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Broken Rails 
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Broken rails are the leading cause of major accidents on U.S. railroads 
and frequently cause delays. A multivariate statistical model was devel
oped to improve the prediction of broken-rail incidences (i.e., service 
failures).Improving the prediction of conditions that cause broken rails 
can assist railroads in allocating inspection, detection, and preventive 
resources more efficiently, to enhance safety, reduce the risk of haz
ardous materials transportation, improve service quality, and maximize 
rail assets. The service failure prediction model (SFPM) uses a combi· 
nation of engineering and traffic data commonly recorded by major 
railroads. A Burlington Northern Santa Fe Railway database was devel· 
oped in which the locations of approximately 1,800 service failures over 
2 years were recorded. The data on each location were supplemented 
with information on other engineering and traffic volume parameters. 
A complementary database with the same parameters was developed 
for a randomly selected set oflocations at which service failures had not 
occurred. The combined databases were analyzed using multivariate 
statistical methods to identify the variables and their combinations most 
strongly correlated with service failures. SFPM accuracy in predicting 
service failures at specific locations exceeded 85%. Although further 
validation is necessary, SFPM is promising in the quantitative predic
tion of broken rails, thereby improving a railroad's ability to manage its 
assets and risks. 

Derailments from broken rails have been a safety concern for more 
than a century (1, 2). Improvements in rail manufacturing, inspec
tion, and rail defect detection have greatly reduced the incidence of 
broken rails. However, broken rails frequently cause service inter
ruptions and are a leading cause of derailments. Improving the 
prediction of locations where broken rails are likely to occur has 
economic and safety benefits, enabling more effective allocation of 
resources to detect and prevent broken rails (3-5). Previous work 
has focused on the development of fracture-mechanic approaches in 
combination with empirical testing (6-9) and single-variable prob
abilistic methods using Wei bull analysis (1 0). The first studies have 
assisted in understanding the underlying mechanisms of rail defect 
occurrence; the latter studies have assisted in predicting the useful 
life of rail, given basic information on traffic volume and loads. A 
statistical approach based on more variables can potentially improve 
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the prediction of rail life and may also provide more insight into 
associated mechanisms (3). Over the past decade, railroads have 
expanded their use of information technology to include extensive 
geographic and engineering data systems. Large, multivariate data
bases that extensively detail key parameters likely to affect the occur
rence of broken rails have been developed, thereby making such an 
approach feasible. 

DEFINITION OF SEVERE DERAILMENTS 

This study focused on identifying derailment causes most likely to 
lead to a severe accident in which many cars derail at speed. Gener
ally such accidents will have the greatest potential for harm to people, 
property, equipment, and track. Further, analyses of FRA accident 
data have shown that accidents with these characteristics strongly cor
relate with the release of hazardous materials, if present, in the vicin
ity of the train derailment (11, 12). Consequently, for both safety and 
economic reasons, information on such types of derailments was of 
particular interest. 

Derailment Severity-Frequency Analysis 

To determine the causes of accidents most likely to lead to severe 
derailments, a simple risk analysis was conducted using FRA data 
for 3,504 mainline derailments that occurred during the 1994-1998 
period (13 ). The FRA reporting system requires the identification of 
a primary cause (and other contributing causes if applicable). FRA 
groups data on accident causes hierarchically. Data at the FRA "sub
cause" level (the second-highest level of aggregation) were used -
in this study. The average number of cars derailed in accidents 
attributed to each subcause was calculated and plotted against the 
frequency of derailments with the same subcause (Figure 1). 

Figure 1 is divided into four quadrants by vertical and horizontal 
lines that represent the average value of the two variables with respect 
to the x andy axes, respectively. The vertical line represents the aver
age frequency of accidents for all recorded causes combined, and the 
horizontal line is the average number of cars derailed due to each cause. 
Causes above or below these lines are, by definition, above or below 
average for the respective axis. 

The causes in the upper right quadrant are most interesting and 
pose the greatest risk-they are more frequent and more severe than 
average. It is clear that the most frequent cause of high-consequence 
accidents related to the FRA cause code for rail and joint bars. 
More detailed analyses revealed that most of these accidents were 
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FIGURE 1 Frequency-severity graph of mainline derailments, 1994-1998. 

the resUlt of broken rails. On the basis of these results, a more 
detailed analysis was made offactors contributing to the occurrence 
of broken rails (11 ). Several recent hazardous materials accidents 
have underscored the importance of this particular aspect of risk 
from broken rails. 

Broken Rails 

Mos~ broken rails do not result in derailments. Instead the break is 
detected; usually by the track circuit system or by track inspectors, and 
repaired (on several North American railroads, these detected broken 
rails are refen:eci to as service failures). Broken rail derailments appear 
to correlate with the occurrence of service failures (11 ). Therefore, 
predicting the occurrence of service failures bas a potential safety 
benefi.t-e~ling railroads to allocate broken rail prevention mea
sures, detection technology, and inspection efforts more effectively 
(3-5, 7). Further, understanding the factors correlated with service fail
ure ~nee could. help identify contributing causal factors, thereby 
enabling better preventive measures. The objective of this research 
was ~ develop a probabilistic model to predict the circumstances 
most likely to lead to the occurrence of a service failure. 

Model Form end Data Set 

Ideally, the model developed would enable the user to input values 
for the relevant parameters at a specific location~olithe railroad and 
determine a measure of the probability of a serVice failure there: The 
output of the model is an index value between 0 and '1, With 0 mdi
cating the lowest probability of service failure ari.df representing the 
highest. Because a probability is the desired output and there are orily 
two possible outcomes-service failure or no service 'failure at each 
location-the model can be constructed as a discrete choice mOdel. 

A discrete choice model, such as the logit model, fits an apPropri
ate equation to the data and uses this equation to score ·each Ioeation 
relative to a threshold value, above whichfailure is predicted to ocCUr 
(14). The logit model then uses a logistic distribution to consider the 
uncertainty and error in the estimated score and .threshold value .and 
determine the probability that the score is above the threshold value. 
The calculated probability is then used as an esti.Irurte ofthe service 
failure probability at that particular location. 

To fit a discrete choice logit model, two sets of data were required
one to characterize locations where service failures occurred and 
another to characterize locations where service failures had not 
occurred. Data development began with Burlington Northern Santa Fe 



detailed infonnation on the date, location, and type of 1,903 service 
failures that occurred over 2 years. The data were supplemented 
with engineering and operational data on each service failure location. 
A new dependent variable was created and assigned a value of 1 for 
each of these records signifying that a service failure had occurred. 

The second set of data was created with records for locations where 
no service failure occurred during the same interval. This data set, of 
about the same size as the first, was developed by selecting a random 
sample of locations from the railroad and assembling the same infor
mation as for the service failure locations. The dependent variable 
for these records was assigned a value of 0. 

Ultimately, a test database was developed that contained 3,676 rec
ords with complete service failure and descriptive parameter infonna
tion. On the basis of a univariate analysis of the service failure data 
and a literature review on the circumstances of rail defect growth 
and broken rail occurrence (8, 15, 16), track structure and dynamic 
effects (17-19), and rail fracture mechanics (6, 20), the following 
parameters were selected for inclusion in the multivariate service 
failure model: 

• Rail age, 
• Rail weight, 
• Degree of curve, 
• Speed, 
• Average tons per car, 
• Average dynamic tons per car, 
• Percent grade, 
• Annual gross tonnage, 
• Annual wheel passes, 
• Insulated joints, and 
• Mainline turnouts. 

All of the parameters are continuous variables except the last two, 
insulated joints and mainline turnouts, which are both discrete. The 
parameters were assigned a value of 1 if present at a location, and 
0 if not. 

Model Development 

The service failure probability model was developed using the sta
tistical analysis system (SAS) and the LOGISTIC procedure. The 
LOGISTIC procedure fits a discrete choice logit model to the test data
base. Stepwise regression was used to determine the most relevant 
parameters and combinations of parameters (two-factor interaction 
terms) for inclusion in the model (21). The stepwise regression proce
dure uses an iterative process to select variables on the basis of their 
ability to explain the variance in the input data. The model conducts a 
goodness-of-fit test for each step and adds or subtracts variables or 
combinations of variables until the addition of another parameter does 
not significantly improve the fit. At this point, the last version of the 
model is considered the best and the resultant parameters, coefficients, 
and functional relationships comprise the final model. 

Retrospective and Prospective Models 

The service failure model was developed in two steps. Frrst, the model 
was fit to the test database. Approximately half of the 3,676locations 
in this database had a service failure during a 2-year period, and the 
other half were a random sample of locations that did not. Because 
the model makes predictions about broken rails that have already 
occurred, it was termed a "retrospective model." This version of 

the model is used primarily to assess the accuracy of the model's 
predictions relative to the test database. 

The second step of the process developed a "prospective model." 
This model is modified from the retrospective model by adjusting a 
constant term to reflect the actual

1
average service failure probability 

over a specific portion of the railroad system. After this adjustment, the 
prospective model can be used to calculate the annual probability of a 
service failure at particular locations, or along any portion of track. 

Retrospective Service Failure Model 

The retrospective service failure probability model was developed 
using the LOGISTIC procedure as follows: 

where 

PsF2 =probability that a service failure occurred at a particular 
point during the study period; 

U=Z+Y; 
Z = -4.569, model-specific constant; 
Y = 0.059A + 0.025AC- 0.00008A2C2 + 5.101T/S + 217.9W/S 

- 3861.6W2/S 2 + 0.897(2N- 1)- 1.108P/S; 
A =rail age (years); 
C = degree of curvature(= 0 for tangent); 
T =annual traffic [million gross tons (MGT)]; 
S =rail weight (pounds); 

W = 4T/L =annual number of wheel passes (millions); 
P = L(1 + V/100) =estimated average dynamic wheel load; 
N = 1 if at turnout, 0 if not at turnout; 
L = tons per car; and 
V = track speed. 

The fitted model includes a model-specific constant or intercept 
term, Z, that is related to the average service failure probability. The 
retrospective model is fit to a data set in which approximately half 
of the records are for locations with service failures. The average 
service failure probability on an actual system would be far lower, 
so this term would be adjusted accordingly. 

Interpretation of Model Terms 

The service failure probability model has terms that describe dif
ferent effects and relationships among service failure probability, 
infrastructure characteristics, and traffic characteristics. 

The first term in the model, 0.059A, reflects the effect of rail age. 
As rail age increases, service failure probability increases. This result 
is consistent with extensive industry experience (9, 10). Older rail iS 
likely to have carried more tonnage, experienced more thermal stress 
cycles, and may have been manufactured using processes that pro
duced more flaws in the rail. A recent study of rail failures on Railtrack 
in Great Britain supports the importance of this parameter (22). 

The second and third terms in the model, 0.025AC- 0.00008A2C2, 

reflect the interaction between rail age and degree of curve. As either 
rail age or degree of curve increases, service failure probability is pre
dicted to increase. Because the interaction between rail age and cur
vature is multiplicative, the model indicates that in terms of service 
failure probability, higher degree (sharper) curves are more sensitive 
to the effects of rail age and vice versa. 
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The fourth term in the model, 5.101 TIS, reflects the effect of annual 
traffic (MGT) normalized by rail weight. As annual gross tonnage 
increases, service failure probability increases. However, the increase 
in service failure probability associated with a unit increase in annual 
traffic is greater on segments of track with relatively light rail. 

The fifth and sixth terms in the model, 217.9W/S- 3861.6W2/S2, 

describe the effect of annual wheel passes or load cycles normalized 
by rail weight. Service failure probability increases as the number 
of wheel passes or load cycles increases. However, just as with gross 
tonnage, the increase in service failure probability associated with a 
unit increase in the annual number of wheel passes is greater on 
segments of track with relatively light rail. This situation probably 
reflects the greater stress of lighter rail under a given load than heav
ier rail. Thus, the amount of crack growth per fatigue cycle is greater 
in lighter rail than heavier rail. 

The model includes terms that describe annual traffic relative to 
gross tonnage and number of wheel passes. The relationship between 
annual traffic and service failure probability is a function of both the 
total amount of load applied to a section of rail and the number of 
times the load is applied. This relationship is consistent with fracture 
mechanics models of fatigue crack growth in rails that depend on 
both the applied stress and the number of load cycles (1 0, 20). 

The seventh term in the model, 0.897(2N- 1), describes the effect 
of mainline turnouts. The model indicates that proximity to a turn
out increases the probability of a service failure. Several possible 
explanations relate to inferences about rail stress. Turnouts may tend 
to anchor the track structure, thereby causing greater thermal stress 
cycling as the nearby rail expands and contracts. Also, to the extent 
that turnouts tend to be associated with locations where trains are 
braking or accelerating, rails in these locations may tend to experience 
more traction-induced stresses. 

The final term in the model, -1.1 08P/S, describes the effect of esti
mated average dynamic load on service failure probability. This vari
able for dynamic load was not directly measured by wheel impact load 
detectors. Such data would have been preferable but were unavailable 
for most of the locations where broken rails were recorded. Instead, 
the value was calculated using the average gross rail load data and 
track speed at each location using the formula in the American Rail
way Engineering and Maintenance-of-Way Association manual 
(19, p. 16-10-9). The values ranged from 30,000 to 55,000 lb and thus 
do not represent the full spectrum of dynamic loads, particularly the 
most damaging ones (23 ). 

The final term is negative, indicating that as average dynamic 
load increases, service failure probability decreases. This is an un
expected result and the opposite of what was suggested by a single 
variable analysis conducted before developing the multivariate 

TABLE 1 Model Term Selection Order 

Step Term Added 

1 Wheel Passes I Rail Weight 

2 Annual Gross Tounage x Rail Age 

3 (Wheel Passes I Rail Weight)2 

4 Aunual Gross Tonnage I Rail Weight 

5 RailAge 

6 Turnout 

7 Degree of Curve x Rail Age 

8 (Degree of Curve x Rail Agel 

9 Dynamic Load I Rail Weight 

10 

Paper No. 03-3680 51 

model (JJ). However, the relative effect of this term is weak. For 
example, at an annual tonnage level of 50 MGT, on 136-lb rail, in 
tangent track, varying the annual jWheel passes between the highest 
and lowest possible values changes PsF2 by approximately 0.17. Under 
the same conditions, varying the dynamic load term between its 
extreme values changes PSF2 by only 0.03. In the stepwise regression, 
this final term added to the model has the least predictive ability 
of the other terms (as indicated by the low chi-square value) (Table 1 ). 
The artificial nature of the computed value for this term, combined 
with the way the model handled it, suggests that it does not represent 
a real physical relationship. 

Table 1 also indicates that during the stepwise regression process, 
an interaction term between rail age and annual gross tonnage was 
initially included in the model. By multiplying rail age by annual 
gross tonnage, this term provided an estimate of cumulative ton
nage; however, it was not a direct measure of this important vari
able. Although this estimated cumulative tonnage term was initially 

· significant, as more detailed terms describing the effects of rail age, 
rail size, annual tonnage, turnouts, curvature, etc., were added to the 
model, the cumulative tonnage term became less significant and was 
finally removed. Thus, the variance in service failure probability that 
was initially explained by the estimated cumulative tonnage term in 
a model with two terms could be better explained by a model with 
more terms and a combination of effects involving other variables. 

This result should not be interpreted as meaning that cumulative 
tonnage is not an important factor in predicting the occurrence of bro
ken rails. There are several reasons for this. First, if a direct measure 
of accumulated tonnage was available for the analysis, a term based 
on it might not have been removed. Such a variable would have been 
preferable, but it was not consistently available systemwide. Second, 
the two elements of the cumulative tonnage term-age and annual 
tonnage-appear in several other terms, indicating that these factors 
are important. Third, the calculated cumulative tonnage term was 
a strong predictor in the absence of other variables. This term was 
removed only when most of the other terms were added. This find
ing is consistent with industry experience that cumulative tonnage is 
a good predictor of broken-rail frequency. Part of the point of the 
multivariate statistical approach is that it reveals other variables that 
have subtler or perhaps interactive effects. 

It is also interesting which parameters did not appear in the final 
model. The effects of grade, speed, average wheel load, and insulated 
joints were tested and not found to significantly improve the predictive 
ability of the model and were not included in the final model. Con
versely, other variables would have been useful relative to physical fac
tors that cause broken rails, but the requisite data were unavailable. In 
addition to the dynamic load and cumulative tonnage variables, other 

Term Removed Chi-Squared 

155 

202 

63 

204 

41 

47 

33 

8 

Annual Gross Tonnage x Rail Age 



52 Paper No. 03-3680 

variables that would have been useful were rail steel type, rail sur
face roughness, neutral temperature, and temperature at the time of the 
break. One benefit of model development is that it can highlight the 
importance of certain types of data and the potential benefit from 
expanded database development. It would be advantageous to include 
these variables in the future development of comparable databases. 

Retrospective Service Failure Model Performance 

Two methods were used to evaluate the ability of the retrospective 
model to predict locations where service failures occurred. The first 
method calculated a goodness-of-fit statistic for the model on the basis 
of PSF2 computed for each record in the input data. If the model com
pletely accounted for all of the sources of variance, P sF2 = 1 would be 
expected at all of the service failure locations and PSF2 = 0 at all of the 
locations where service failures did not occur. In this case, the sum
mation of PsF2 over all service failure locations should equal the total 
number of service failures, and the summation of 1- PsF2 over all 
locations where service failures did not occur should equal the total 
number oflocations where they did not occur. All sources of variance 
are unlikely to be accounted for by any statistical model. Therefore, 
when the summations are computed for actual values of PSF2, they will 
correctly account for only a percentage of the total. This percentage 
reflects the goodness of fit or the amount of variance explained by the 
retrospective model (14 ). Using this approach, the goodness-of-fit sta
tistic is calculated using the following expression, where n.r is the 
actual number of locations where service failures occurred, and n.osr 
is the number of locations where they did not: 

(r PsF2 + r 1 - PsF2) 
Goodness of fit = "" ·-

(n.r + nnosr) 

(1, 507 + 1, 462) 

(1, 861 + 1, 815) 

= 0.808 

On the basis of this analysis, the retrospective model accounted for 
80.8% percent of the variance in the service failure data. 

The second method to evaluate the performance of the model was 
to compare the value of PsF2 to the event that actually occurred at a 
location. The decision criterion, or threshold value, for service fail
ure prediction was PsF2 = 0.5.1f PsF2 < 0.5, it was classified as pre
dicting no failure and if > 0.5, it was classified as predicting a 
service failure. Of these predictions, 87.4% were correct (Table 2). 
Of the incorrect predictions, there were twice as many false posi
tives than missed service failures. This fmding indicates that the 
model is somewhat conservative because it is more likely to provide 
a false positive than miss a service failure. The decision criterion of 
0.5 could be adjusted by users of the model to make the results more 
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or less conservative (11). Further work in which additional variables 
are incorporated might reduce the error rate. 

These two evaluations indicate. that the model had a reasonably 
high level of accuracy in predicting the occurrence of service fail
ures in the database from which it was developed. The next steps in 
assessing the model's accuracy would be to test it using data from 
another time period or another railroad, or both. 

Prospective Service Failure Model 

To use the model to predict the annual probability of a service failure 
at a particular location, the retrospective model must be transformed 
into a prospective model. This transformation is accomplished by 
adjusting the value of the model specific constant, z; to reflect the 
average service failure probability across the entire system of interest. 
There were 1,861 service failures in the test database over the 2-year 
period for which complete records were available. The probability 
that one of these service failures falls into any given segment of track 
is a function of the length of the segment To capture as much detail 
as possible, and to avoid the use of average values over a segment that 
may introduce additional variance, the segments should be kept rela
tively short. The maximum resolution in the data available for most 
of the parameters of interest was 0.01 mi (52.8 ft). The total system 
represented by the database was approximately 23,750 mi of main
line. Thus, there were 2, 375,000 segments, each 0.01 mi in length. 
Given this value, the average probability that a service failure is found 
in any one of those segments over a 2-year period is approximately 
0.00078. This probability can be converted into a new model-specific 
constant, zt", through the use of the log-odds operator (21 ): 

z* = z + 1n [ PsFavg ] 
(1 - PsFavg) 

= - 4.569 + 1n [ 
0

·
00078 J 

(1 - 0.00078) 

= -11.763 

This new model-specific constant, z*, adjusts the scale of the 
probability calculated by the prospective service failure model so 
that the model predicts service failures at a rate comparable to the 
observed rate. 

The retrospective model calculated the probability of a service 
failure for a 2-year period. This probability can be converted to an 
annual probability simply by dividing by 2 when transforming the 
U score into a probability. After these two adjustments are made, the 
annual service failure probability for any 0.01-mi segment can be cal
culated with the prospective service failure model. The prospective 
service failure probability model has the following form: 

TABLE 2 Results of Goodness-of-Fit Test for a Threshold Value of PsF2 = 0.5 

Model Prediction Actual Event Events Percent of Total Outcome 

Service Failure (PsF2 > 0.5) Service Failure 1,700 87.4 Correct 

No Failure (PsF2 < 0.5) No Failure 1513 Prediction 

Service Failure <PsF2 > 0.5) No Failure 302 8.2 False Positive 

No Failure (PsF2 < 0.5) Service Failure 161 4.4 Missed Failure 
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where 

PsF = annual probability of a service failure in the 0.01-mi segment 
of interest, 

U= Z*+Y, and 
z* = -11.763, prospective-model-specific constant. 

Service Failure Probability and Expected Service 
Failures per Mile 

A cursory review of the annual service failure probabilities calcu
lated by the prospective model might suggest that they are too low. 
However, the probability is based on a segment of track that is only 
0.01 mi long. The calculated probability is approximately equal to 
the expected number of service failures per year in that 0.01-mi seg
ment. Annual service failures per mile is a metric more typically used 
by North American railroads, so it is useful to calculate a per-mile 
rate by multiplying PsF by 100. 

where SFIMIIYR is the expected service failure rate on segment of 
interest (service failures per mile per year). 

This rate can be applied to a segment of track of any length as 
long as the values of the parameters in the service failure model 
remain constant along that section of track. A service failure rate of 
2 SFIMIIYR indicates that for every mile of track for which the rate 
applies, two service failures are expected to occur. If the track sec
tion to which this rate applied is 0.5 mi long, one service failure is 
expected along that length; if the section is 2 mi, four service failures 
are expected along that length. In all three cases, the service failure 
rate, 2 SFIMIIYR, is the same. The number of service failures expected 
in a section of track in which the service failure rate is constant is 
a linear function of the length of the section. 

Example of Service Failure Model Application 

The following example illustrates how SfPM can be used to obtain a 
measure of service failure probability and rate. A hypotheticall.5-mi, 
single-track portion of a railroad mainline is illustrated in Figure 2, 
and the relevant parameters are presented in Table 3. The segment 
has been divided into several subsegments over which the input 
parameters are constant. 

Some of the rail is 47 years old and weighs 132lb/yd. The remain
ing rail is 5 years old and weighs 13Mb/yd. Mainline turnouts are 
located at Mile 0 and also at Mile 0.7, where another mainline 

0.25 miles 0.2 miles 0.25 miles 
80 MGT tangent 1 degree curve tangent 
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connects to the line. A 1 o curve is located between Mile 0.25 and 
Mile 0.45. Track speed on the segment is 50 mph. The annual traf
fic is 80 MGT between Mile 0.0 and Mile 0. 7. At Mile 0. 7, 40 MGT 
are routed on the connecting mainline, with the remaining 40 MGT 
being routed on the segment under consideration between Mile 0.7 
and Mile 1.5. The average gross rail load is 100 tons eastward and 
80 westward, with the higher value of 100 tons used in the calculations. 
The dynamic load computes to 150 tons per car, and the annual traf
fic of 80 MGT and a 1 00-ton average per car results in an estimated 
3.2 million wheel passes. 

Because this is the prospective model, z* = -11.763 was used to 
calculate the U score for each portion of the segment of interest and 
then transformed into an estimate of service failure rate. The esti
mated service failure rate (service failures per mile per year) for each 
subsegment is summarized in Table 4 and presented graphically in 
Figure 3. Multiplying each subsegment's calculated service fail
ure rate by its length provides an estimate of the expected number 
of service failures per mile per year in that subsegment. Summing 
all of the subsegment values provides an estimate of the expected 
number of service failures per year on the 1.5 mi of the segment of 
interest. In this case, the expected number of service failures for the 
segment is 0.316. 

The service failure profile in Figure 3 highlights how interactions 
between the various parameters affect service failure rate. Between 
Mile 0.0 and Mile 0.1, the rail is relatively old and a turnout is pres
ent. The combination of these two factors results in a relatively high 
service failure rate prediction. At Mile 0.1, the service failure rate 
drops as the rail is no longer close enough to the turnout to be sub
ject to its effects. Between Mile 0.1 and Mile 0.25, the track is tan
gent but the old rail produces a higher service failure rate than on 
the segment between Mile 0.45 and Mile 0.6, where the track is tan
gent but the rail is relatively new. This difference in service failure 
rate illustrates the importance of rail age. Under the traffic condi
tions in this example, the age difference of 42 years results in a ser
vice failure rate that is 16 times higher on the older section of rail. 
At Mile 0.25, the track transitions from tangent to a 1 o curve and 
the service failure rate increases approximately threefold. Com
pared with Mile 0.45, where the new rail transitions from curve to 
tangent and the service failure rate increases by a factor of only 
1.5, the increase in service failure rate at Mile 0.25 is large. This 
increase results from the interaction of rail age and curvature that 
makes the old rail on this subsection of track sensitive to cur
vature. At Mile 0.3, the rail on the 1 o curve changes from rail that 
is 47 years old to rail that is 5 years old. The model suggests 
that newer rail is less sensitive to curvature, so the service failure 
rate drops from 0.86 to 0.03 service failures per mile per year. 
Because there is one half the traffic between Mile 0. 7 and Mile 1.5 
than there is between Mile 0.0 and Mile 0. 7, the service failure rate 
is also correspondingly lower. 

0.8 miles 
tangent 40MGT 

~ ~~ ~~ ~._--------------------------· ..... 

~ ~~------------~~~------~4-----------------~ 
0.3 miles 0.7 miles '-. 0.5 miles ... 

47 years old, 5 years old, 136lbs!yd "-
40 

MGT 47 years old, 132lbs/yd 
132lbs/yd 

MPO.O MP0.7 MP1.5 

FIGURE 2 A hypothetical section of mainline track. 
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TABLE 3 Input Parameters for e Hypothetical Section of Mainline Track 

Start End A c T 
MP MP z (age) (degree) (MGT) 

0.00 0.10 -11.763 47 0 80 

0.10 0.25 -11.763 47 0 80 

0.25 0.30 -11.763 47 80 

0.30 0.45 -11.763 5 80 

0.45 0.60 -11.763 5 0 80 

0.60 0.70 -11.763 5 0 80 

0.70 0.80 -11.763 5 0 40 

0.80 1.00 -11.763 5 0 40 

1.00 1.50 -11.763 47 0 40 

NoTE: MP = milepost. 

CONCLUSIONS 

A simple risk analysis showed that broken rails are the leading cause 
of severe accidents as measured by the number of cars derailing. Im
proved detection and prevention of broken rails potentially has 
important safety and economic benefits. Further, service quality and 
reliability benefits can accrue if the incidence of broken rails can be 
reduced. Improving the ability to predict the conditions that can 
lead to broken rails can help railroads allocate inspection, detection, 
and preventive resources more efficiently, thereby enhancing safety 
and reducing service interruptions due to broken rails. 

A statistical model was developed that provides probabilistic esti
mates of the likelihood of service failure occurrence on the basis of 
engineering and operational input parameters. Although further val
idation needs to be conducted, the service failure prediction model 
shows promise in improving the ability to predict the occurrence of 
broken rails. If the requisite data for a railway system can be system
atically developed in a consistent, easily accessed, electronic format, 
the model can be applied to any portion of a system to generate 
location-specific estimates of service failure probability. If the data 
include appropriate geographical information, the service failure 
model could be incorporated into a geographic information system 
that would generate service failure and broken rail derailment profiles 
automatically from railway databases. 

s w p I N 
(pounds) (million) (tons) (turnout) u 

132 3.2 150 -3.25 

132 3.2 150 0 -5.04 

132 3.2 150 0 -4.04 

136 3.2 150 0 -7.47 

136 3.2 150 0 -7.60 

136 3.2 150 -5.80 

136 1.6 150 -8.26 

136 1.6 150 0 -10.05 

132 1.6 150 0 -7.53 

Previous models have been based on a combination of fatigue and 
fracture principles and a limited number of parameters available for 
in-service rail. The information technology and computer revolution 
has resulted in large, comprehensive databases and made practical 
the use of powerful statistical tools. The present research would not 
have been feasible 10 years ago. The results of these analyses, cou
pled with the graphical output capabilities typical of current Pes, can 
improve managers' access to information and enhance the quality 
and pace of decision making. The potential benefit of the approach is 
greater precision in predicting the occurrence of broken rails, along 
with wider availability and enhanced interpretation of the results. 
This capability is important as railroads strive to improve safety and 
at the same time more efficiently use their resources and extract more 
value from assets such as rail. 
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TABLE 4 Service Failure Probabilities Alonge Hypothetical Track Section 

StartMP EndMP Length u SFIMIIYR Expected SF 

0.00 0.10 0.10 -3.25 1.866 0.187 

0.10 0.25 0.15 -5.04 0.322 0.048 

0.25 0.30 0.05 -4.04 0.865 0.043 

0.30 0.45 0.15 -7.47 0.028 0.004 

0.45 0.60 0.15 -7.60 0.025 0.004 

0.60 0.70 0.10 -5.80 0.151 O.Q15 

0.70 0.80 0.10 -8.26 0.013 0.001 

0.80 1.00 0.20 -10.05 0.002 0.000 

1.00 1.50 0.50 -7.53 0.027 0.014 

Total (0.0 to 1.5) 0.211 0.316 
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FIGURE 3 Service feilure probability along a hypothetical track segment. 
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