Gauging of Concrete Crossties to Investigate Load Path in Laboratory and Field Testing

Joint Rail Conference 2014
Colorado Springs, CO
3 April, 2014
Sihang Wei, Daniel Kuchma
Outline

• Project Objectives

• Introduction and Background

• Instrumentation and Laboratory Calibration

• Rail Seat Loading and Crosstie Bending Moment Calculation Methodology

• Results Analysis

• Conclusions and Future Work
FRA Concrete Crosstie and Fastening System Research Program
Overall Deliverables

Mechanistic Design Framework
- Literature Review
- Load Path Analysis
 - International Standards
 - Current Industry Practices
 - AREMA Chapter 30

Finite Element Model
- Laboratory Experimentation
- Field Experimentation
 - Parametric Analyses

I – TRACK
- Statistical Analysis from FEM
- Free Body Diagram Analysis
- Probabilistic Loading
Objectives of Crosstie Bending and Compression Experimentation

• Determine the vertical rail seat loads
• Determine the bending moments at the crosstie rail seats and the crosstie center when subject to:
 – Static and dynamic loads
 – Varying load magnitude of rail cars (empty – 315 kips)
• Determine support conditions below crossties
• Determine the load path going through the crosstie
• Determine the effect of rail seat loading and support conditions to the behavior of the crosstie
• Determine how the support conditions effects the load path in the system
Background: Concrete Material Properties

Concrete core testing
Newmark, UIUC

Crosstie center positive bending test
Newmark, UIUC
Background: Concrete Crosstie Design Cracking Moment

Concrete compressive strength
- From crosstie manufacturer
 \(f'(28d) = 11,730 \text{ psi} \)
- From concrete core drill test & positive bending test
 \(f'(1ya) = 11,000 \text{ psi} \)
Using \(f' = 11,000 \text{ psi} \)

Concrete tensile strength
\(f_t = 7.5\sqrt{f'} = 787\text{psi} \)

Positive: top in compression
Negative: top in tension

- Crosstie Center Cracking Moment
 - positive: 196.8 k-in
 - negative: -256.8 k-in

- Crosstie Rail-seat Cracking Moment
 - positive: 405.6 k-in
 - negative: -219.6 k-in

Using BEAM theory
\[M_{cracking} = f_t \cdot I / y \]
Where, \(I \) and \(y \) are geometry properties
Background: Previous Research on Support Conditions

(a) central void
(b) single hanging
(c) double hanging
(d) triple hanging
(e) side-central voids

Kaewunruen & Ramennikov, 2007
Concrete embedment strains measured 2 inches below both rail seats

Concrete surface strains measured from one side surface of the crosstie
Gauging of Concrete Crossties to Investigate Load Path in Laboratory and Field Testing

Rail Seat Load Measurement – Using Embedment Strain Gauge

CXT, Tucson AZ (May 2012)
Rail Seat Load Measurement – Laboratory Calibration

\[V \text{(kips)} = e_{AVG} \cdot E_c \cdot A \cdot Q_1 \cdot Q_2 \cdot Q_3 \]

Where,
- \(V \) – vertical load applied on the rail seat
- \(e_{AVG} \) – average strain recorded
- \(E_c \) – elastic modulus of concrete
- \(A \) – simplified bearing area at the center of embedment strain gauges (equal to the area of rail seat, 6”x6”)
- \(Q_1 \) – correct factor for equivalent bearing area
- \(Q_2 \) – correct factor for loading eccentricity
- \(Q_3 \) – correct factor for support length
Rail Seat Load Measurement
– Laboratory Calibration
Gauging of Concrete Crossties to Investigate Load Path in Laboratory and Field Testing

Crosstie Bending Moment Calculation Methodology

\[M(\text{railseat} 1) = (e_{S2} - e_{S1})EI_{12} / d_{12} \]
\[M(\text{center}) = (e_{S4} - e_{S3})EI_{34} / d_{34} \]
\[M(\text{railseat} 2) = (e_{S6} - e_{S5})EI_{56} / d_{56} \]

Where,
\begin{itemize}
 \item e: strain recorded from concrete surface gauge #1~#6
 \item E: elastic modulus of concrete, 4500 ksi
 \item I: moment of inertia at each location
 \item d: the distance between the upper and lower gauges at each location
\end{itemize}
Instrumented Crossties

Embedment Gages, Vertical Circuit, Clip Strains
Crosstie Surface Strains
Rail Seat Load Under Dynamic Load: Rail Seat E & U by Wheel Load

Tangent Track Speed = 2 mph

Wheel Load (kips) vs. Rail Seat Load (kips)

- Rail Seat E
- Rail Seat U
- Linear (Rail Seat E)
- Linear (Rail Seat U)
Rail Seat Load Under Dynamic Load: Rail Seat E by Car Type

RTT, Rail Seat E (2013)

Rail Seat Load (kips)

Speed (mph)

- Car Weight=260k
- Car Weight=286k
- Car Weight=315k

due to flat spot on wheel

Tangent Track Speed = 2~70 mph
Rail Seat Load Under Dynamic Load: Rail Seat U by Car Type

RTT, Rail Seat U (2013)

- Car Weight=260k
- Car Weight=286k
- Car Weight=315k

Tangent Track Speed = 2~70 mph
Flat Spot on Wheel

Flat spot hit rail right above the sensor

Tangent Track Speed = 45 mph
Flat spot on car #9 (1st wheel)
Sensor: Embedment strain gauge @ rail-seat U
Flat Spot on Wheel

Flat spot hit rail away from the sensor

Tangent Track Speed = 45 mph
Flat spot on car #9 (1st wheel)
Sensor: Embedment strain gauge @ rail-seat W
Bending Moments Under Static Load: Rail Seats E and U and Crosstie Center E-U

- Design rail seat cracking moments
 - positive: 405.6 k-in
 - negative: -219.6 k-in
- Design tie center cracking moment
 - positive: 196.8 k-in
 - negative: -256.8 k-in
Discussion on Support Length

From field test
- Tangent track crosstie E-U
- Static loading
- 40 kips vertical wheel load
- 3 moment (strain) measurements from crosstie

From analysis
- Rail-seat loads were measured using embedment strain gauges
- Beam theory was applied
- Support conditions were calculated to match the moments measured
Bending Moments Under Dynamic Load: Rail Seat E by Car Type

- Design rail seat cracking moments
 - positive: 405.6 k-in
 - negative: -219.6 k-in
Bending Moments Under Dynamic Load: Crosstie Center C-S by Car Type

- Design tie center cracking moment
 - positive: 196.8 k-in
 - negative: -256.8 k-in
Conclusions

- 50%~75% of vertical wheel load was supported by the crosstie below the wheel

- In general, the recorded rail seat load and bending moment increased slightly as the nominal car weight increased

- The recorded rail seat load and bending moment at high speed shows more variability than at low speed

- Due to impact load (flat spot), the rail seat load recorded could be as great as 200% of normal rail seat load

- Bending moments recorded in field didn’t not approach the cracking limit

- Crosstie bending moment highly depended on the support condition (contact between crosstie and ballast)
Future Work

• Full-scale laboratory experiment with multiple crossties will be accomplished in Schnabel Lab in UIUC

• Various case of support conditions will be tested
Acknowledgements

U.S. Department of Transportation

Federal Railroad Administration

• Funding for this research has been provided by the Federal Railroad Administration (FRA)
• Industry Partnership and support has been provided by
 – Union Pacific Railroad
 – BNSF Railway
 – National Railway Passenger Corporation (Amtrak)
 – Amsted RPS / Amsted Rail, Inc.
 – GIC Ingeniería y Construcción
 – Hanson Professional Services, Inc.
 – CXT Concrete Ties, Inc., LB Foster Company
 – TTX Company

FRA Tie and Fastener BAA
Industry Partners:

[Logos of the industry partners]
Questions?

Sihang Wei
Graduate Research Assistant
Department of Civil and Environmental Engineering
University of Illinois, Urbana-Champaign
Email: wei22@illinois.edu