MOFFATT & NICHOL LINE Creative People, Practical Solutions.

Radar Vehicle Detection Within Four Quadrant Gate Crossings

Dylan Horne 2014 Global Level Crossing Symposium August 4-8, 2014 Urbana, IL

North Carolina Department of Transportation Rail Division

Drew Thomas, PE Richard Mullinax, PE, PTOE Don Hudson

INSTITUTE FOR TRANSPORTATION RESEARCH AND EDUCATION

North Carolina State University Raleigh, NC, USA

Daniel Findley, Ph.D., PE

Thomas Rickabaugh

Daniel Coble

James Martin, PE

Problem Statement

1) Introduction

- 2) Literature Review
- 3) Methodology
- 4) Results
- 5) Conclusions
- 6) Acknowledgments

- Increased exposure at grade crossings due to train frequencies and traffic volumes.
- Short throat storage at adjacent signalized intersections may lead to queuing on the track.
- Highway and rail vehicle collisions are costly in terms of damage and delay but ultimately in loss of life.

Radar Vehicle Detection Within Four Quadrant Gate Crossings

Current Solutions

Closure / Consolidation

- Introduction 1)
- Literature Review 2)
- Methodology 3)

- Active Warning Devices
- Traffic Signal Preemption

- Results
- Conclusions 5)
- 6) Acknowledgments

- Four Quadrant Gates
- Grade Separation

Potential Solution

1) Introduction

- 2) Literature Review
- 3) Methodology

4) Results

5) Conclusions

6) Acknowledgments

- Use vehicle detection to determine if a crossing is clear
 - Provides dynamic control of the exit gate
- Less delay between entry and exit gate descent

• Extends the exit gate delay only in the direction of a 'trapped' vehicle.

Radar Vehicle Detection Within Four Quadrant Gate Crossings

Radar Installation

.

1) Introduction

- 2) Literature Review
- 3) Methodology
- 4) Results
- 5) Conclusions
- 6) Acknowledgments

Federal Highway Administration Grants

U.S. Department of Transportation Federal Highway Administration

- 1) Introduction
- 2) Literature Review
- 3) Methodology
- 4) Results
- 5) Conclusions
- 6) Acknowledgments

- Two grants totaling \$1,263,800 to NC Department of Transportation
 – 7 Sites, 3 Currently
- Two phases of ITRE study:
 Passive Portion
 Active Portion

North Carolina Projects

2)

3)

5)

6)

Global Level Crossing Safety and Trespass Prevention Symposium

University of Illinois at Urbana-Champaign

moffatt & nichol

Exit Gate Operating Modes (EGOM)

Hellman, Adrian, and Tashi Ngamdung. 2009. *Illinois high-speed rail four-quadrant gate reliability assessment*. U.S. Department of Transportation, Federal Railroad Administration, DOT/FRA/ORD-09/19

- 1) Introduction
- 2) <u>Literature Review</u>
- 3) Methodology
- 4) Results
- 5) Conclusions
- 6) Acknowledgments

Modified from Hellman and Ngamdung

Radar Vehicle Detection Within Four Quadrant Gate Crossings

Sensor Types

* Hilleary, Thomas, and Tarek Omar. 2012. A Radar Vehicle Detection System for Four-Quadrant Gate Warning Systems and Placked Crossing Potaction		Inductive Loops	Radar		
 Washington, DC: Federal Railroad Administration, DOR/FRA/ORD-12/24. 1) Introduction 	Typical Uses	Actuated Intersections	Freeway Volume Detection		
2) <u>Literature Review</u>	Railroad Applications	Illinois HSR Connecticut NEC	Illinois Evaluation North Carolina		
3) Methodology	Installation Location	Embedded in Roadway	Mounted Overhead		
4) Results	Cost	May Cause Delay During Installation / Maintenance	Higher Purchase Cost		
	Life Cycle	4 to 6 years	10 years		
5) Conclusions	Redundant Coverage	No	Yes		
6) Acknowledgments	Illinois Evaluation*	No Missed Detections	No Missed Detections		
Global Level Crossing Safety and Trespass Prevention Symposium		der Vahiele Detection Within			

Radar Vehicle Detection Within Four Quadrant Gate Crossings

Dual Matrix Radar Detection

Radar Vehicle Detection Within Four Quadrant Gate Crossings

13

Trespass Prevention Symposium

University of Illinois at Urbana-Champaign

- 1) Introduction
- 2) Literature Review
- 3) <u>Methodology</u>
- 4) Results
- 5) Conclusions
- 6) Acknowledgments

Radar Vehicle Detection Within Four Quadrant Gate Crossings

Delayed Exit Gate

- 1) Introduction
- 2) Literature Review
- 3) <u>Methodology</u>
- 4) Results
- 5) Conclusions
- 6) Acknowledgments

Radar Vehicle Detection Within Four Quadrant Gate Crossings

Gate Operations & Radar Detection Counts

Stages of Crossing Activation

Four Quadrant Gate Crossings

Detection Classification and Anomalies

- Successful Detection
-) Introduction
- 2) Literature Review
- 3) <u>Methodology</u>
- Critical Failure

Missed Detection

4) Results

5) Conclusions

6) Acknowledgments

GLXS 2014 Global Level Crossing Safety and Trespass Prevention Symposium University of Illinois at Urbana-Champaign

- False Detection
 Phantom Detection
 - Rain or Snow Detection
 - Adjacent Lane Detection

Mebane: 5th Street

1) Introduction

- 2) Literature Review
- 3) Methodology
- 4) <u>Results</u>
- 5) Conclusions
- 6) Acknowledgments

Radar Vehicle Detection Within Four Quadrant Gate Crossings

City	Mebane, NC
Crossing Number	735 472 D
Road Name	5th Street
Local Land Use	Commercial
Warning Devices	4QG, 2 Cantilevers, 12 Flashing Pairs, Preemption
Number of Tracks	1 Main
Number of Daily Trains / Speed	16 @ 60 mph
Number of Highway Lanes / Speed	3 NB, 2 SB @ 35 mph
ADT (year)	12,290 (2010)
Collisions (year)	7 (10, 10, 05, 87, 81, 80, 78)

Durham: Ellis Road

- 1) Introduction
- 2) Literature Review
- 3) Methodology
- 4) <u>Results</u>
- 5) Conclusions
- 6) Acknowledgments

Durham, NC
735 236 Y
Ellis Road
Industrial: Heavy Vehicles
4QG, 1 Cantilever, 7 Flashing Pairs, Preemption
1 Main, 1 Siding, 1 Yard
16 @ 60 mph
2 NB, 1 SB @ 35 mph
5,866 (2010)
12 (10, 09, 08, 06, 02, 01, 98, 87, 79, 79, 79, 75)

Elon: Williamson Avenue

- 1) Introduction
- 2) Literature Review
- 3) Methodology
- 4) <u>Results</u>
- 5) Conclusions
- 6) Acknowledgments

City	Elon, NC
Crossing Number	722 995 V
Road Name	Williamson Avenue
Local Land	University: Pedestrians
Warning Devices	4QG, 2 Cantilevers, 12 Flashing Pairs, Preemption
Number of Tracks	1 Main
Number of Daily Trains / Speed	16 @ 60 mph
Number of Highway Lanes / Speed	1 NB, 2 SB @ 20 mph
ADT (year)	6,805 (2010)
Collisions (year)	1 (84)

Vehicle Detection

		Car / Truck	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5-8	Activations	Violating Vehicles *
1)	Introduction	Durham	75 / 3	41/4	1/0	1/0	None	294	43 / 4 16%
2)	Literature Review	Elon	125 / 0	41/0	None	None	None	311	41/0 13%
4)	Results	Mebane	107 / 2	66 / 4	None	None	None	147	66 / 4 48%
5)	Conclusions	Total	307 / 5	148 / 8	1/0	1/0	None	752	150 / 8 21%

6) Acknowledgments

*Violating Vehicles cross after the start down of the entrance gate Percentage is the number of activations with a violating vehicle

> Radar Vehicle Detection Within Four Quadrant Gate Crossings

Detection Classification and Anomalies

1) 2)	Introduction Literature Review		Successful Detection	Missed Detection	False Detection	Phantom Detection	Rain or Snow Detection	Adjacent Lane Detection	Critical Failure
		Durham	125	0	3 ¹	0	0	0	0
3)	Methodology	Elon	166	0	1	0	1	1	0
4)	<u>Results</u>	Mebane	179	0	3 ²	0	0	2	0
		Total	470	0	7	0	1	3	0
5)	Conclusions	% of Total	98.5%	0.0%	1.5%	0.0%	0.2%	0.6%	0.0%

6) Acknowledgments

False detection issue resolved by adjusting:

1 Radar mounting angle

2 Radar sensitivity

Conclusions

• 10 Seconds between entrance gate down and exit gate start down

- 1) Introduction
- 2) Literature Review
- 3) Methodology
- 4) Results

5) <u>Conclusions</u>

6) Acknowledgments

- 15 Seconds between gates fully deployed and train arrival
- Radar detection system is very reliable
 - No Missed Detections
 - 98.5% Successful detections
 - False detection issues were resolved

Conclusions

vehicle

) Introduction

- 2) Literature Review
- 3) Methodology
- 4) Results
- 5) <u>Conclusions</u>
- 6) Acknowledgments

• 1 in 3 Vehicles that arrive during an activation violate the active warning devices

1 in 5 Activations have a violating

• Currently collecting active data for comparison

Acknowledgments

- Introduction NCDOT **Drew Thomas**, PE Richard Mullinax, PE, PTOE NCDOT Literature Review **Don Hudson** NCDOT • Methodology **Island Radar Tom Hilleary Results** Paul Worley, CPM NCDOT Conclusions **Norfolk Southern Corporation**
- 6) <u>Acknowledgments</u>

2)

3)

5)

Dylan Horne

THANK YOU!

Moffatt & Nichol dhorne@moffattnichol.com 919.781.4626

www.moffattnichol.com