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Abstract 

Broken rails are the leading cause of major derailments on North American railroads, including 
the most frequent cause of hazardous materials releases.  Railroads in the US average 126 
mainline broken rail derailments per year with an average track and equipment cost of $275,000 
per incident.  More importantly, the number of mainline broken-rail-caused derailments has 
increased from 98 in 1996, to 139 in 2005; therefore, efforts to reduce their occurrence are 
increasingly important.  The purpose of this study was to examine the factors that influence the 
occurrence of a broken rail to improve the quantitative understanding of how they contribute to 
the likelihood of such an event.  The objective was to develop an accurate, predictive tool that 
will enable railroads to identify locations with a high probability of broken rail occurrence.  The 
factors that were considered included rail characteristics, infrastructure data, maintenance 
activity, operational information, and rail testing results.  To analyze the broken rail factors two 
modeling techniques were applied, one using statistical regression and the other employing an 
artificial neural network (ANN).  Both approaches have relative strengths and weaknesses, and 
for that reason, a hybrid model was also developed.  The results of this study will enable 
railroads to more effectively allocate resources to prevent or mitigate the occurrence of broken 
rails. 

Introduction 

The mitigation of broken rail derailments and service failures is an increasingly important topic 
for US freight railroads.  The number of broken rail occurrences has increased in recent years 
and may be due to several factors, including an increase in traffic levels and heavier axle loads.  
Typically, broken rails are caused by the undetected growth of either internal or surface defects 
on the rail.  The prediction of fracture growth within a rail once a defect is detected has been 
examined previously [1,4,8].  However, the majority of broken rail events occur at locations 
where a defect has not been detected.  This is due to both the rapid growth of defects under 
load as well as the high cost of defect detection techniques.  Additionally, previous work on this 
topic has been conducted to examine factors that lead to a broken rail event [3,7].  The factors 
previously evaluated include rail and traffic characteristics.  The purpose of this study was to 
examine and quantify the factors that may influence the likelihood of a broken rail event.  The 
factors that were considered include rail characteristics, infrastructure data, maintenance activity, 
operational information, and rail testing results. 
 
Two modeling techniques were applied to analyze the possible factors that lead to broken rail 
events; one uses statistical regression and the other employs an artificial neural network (ANN).  
Both of these modeling techniques have been used extensively in engineering applications for 
the purpose of failure classification and prediction.  Additionally, a hybrid model combining both 
statistical regression and neural network techniques was developed.  Previous work has shown 
that hybrid ANN/logistical regression models outperform purely statistical approaches in other 
fields, but this approach has not previously been applied to the prediction of broken rails [12].   
 
The objective of this analysis was to develop a predictive tool that will enable railroads to 
accurately identify locations at high risk for broken rail occurrence so they can take the proper 
preventive measures.  Broken rail events are often addressed using a reactive approach; the 
results of this study will enable railroads to develop a more preventive approach that will provide 
both safety and economic benefits. 
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Service Failure Data 
 
In order to develop a predictive model, it is desirable to consider as many factors as possible 
that might affect the occurrence of broken rails.  A previous study conducted an in-depth 
analysis of possible track and traffic factors [2] and in our study we considered these, as well as 
an additional group of factors.  From the standpoint of rail maintenance planning it is just as 
important to determine which factors are correlated with broken rails, as it is to determine which 
are not.  Therefore our analysis included a wide-range of possible variables where data was 
available.  This included track and rail characteristics such as rail age, rail curvature, track 
speed, grade, and rail weight.  Also, changes in track modulus from the presence of 
infrastructure such as bridges and turnouts have a potential effect on rail defect growth and 
therefore were examined.  Additionally, maintenance activities are included that can reduce the 
likelihood of a broken rail occurrence, such as rail grinding and tie replacement.  Finally, track 
geometry and ultrasonic testing for rail defects are used by railroads to assess the condition of 
track and therefore the results of these tests are included as they may provide predictive 
information about broken rail occurrence. 
 
A major North American railway provided relevant information regarding the location of broken 
rail service failures.  A service failure is defined as an incident where a track was taken out of 
service and trains could not proceed due to a broken rail or rail flaw.  A service failure does not 
include incidents where trains are halted due to a rail that is found to be badly worn or damaged.  
Additionally, a service failure implies that the broken rail was detected in any number of ways 
(signal system, track inspector, train crews, etc.) before a train was able to proceed to the 
location of the broken rail.  Whereas, a broken rail derailment is defined as a broken rail location 
that is undetected and causes a train to derail.  Previous work has shown that a significant 
statistical relationship exists between the likelihood of broken rail derailments and the likelihood 
of broken rail service failures [2]. 
 
A database was developed from approximately 24,000 route miles of mainline trackage for a 
major North American railroad covering the four-year period, 2003-2006.  The data available 
included specific locations for all service failures occurring across the network.  The railroad 
experienced 12,685 service failures, as defined previously, during the four-year period.  
Additionally, rail characteristics, infrastructure data, maintenance activity, operational 
information, and track testing results were linked to each of these service failures.  Specifically, 
the following 28 variables were included in the analysis: 
 

• Rail weight 
• Rail type (bolted or welded) 
• Age of rail 
• Maximum allowable speed 
• Annual number of trains 
• Annual number of tons 
• Accumulated tons on rail 
• Annual number of cars 
• Average tons per car 
• Average dynamic tons per car 
• Annual number of wheel passes 
• Occurrence of a internal defect 
• Occurrence of a geometric defect  
• Severity of a geometric defect 

• Degree of curvature 
• Length of curve 
• Degree of superelevation in curve 
• Percent rise of grade 
• Length of grade 
• Recent tie replacement or tie work 
• Presence of a bridge 
• Presence of a culvert 
• Presence of a tunnel 
• Presence of a diamond 
• Presence of a turnout 
• Presence of a grade crossing 
• Curve rail grinding activity 
• Out-of-face rail grinding activity 

 
The objective of this analysis was to determine track segments that have a high likelihood of 
experiencing a broken rail event.  The railroad's network was divided into 0.01-mile segments 
(or approximately 53 feet) and the location of each service failure recorded.  The initial dataset 
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was comprised of the 12,685 0.01-mile track segments that experienced a service failure during 
the study period.  For the case of modeling rare events it is common to sample all of the rare 
events and compare these with a similar sized sample of instances where the event did not 
occur [5].  Therefore an additional 12,685 0.01-mile segments that did not experience a service 
failure during the four-year period were randomly selected from the railroad's network.  
Additionally the non-failure locations were given a random date within the four-year time period 
for use in evaluating certain variables, such as the recent occurrence of an internal defect.  
Therefore, the dataset used in the remainder of this analysis included 25,370 total segment 
locations, each with a particular date, from the railroad's network. 
 
Previous Service Failure Classification Model 
 
The most relevant work completed on this topic was a study that was conducted with the 
purpose of predicting service failures based on relevant track and traffic data [3].  The outcome 
of this study was a multivariate statistical model which was able to quantify the probability of a 
service failure at any particular location based on a number of track and traffic related variables.    
This was a statistical model developed based on logistic regression techniques using available 
service failure data.  The model’s classification equation that was developed is as follows: 
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where, 
 
PSF2 = probability that a service failure occurred at a particular location during a two-year period 
Z = -4.569, model specific constant 
A = rail age (in years) 
C = curvature of track (in degrees) 
T = annual traffic (in million gross tons) 
S = rail weight (in pounds per yard) 
W = annual number of wheel passes (in millions) 
P = dynamic wheel load (in tons) 
N = presence of turnout (1 if present, 0 otherwise) 
L = weight of car (in tons) 
V = track speed (in miles per hour)  
 
An optimal probability threshold for Equation (1) was determined to be 0.5 to classify each 
location.  The data included used a total of 1,903 service failures from a two-year time period 
from May 1998 to May 2000.  This model was found to classify locations correctly with 87.4% 
accuracy when using a dataset that was composed of half failures and half non-failures.  This 
model was not tested against any “unseen”, or validation, data at the time it was developed.  
Therefore, the next step was to test the previous model against the current service failure data.   
 
The most current two years of data along with the corresponding parameters was selected.  
During the time period of 2005 to 2006, the railroad experienced 6,613 service failures.  These 
service failures, as well as 6,613 random non-failure locations, were entered into the above 
model in Equations (1) (2).  Only the parameters that were included in the previous model were 
evaluated for this analysis.  Again, using a probability threshold of 0.5 it was determined that the 
previous model classified 7,247 of the 13,226 cases correctly (54.8%).  However, the new 
optimal probability threshold was found to be 0.1 with an accuracy of 57.2%, thus minimizing the 
number of false negatives.  Table 1 shows a summary of these results.  It is clear that the 
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previous model has limited predictive power for current service failure locations; therefore a new 
classification model was developed. 
 

Probability 
Threshold

Correct 
Predictions Accuracy False 

Positives
False 

Negatives
0.1 7566 57.2% 29.8% 13.0%
0.2 7500 56.7% 24.0% 19.3%
0.3 7402 56.0% 19.7% 24.3%
0.4 7338 55.5% 16.8% 27.7%
0.5 7247 54.8% 14.0% 31.2%
0.6 7070 53.5% 11.1% 35.4%
0.7 6931 52.4% 8.0% 39.6%
0.8 6807 51.5% 5.1% 43.5%
0.9 6663 50.4% 2.1% 47.5%  

Table 1: Results of testing previous service failure model with current data (13,226 cases) 
 
Statistical Classification Model 
 
The first new classification model that was developed to predict service failure locations used 
the same logistic regression technique as the previous work.  However, unlike the previous work, 
more possible factors influencing crack growth were included to develop the model, such as 
infrastructure data, maintenance activities, and track testing results.  The logistic regression 
technique is a discrete choice model that produces an output value of the probability of failure.  
The determined probabilities are then used to classify each case as either failure or non-failure.  
A statistical regression equation is calculated based on any and all significant input parameters 
to determine the probability of failure.   
 
A step-wise selection method is used to determine which parameters are significant for 
prediction.  The step-wise method first adds the most significant variable to the model.  In the 
second step, the step-wise method adds the variable that, when evaluated in conjunction with 
the first variable, produces the greatest improvement. This process continues until no additional 
variables meet a 0.05 significance level for entry into the model.  Additionally, at each step the 
model will remove any previously entered variable if its removal does not decrease the 
predictive power.  This model was developed using the complete four-year time period of 
service failures and non-failure locations as well as all available rail, infrastructure, maintenance 
activity, operational, and track testing data.   The developed logistic regression equation was: 
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where, 
 
PSF2 = probability that a service failure occurred at a particular location during a four-year period 
Z = 6.318, model specific constant 
S = rail weight (in pounds per yard) 
R = rail type (1 if welded, 0 if bolted) 
A = rail age (in years) 
V = track speed (in miles per hour) 
F = annual number of trains (total, both directions) 
T = annual traffic (in million gross tons) 
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H = accumulated tons on rail since rail was installed (in millions) 
L = weight of car (in tons) 
P = dynamic wheel load (in tons) 
W = annual number of wheel passes (in millions) 
I = presence of a ultrasonic defect in the last three years (1 if present, 0 otherwise) 
G = presence of a geometric defect in the last three years (1 if present, 0 otherwise) 
C = curvature of track (in degrees) 
E = superelevation of track (in inches) 
J = length of grade (in feet) 
M = recent tie replacement or tie work in last three years (1 if present, 0 otherwise) 
B = presence of a bridge within 200 feet of track segment (1 if present, 0 otherwise) 
K = presence of a culvert 200 feet of track segment (1 if present, 0 otherwise) 
D = presence of a diamond within 200 feet of track segment (1 if present, 0 otherwise) 
N = presence of a switch or turnout within 200 feet of track segment (1 if present, 0 otherwise) 
X = presence of a grade crossing within 200 feet of track segment (1 if present, 0 otherwise) 
O = out-of-face rail grinding activity performed on track segment (1 if present, 0 otherwise) 
Q = curve rail grinding activity performed on track segment (1 if present, 0 otherwise) 
 
The new model contains more variables which contribute to the likelihood of a broken rail as 
compared to the previous model.  This is due to the fact that the previous model examined only 
11 possible prediction factors; whereas the new model evaluated 28 different factors.  
Additionally, the previous model allowed for two term interaction; whereas this model was 
limited to single variable interaction due to available computing power.  Advanced models, such 
as artificial neural networks, are also developed and evaluated in the next section which 
incorporate all possibilities of multiple variable interaction.  The accuracy of prediction for this 
model was 66.3% at an optimal threshold of probability of 0.50.  A summary of the predictive 
power of the model for varying levels of probability is shown in Table 2.    
 

Probability 
Threshold

Correct 
Predictions Accuracy False 

Positives
False 

Negatives
0.1 12721 50.1% 49.8% 0.0%
0.2 13298 52.4% 47.0% 0.5%
0.3 14711 58.0% 39.0% 3.0%
0.4 16545 65.2% 23.3% 11.5%
0.5 16822 66.3% 12.8% 20.9%
0.6 16485 65.0% 7.2% 27.9%
0.7 15825 62.4% 3.8% 33.8%
0.8 14787 58.3% 1.5% 40.2%
0.9 13402 52.8% 0.3% 46.9%  

Table 2: Results of new service failure model with current data (25,370 cases) 
 
The new model increased the accuracy of classification for the most recent service failure data 
by 11.5% over the previous model.  Therefore, the development of a new model with the 
inclusion of additional possible factors leading to service failures increased the model’s 
predictive ability.  In particular the first five terms, or most significant factors, entered into the 
model were: 1) presence of an ultrasonic defect, 2) rail type, 3) annual MGTs, 4) average tons 
per car, and 5) presence of a geometric defect.  Of these five terms neither the presence of 
ultrasonic or geometric defects had been included in the previous model.  Additionally, the 
presence of infrastructure, such as bridges, grade crossings, and diamonds, were not previously 
evaluated, yet have influence in the new statistical model. 
 
Artificial Neural Network Classification Model 
 
The second new classification model that was developed is an artificial neural network (ANN).  
Artificial neural networks have been used in various studies of event prediction, in particular 
classifying future events into either failure or non-failure.  The use of ANNs has been shown to 
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be a more powerful alternative to logistic regression models in various applications.  A previous 
study conducted, developed a neural network model for predicting bankruptcy failure of firms 
based on limited financial data.  The study concluded that the neural network developed 
showed a higher level of prediction accuracy and robustness over previous modeling techniques 
[6].   
 
ANNs are a computational tool that have the ability to “learn” mathematical relationships 
between a series of input variables and their respective output value.  ANNs are an 
interconnected group of neurons that have the ability to change its structure based on 
information that flows through the network.  The main parts of an ANN are the inputs, neurons, 
hidden layer, output, and node connections.  The input layer of the ANN is comprised of the 
various input parameters into our service failure classification problem.  The neurons in the 
hidden layer are mathematical equations relating the connected nodes.  The node connections 
are weighted connections between various nodes.  The creation of nodes, equations, and 
connection weights are determined by computer learning techniques.  Finally, the output node is 
connected to the hidden layer and the computer produces an output value.  Using ANNs, only a 
classification of failure or non-failure is determined. 
 
With the development of ANNs as an alternative to logistic regression for prediction studies, 
research has been conducted to explore the differences in the two techniques [10].  There are 
many advantages and disadvantages to the use of artificial neural networks as a classification 
tool.  The most important advantage of neural networks is the ability to detect complex non-
linear relationships between input and output variables.  The hidden layers and neurons as well 
as the node connections allow ANNs to have non-linear relationships between the input values, 
nodes, and output value.  Another advantage is that ANNs can detect all possible interactions 
between input variables.  The previous statistical model that was developed only evaluated 
single term interactions.  The inherent design of a neural net by computer software evaluates 
and considers every possible interaction and power.  Finally, ANNs have the advantage that 
they can be developed and evaluated using different learning techniques and different objective 
functions.  This allows the creator of the neural network the ability to try different techniques to 
determine the optimal classification model. 
 
An artificial neural network model was developed for classifying track segment locations as 
either failure or non-failure.  The same service failure data, as well as non-failure locations, that 
were used to develop the logistic regression model were used again for construction of the 
neural network.  However, only 15,999 randomly selected cases could be analyzed due to 
limitations of the software.  The software used for construction of the neural network was 
“NeuroShell Classifier” developed by Ward Systems Group, Inc [11].  Using the data from the 
four-year study period, a neural network was developed using back-propagation.  The ANN 
classified 67.7% of the cases correctly, an improvement of 1.4% over the previous logistic 
regression model.  This model classified 12.7% false positives and 19.6% false negatives 
(Table 3). 
 

ANN Model 
Type Accuracy False Pos. False Neg. Computation 

Time (sec)
Hidden 

Neurons
ANN 67.7% 12.7% 19.6% 38 76

Logit-ANN 67.5% 13.0% 19.5% 34 71
Plogit-ANN 67.9% 12.8% 19.2% 39 77  

Table 3: Summary of results for three developed artificial neural network classification models 
 
The number of hidden neurons constructed for this neural network was 76.  An ANN is 
constructed by computer software by adding hidden neurons one by one until the optimal 
network is determined.  An optimal network and the optimal number of neurons are determined 
between a balance of model accuracy and generalization.  A network that generalizes well is 
one that is able to provide good results for data not used to train the neural net.  In other words, 
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the software attempts to produce a neural network that is both accurate and robust for unseen 
cases. 
 
 
Hybrid Classification Models 
 
The final two classification models that were developed are logistic regression / ANN hybrid 
models.  One of the disadvantages of ANNs when compared to logistic regression models is 
that ANNs frequently have difficulty analyzing systems that have a high number of parameters 
due to the large amount of time taken to learn the system as well as possibly over-fitting the 
model during the initial learning phase.  Previous work has shown that the development and use 
of hybrid models between ANNs and logistic regression techniques improves the classification 
performance when compared to previous techniques [9,12]. 
 
Two common types of hybrid models for ANNs and logistic regression have been developed in 
previous studies.  The first hybrid model type is constructed by the use of logistic regression for 
the pre-selection of variables based on their significance for the model.  Only the factors 
included in the initial logistic regression model are then considered into the development of the 
ANN.  This model type is defined as a Logit-ANN model.  The second common hybrid model 
type is constructed by using the logistic regression model to calculate the probability of failure 
and then adding that value as an additional input variable into the ANN.  This type of model is 
defined as a Plogit-ANN model.  The two hybrid models produce advantages over the previous 
techniques.  The hybrid models decrease initial learning time for the ANN, meaning that more 
cases can be devoted to optimizing the network instead of learning the network.  Additionally, 
the hybrid models condense information for very large problems that lead to a decrease in 
learning time which can be a significant factor for very large datasets. 
 
Both hybrid models were developed using the previous logistic regression model that was 
developed in this analysis.  The first hybrid, Logit-ANN, is constructed by first pre-selecting the 
input variables using the logistic regression technique.  23 of the 28 input factors included in this 
analysis were considered to be factors that influenced the occurrence of a service failure.  Only 
these 23 factors were then used to construct the ANN.  The Logit-ANN hybrid model was 
determined to be 67.5% accurate.  The second hybrid model, Plogit-ANN, is constructed by 
using the logistic regression model to calculate the probability of failure for each case.  This 
value is then added to the input variables for construction of the ANN.  The Plogit-ANN hybrid 
model was found to be the most accurate model with a 67.9% correct classification rate (Table 
3). 
 
The Plogit-ANN hybrid model performed better than any other developed classification model, 
including the logistic regression technique.  It is important to note that the Logit-ANN hybrid 
model preformed worse than the stand-alone ANN, meaning the simple ANN model considered 
additional variables significant that the previous statistical model did not.  Finally, the three 
artificial neural network models only had about a 1 to 2% higher level of prediction over the 
traditional statistical method. 
 
Prospective Service Failure Prediction Model 
 
As stated previously, the use of artificial neural network models have some inherent 
disadvantages when compared to traditionally used techniques such as logistic regression.  
One disadvantage is that ANNs do not give a value for the probability of an outcome.  In this 
study the ANN only produces an output of either failure or non-failure.  This is a significant 
disadvantage when compared to the logistic regression model developed that can estimate the 
probability of failure for each case using the developed equation.  Finally, another disadvantage 
of neural networks is that they are “black box” models, meaning that the inner workings of a 
neural network cannot be easily reproduced.  The ability to explain what the model is doing and 
why is thus limited.  Additionally, a user cannot evaluate the possible relationships between 
input variables for an ANN model.  Overall the neural network models evaluated did not greatly 
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increase the classification accuracy of service failure prediction.  Therefore, the final prospective 
service failure model is based on the logistic regression model developed. 
 
The classification models decribed above are retrospective models created using a dataset in 
which half the records had a service failure and half did not.  A transformation is needed to 
develop a prospective model that can be used to predict the location of service failures.  
Previous work has shown how the transformation can be done using a logistic regression model 
[3,5].  The transformation was completed with adjustment of the model specific constant, Z, to 
reflect the average service failure probability across the entire system.  During the four-year 
period, there were 12,685 service failures on the railroad that were classified according to which 
of the 0.01-mile segments they occurred on.  The railroad maintains approximately 24,000 main 
line route miles of track and thus has a total of approximately 2.4 million 0.01-mile-long 
segments.  Therefore, the probability that a service failure will occur on any particular segment 
during a similar four-year period is then 0.00529.  This probability was converted into a new 
model-specific constant using the log-odds operator: 
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where, 
 
PSF2 = probability that a service failure occurred at a particular location during a four-year period 
Z = 6.318, model specific constant 
Z* = 1.081, adjusted model constant 
 
The previous model specific constant, Z, is replaced in the logistic regression equation by the 
adjusted constant, Z*, as shown in Equation (6).  Therefore, Equation (7) represents the 
prospective service failure model, with updated value for U, for the prediction of service failures 
during a four-year period.  This equation can be used to determine specific locations with a high 
likelihood of a service failure, as well as used to determine the overall service failure rate for a 
specific line.  The annual service failure rate can be determined by calculating the four-year 
service failure rate and dividing by 4, assuming a time-linear distribution of service failures. 
 
Conclusions 
 
Four service failure classification models were developed to assist in the prediction of broken 
rail events.  Service failure data from the railroad's entire network were used for a four-year time 
period.  A previous service failure classification model, using logistic regression, that 
incorporated only track and traffic characteristics, was evaluated and determined to have limited 
predictive ability for current service failure data.  A new logistic regression model was developed 
that included additional factors such as infrastructure data, maintenance activities, and rail 
testing results.  The logistic regression model was determined to be 66.3% accurate for 
classifying track segments.  An artificial neural network model was also developed to classify 
cases as either failure or non-failure.  Additionally, two logistic regression ANN hybrid 
classification models were developed based on the current service failure data.  Each of the 
three advanced models performed slightly better than the traditional logistic regression 
technique.  Finally, the logistic regression model was transformed into a prospective prediction 
model based on the overall probability of service failures. 
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The models developed in this study may assist railroads to more effectively allocate resources 
to prevent or mitigate the occurrence of broken-rail events.  The models presented here can be 
implemented in two different ways involving maintenance planning.  The first approach is for 
short-term maintenance assistance, such as determining specific track segments to monitor 
closely or repair.  The second approach is for long term maintenance planning and scheduling.  
The two most common mitigation techniques for broken rails are rail grinding and rail 
replacement.  Both of these activities require long lead times for planning and have high 
associated costs.  Railroads can use the models presented here to assist them in planning the 
location of these maintenance activities more effectively. 

Future Work 

This analysis presented areas of future exploration on the topic of predicting broken rails.  The 
previous analysis included many of the available variables that are possibly responsible for the 
growth of defects and the occurrence of broken rails.  However, some additional factors that 
could be considered include climatic data for track locations and track inspection frequency.  
Climate effects, especially in areas of continuously welded rail where the rail is in high tension, 
may have an effect on the growth of rail defects as well as the occurrence of broken rails.  Also, 
evaluating the track inspection frequency may be found to have a correlation with the likelihood 
of a broken rail event.  Finally, this analysis presented classification models based on statistical 
and neural network techniques.  Future work may be possible to examine other classification 
models for the prediction of service failures. 
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