequency dis-
tribution was characteristic of loading data. For exam-
ple, the longer right-hand tail represents rare impact
loads, whereas the shorter left-hand tail represents the
improbability of recording wheel load magnitudes
smaller than those associated with static loading.
Similar wheel load distributions were observed by
Edwards et al. (3) and Lima et al. (4).

Lastly, Figure 9a shows the same data but as a percent
exceeding graph. The shape of the curve is consistent
with the data displayed in Figure 8: the 97% of wheel
loads that fell between 12.0 and 22.0 kips is represented
by the steep portion of the graph, where a small increase
in the wheel load corresponds to a large decrease in the
percent of data points in exceedance. The less common
high-impact loads are embodied in the flat right-hand tail.
Given the significance of the high-impact loads, Figure 9b
provides a closer view of the top 1% of wheel loads. By
using this percent exceeding graph, the agency can directly
relate a given threshold level to the approximate number
of wheels that the system will flag. With the limited capac-
ity of maintenance departments, the agency must select a
threshold that identifies problematic wheels without over-
whelming the shop with maintenance requests. This
threshold can be dynamically updated once the overall
health of wheels in circulation is improved to continue
flagging a consistent number of wheels.

Discussion

In addition to the quality of the final data that the sys-
tem produces, which was addressed in the previous sec-
tion, there are additional considerations that factor into

Figure 8. Distribution of 17,000 commuter rail coach wheel
loads.
Note: AW0 = static weight of an empty passenger railcar; AW3 = static

weight of a railcar at its maximum passenger capacity.

Figure 9. Percent exceeding graphs of (a) all commuter rail
coach wheel loads and (b) top 1%.
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the viability of the system. The three most important of
these are cost, ease of installation, and reliability.

In relation to cost, the initial stages of this project
have proven to be relatively economical. The instrumen-
tation is much more compact than a typical freight wheel
health monitoring system, and as a result demonstrated
the expected cost savings. Although the system did not
analyze a full rotation of every wheel that passed the site,
its placement on closed systems allowed for this more tar-
geted approach. Transit agencies with limited resources
will be able to track their wheel health across multiple
lines for a fraction of the cost of commercially available
systems, even if multiple train passes are required to
detect a particular wheel imperfection.

The sites have also shown promising results for ease
of installation, although it remains clear that there are
areas for improvement. On the one hand, the installa-
tions took a single shift to complete, and both sites
were successfully installed by researchers and transit
employees, as opposed to trained technicians. In addi-
tion, the sites were installed under traffic, demonstrat-
ing the value of this system to the transit industry, in
which track time is extremely limited. On the other
hand, preparing for the installations took considerable
time and coordination, involving many hours of devel-
opmental lab work and meetings. The research team
believes that it is possible to further streamline both
the field installation and preparation work by using the
described prototype strain gauge and the XNode data
acquisition system. The compact and easy-to-install
designs of these new tools could lessen the amount of
time needed to both assemble the instrumentation and
install it in the field.

Lastly, although both systems are now recording accu-
rate data, the overall reliability of the system could be
improved. Noise in the data has been a persistent issue at
both sites, especially at the commuter rail site where mul-
tiple strain gauge bridges became unusable. Digital filters
have helped mitigate this issue, but future work should
attempt to further isolate the source. In addition, the
commuter rail cDAQ experienced a failure soon after
installation that required multiple site visits to rectify. In
general, further simplification of the equipment used at
the sites should improve both ease of installation, as dis-
cussed, as well as site reliability.

Conclusion

This study has built on previous load quantification
research to create a new real-time wheel health monitor-
ing system specifically designed for transit agencies. This
technology will allow agencies to monitor their rolling
stock wheel health across multiple lines and modes, as
well as perform predictive analytics on the data, helping

them target problematic wheels as or before the issue
occurs. In addition, it can provide agencies with impor-
tant insights into the specific loading conditions that
their track is subjected to. Both advancements should
improve track and rolling stock state of good repair. The
following conclusions can be drawn from this research:

� Wheel load quantification instrumentation was
successfully deployed under traffic on a commuter
railroad and heavy rail rapid transit system,
demonstrating the ease of installation of the sys-
tem. Novel forms of instrumentation, including a
prototype strain gauge and the XNode data acqui-
sition system, are being tested and have shown
promising performances, which should further
improve the ease of installation of future systems.

� Despite the complex nature of the system, this
technology has proven to be economical owing to
its compact design, which uses only one to two
instrumented cribs to gather loading data. This
design makes the system ideal for closed transit
networks, though unsuitable for the North
American freight environment.

� Both instrumentation sites have performed satis-
factorily to-date, though minor reliability issues
were observed. Technological improvements such
as the prototype gauge and XNode data acquisi-
tion system should mitigate some of these
problems.

� Preliminary data from the commuter railroad
instrumentation site displayed characteristics typi-
cal of aggregate wheel load data, such as concen-
trated frequency distributions with longer right-
hand tails resulting from the presence of impact
loads. In addition, the data corresponded well to
known AW0 and AW3 coach wheel loads.

All told, these initial observations suggest that the
transit-specific real-time wheel health monitoring system
was economical, feasible, and accurate. Future papers
will elaborate further on the data analytics, including
sound data analysis, and discuss how this wheel health
monitoring system has affected the maintenance and
engineering procedures at the partner transit agencies.
Ultimately, this study and system serve as a proof-of-
concept of the value of a compact, transit-specific wheel
health monitoring system, which the industry can
develop into a commercial product that meets the needs
of transit agencies.
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