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Abstract 

Advanced wayside detector technologies can be used to monitor the condition of railcar 

components, notify railroads of probable failures to equipment and infrastructure in advance, and 

predict alert of imminent mechanical-caused service failures. Using some statistical data-mining 

techniques, historical railcar health records from multiple Wayside Defect Detector (WDD) 

systems can potentially provide the essentials to recognize the patterns and develop the reliable 

and innovative rules to predict the failures and reduce related risks on railroads. In this paper, 

data from Wheel Impact Load Detector (WILD) and Wheel Profile Detector (WPD) were 

analyzed through comparing historical measurements for failed and non-failed wheels on the 

same truck to predict train stops due to high impact wheels. An exploratory data analysis was 

performed to identify the most critical measurements from each detector by comparing the 

distributions of several measurements from failed wheels to the ones from non-failed wheels. A 

logistic regression approach was used to predict the probability  of potential high impact wheel 

train stops. Initial results show a 90% efficiency to predict the failure within 30 days after the 

most recent WILD reading. 

Keywords: 
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1 Introduction 

Train accidents, either track-or railcar-related causes, imposes huge costs, safety concerns, and 

affects train operations and efficiency. The likelihood of railcar mechanical failures may be 

reduced by (1) improving the mechanical components’ resistance to bear higher stresses and 

loads, and/or (2) using wayside defect detectors (WDD) to monitor the performance of 

equipment and components to take proactive actions before mechanical failures occur.  

Different types of WDD are used to monitor railcar health and/or detect immediate 

hazards that can result in train derailments.  WDD can be broadly classified into two types 

(Lagnebäck 2007, Ouyang et al 2009): 

Reactive Systems detect railcar component conditions that have a short latency between 

detectability and failure of the component. Failure to react promptly to these alarms may result in 

damage to railroad infrastructure and/or a derailment. Dragging Equipment Detectors (DED) and 

Hot Bearing Detectors (HBD) are widely used examples of reactive WDD technologies.   

Predictive Systems are capable of measuring, recording, and trending the performance of 

vehicles and specific components. The information collected can be used to analyze the 

condition of equipment to predict possible failures and faults that may occur sometime in the 

future, thereby making it easier to plan maintenance activities. Wheel Impact Load Detectors 

(WILD) and Wheel Profile Detectors (WPD) are commonly used examples of these types of 

technologies on North American railroads. Some predictive technologies, such as WILD, may 

also detect certain imminent hazards and therefore can be classified as both predictive and 

reactive. 

Statistical data analysis and data mining approaches can offer the basis to recognize the 

patterns and dependencies between various factors derived from the WDD data. These sets of 
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analyses help generate innovative, reliable, and advanced rules to predict the occurrence of 

equipment failures, service disruptions, or possibly mechanical-caused derailments. Therefore, to 

reduce inspection costs and frequencies, and optimize railcar maintenance schedule, statistical 

and data mining techniques can be used to analyze historical railcar health record data from 

multiple WDD systems.  

This paper describes an efficient data mining framework to analyze data from different 

WDDs and predict high impact wheel train stops in advance. Data from WILD and WPD 

detectors were analyzed through comparing historical measurements for failed and non-failed 

wheels in the same truck. Comparing the distributions of failed and corresponding non-failed 

detector readings for wheels helped identify critical measurements from each detector. Then, to 

predict the probability of potential high impact wheel train stops, logistic regression models were 

developed. The exposition of the paper is as follows. First, in Section 2, methodology including 

the exploratory analysis and regression approach will be discussed. Afterwards, data analysis 

results and performance measures will be introduced in Section 3, and conclusions will be 

discussed in Section 4. 

2 Methodology 

Detailed analysis of individual data sources enables further understanding of information 

availability and limitations. Since data obtained from multiple WDD is significantly large, the 

preprocessing and analyzing of the combined data from different sources is non-trivial and 

requires significant time and effort. Therefore, an efficient data mining framework is required to 

manage the large databases and prepare useful data for further railcar condition analysis. In this 

section, a data analysis approach to determine the failed and non-failed railcar wheels will first 

be introduced (Figure 1). Then the method to determine the potential and true failures and 
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corresponding non-failures will be discussed. The exploratory approach to identify the most 

critical variables from the data attributes will be applied. Finally, those critical variables are 

considered in a regression model, which was developed to predict the failures based on the 

identified significant variables. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Data mining framework for condition monitoring to predict wheel failures 

2.1 Data Analysis Approach 

The WILD and WPD data were analyzed on railcars with high impact wheel train stops, and 

dates of these car repair billing records to identify railcar wheel failures, and non-failures. If an 

instance of train stop was recorded for a wheel it would be categorized as failure; otherwise, with 

no train stop nor repair record, it was categorized as a non-failed wheel. 

Wheels in the failure category were further analyzed according to the time span between 

the most recent detector measurement and the train stop alert date (M-TS), and similarly based 

on the time span between each high impact train stop and repair dates (TS-R) (Figure 2).Certain 

thresholds for M-TS and TS-R were defined and tested to determine the railcar wheel potential 
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vs. true failures. Data availability was an important issue to determine the appropriate thresholds. 

A maximum threshold of 30 days was selected for M-TS and TS-R to determine the potential 

and true failures for wheels. In other words, if reading date was within 30 days before the high 

impact train stop date, the wheels would be categorized as potential failures; and, the wheels 

would be classified as true failures if wheel repair date was within 30 days after the train stop.  

 

 

 

 

Figure 2. Time span approach to predict wheel failures 

To reduce uncertainty and variance from different truck characteristics, a controlled approach 

has been developed by comparing failed and non-failed wheel historical measurements on the 

same truck. Therefore, the wheels with no records of high impact train stop nor wheel repair, that 

were located on the adjacent axle to the failed wheel would be considered in the non-failure 

category (Figure 3). 

 

Figure 3. A controlled approach to compare failed and non-failed wheel measurements 

2.2 Exploratory Analysis 

After determining the failures and non-failures, a set of data attributes from each detector was 

selected for the exploratory analysis. From WILD measurement, vertical average weight, vertical 

Measurement             Train Stop                Repair 
Time 

M-TS TS-R 
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peak force, lateral average force, lateral peak force, and dynamic ratio were selected. Flange 

height, flange thickness, rim thickness, tread hollow, wheel diameter, groove tread, vertical 

flange (flange angle), tread built-up, and wheel angle were considered for WPD records. Based 

on each detector database, the time distribution of failures of each variable was compared to the 

average of non-failures of the same variable. Then, percentage of the failures above (or below) 

the non-failures average was determined.  

If a large percentage of failed-wheel measurements were higher (or lower) than the 

average measurements for non-failed-wheels, the variable would be considered as a critical 

variable. Figure 4 shows this exploratory analysis for the vertical average weight from WILD 

database. The variable is deemed critical since a large percentage of failed-wheel measurements 

were higher than the average measurements for the non-failures. Using this approach, vertical 

average weight, vertical peak force, lateral average force, lateral peak force, and dynamic ratio 

were all considered as critical variables for WILD data. Vertical flange, rim thickness, tread 

built-up, and wheel angle were the identified critical variables from WPD measurements. 

 

Figure 4. Exploratory analysis to determine the critical variables from each detector 
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2.3  Regression Analysis 

A regression model is needed to predict the failures using the significant variables identified in 

Section 2.2. In order to predict the outcome of a categorical variable according to a set of 

predictor variables, a logistic regression was developed. The probability of a possible outcome 

was modeled as a function of exploratory variables. In this paper, the logistic regression setting 

includes detector settings x0,x1,..., xnfor a generic instance, regression coefficients as b0,b1,...,bn , 

and logit measure that is z b0 b1x1 b2x2 ... bnxn . Since there were two main categories of 

failures, two regression models could be considered as alternatives: regression model for 

potential failures and true failures. In this paper, we focused on the logistic regression model 

based on potential failures. 85% of the data was considered to develop the model, and 15% of 

the data was used to evaluate the effectiveness of the model to predict failures. Based on the 

potential failures, we developed three regression models using: (1) WPD critical variables, (2) 

WILD critical variables, and (3) combined WPD and WILD critical variables. Unit-less values 

for all critical variables were used in the regression models according to the             

(measurement – non-failure mean)/non-failure mean)×100 formulation. 

Data structure for data analysis based on WILD potential failures was considered in two 

separate regression models: (1) ignoring dynamic ratio and (2) including dynamic ratio as a 

critical variable, as follows: 

(1) Regression model for WILD data when dynamic ratio is ignored: 

P(z)
1

1 e z

z 0.4002 0.0211x1 0.0261x2 0.0031x3 0.6290x4   (1) 

  where 

   x1 = vertical average force 

   x2 = vertical peak force 
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   x3 = lateral peak force 

   x4 = loaded/unloaded (0 or 1) 

The regression model was found to be significant with p-value of 0.002. 

 (2) Regression model for WILD data when dynamic ratio is considered: 

P(z)
1

1 e z

z 0.4103 0.0256x1 0.6036x2   (2)

 

  where 

   x1 = dynamic ratio 

   x2 = loaded/unloaded (0 or 1) 

The regression model was found to be significant with p-value of 0.013. 

The following regression model for data analysis based on WPD potential failures was 

developed: 

P(z)
1

1 e z

z 1.1029 0.0416x1 0.0272x2  (3)

 

  where 

   x1 = rim thickness 

   x2 = flange angle 

The regression model was found to be significant with p-value of 0.031. 

For WILD and WPD data combined, the following regression model without dynamic ratio 

was developed. 

P(z)
1

1 e z

z 2.4402 0.0300 x1  (4) 

  where 

   x1 = vertical peak force 
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The regression model was found to be significant with p-value of 6.283e-10. 

When dynamic ratio was considered with combined WILD and WPD data, the following 

regression model was developed: 

P(z)
1

1 e z

z 2.3057 0.0317 x1 0.0107 x2  (5) 

  where 

   x1 = dynamic ratio 

   x2 = lateral average force 

The regression model was found to be significant with p-value of 1.305e-09. 

2.4 Regression Model Test  

As described above, the regression models were developed based on 85% of the data. 

Afterwards, using the remaining 15% unseen data, a test for each regression model was 

conducted. Below an example of the test is presented for regression model (1) for WILD data 

when dynamic ratio is ignored. Table 1 and Figure 5 illustrate the number of true failures, false 

positives, and false negatives based on predictions of this regression model. As it is shown, 

predicted true failures and false positives (non-failures that are predicted as failures) decrease by 

increasing the probability of failure, while false negatives (failures that are predicted as non-

failures) increase. Therefore, it is useful to look at the summation of the two errors. The 

minimum total errors can be found at 50% failure probability (Table 1 and Figure 5). 

Table 1. Determining the failure probability at the minimum total errors for regression model (1) 

Failure Probability >=20% >=30% >=40% >=50% >=60% >=70% >=80% >=90% 

True Failure 101 95 94 91 85 81 76 59 

False Positive 33 31 15 5 3 3 2 2 

False Negative 0 6 7 10 16 20 25 42 
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Figure 5. Threshold with minimum total errors for regression model (1) 

The confusion matrix for data mining model evaluation, where failure probability was above 

50% is illustrated in Table 2-a and 2-b. Probability of Type I error (non-failures that are 

predicted as failures) was 15% and probability of Type II error (failures that are predicted as 

non-failures) was 10%. 

Table 2. Confusion matrix for data mining model evaluation for regression model (1) 
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3 Results 

Table 3 summarizes the performance results of all five regression models using the unseen data.  

Table 3. Summary of regression model performance using the 15% unseen data  

Regression Model True Failure Type I Error Type I Error 

WILD without dynamic ratio 90% 15% 10% 

WILD with dynamic ratio 89% 15% 11% 

WPD 40% 0% 60% 

WILD and WPD without dynamic ratio 20% 0% 80% 

WILD and WPD with dynamic ratio 60% 0% 40% 

 

As Table 3 illustrates, WILD data leads to an efficient prediction of failures. We found 

promising results with about 90% efficiency to predict high impact wheel train stops in the next 

30 days based on the most recent WILD measurements. Failure prediction for WPD model is not 

as efficient as WILD model, since the number of records in WPD database were much fewer 

than WILD readings. Furthermore, due to the lack of symmetry between the total number of 

WILD and WPD records, development of a reliable combined model was prohibited at this time. 

4 Discussion and Conclusions 

In this paper, data from WILD and WPD databases were analyzed through comparing historical 

measurements for failed and non-failed wheels on the same truck to predict train stops due to 

high wheel impacts. Through developing a controlled approach, we performed an exploratory 

data analysis to identify the most critical measurements from each detector by comparing the 

distributions of several measurements from failed wheels to the ones from non-failed wheels on 

the same truck, which reduces variance to identify critical variables and develop efficient 

prediction models. Then, a set of logistic regression models was developed to predict 

the probability of occurrence of potential high wheel impact train stops. Results show a 90% 
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efficiency to predict high wheel impact train stops within 30 days after the most recent WILD 

measurements. 

The lack of symmetry between the total number of WILD and WPD records prohibited 

development of a reliable combined model. Moreover, difficulty in analyzing combined data 

from different sources/detectors reflects the need to focus on data from different detectors that 

are co-located. Therefore, future research directions may focus on using WILD and WPD data 

from locations where they co-exist, validating the WILD trending model identified in this phase, 

and re-developing combined WILD and WPD regression models. 
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Problem Statement 
  Advanced wayside detector technologies can be used to: 

–  Monitor the condition of railcar components 
–  Notify railroads of probable failures to equipment and infrastructure in 

advance 
–  Predict alert of imminent mechanical-caused service failures 

  More effective use of wayside mechanical inspection data can lead to 
improved safety, service reliability and economics through more effective 
preventive maintenance practices 

  Objectives: 
–  Recognize patterns that ultimately can be used to generate new, 

reliable, advanced rules to predict the occurrence of service disruptions 
–  Develop the reliable and innovative rules to predict the failures (due to 

high impact wheels) and reduce related risks on railroads 
  Using statistical data-mining techniques on historical railcar health 

records from multiple Wayside Defect Detector (WDD) systems 
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Problem Statement 

  Data from Wheel Impact Load Detector (WILD) and Wheel Profile 
Detector (WPD) are analyzed: 
–  Comparing historical measurements for failed and non-failed wheels 

on the same truck 
–  Exploratory data analysis to identify the most critical measurements 

from each detector by comparing the distributions of several 
measurements from failed wheels to the ones from non-failed wheels 

–  Logistic regression approach to predict the probability  of potential 
high impact wheel train stops 

  Value proposition of individual and multiple WDDs used in combinations 
are evaluated: 
–  WILD only 
–  WPD only 
–  WILD and WPD 
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Data Mining Framework for Condition 
Monitoring to Predict Wheel Failures 
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Data Analysis Approach: Time Span 
Method to Predict Wheel Failures 

  Wheels in the failure category are further analyzed according to 
the time span between: 
–  The most recent detector measurement and the train stop 

alert date (M-TS) 
–  Each high impact train stop and repair dates (TS-R) 

  Certain thresholds for M-TS and TS-R are defined and tested to 
determine the railcar wheel Potential vs. True Failures 

  Data availability is an important issue to determine the 
appropriate thresholds 
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Data Analysis Approach: Time Span 
Method to Predict Wheel Failures 

  Compared historical measurements for failed and non-failed wheels on the 
same truck to reduce uncertainty and variance 
  Failed wheel (train stop due to high wheel impact) 

-  Potential Failure: Reading date is within 30 days range before train stop 
date  

-  True Failure: Wheel repair date is within 30 days range after train stop 
date  

  Non-failed wheel 
-  On the adjacent axle to the failed wheel 
-  No train stop nor wheel repair 

R1L1

R2L2
Failed	
  

Non-­‐failed	
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Exploratory Data Analysis to Identify 
Critical Variables 

  After determining the failures and non-failures, a set of data attributes from 
each detector is selected for the exploratory analysis 

– WILD measurements: vertical average weight, vertical peak force, 
lateral average force, lateral peak force, and dynamic ratio 

– WPD measurements: flange height, flange thickness, rim thickness, 
tread hollow, wheel diameter, groove tread, vertical flange (flange 
angle), tread built-up, and wheel angle 

  Based on each detector database, the time distribution of failures of each 
variable was compared to the average of non-failures of the same 
variable 
  The percentage of the failures above (or below) the non-failures average is 
determined 

–  If a large percentage of failed-wheel measurements were higher (or 
lower) than the average measurements for non-failed-wheels, the 
variable would be considered as a critical variable 
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Sample Exploratory Data Analysis to 
Identify Critical Variables 
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Summary of Critical Variables Identified 

WILD: 
–  Vertical Average Weight 
–  Vertical Peak Force 
–  Lateral Average Force 
–  Lateral Peak Force 
–  Dynamic Ratio 

 
WPD: 

–  Vertical Flange (Flange Angle) 
–  Rim Thickness 
–  Tread Built-up 
–  Wheel Angle 
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Logistic Regression Approach 

  Logistic regression setting 
–  Detector readings x1,x2,…,xn for a generic instance 
–  Regression coefficients: b0, b1, …, bn 
–  Logit measure z = b0 +b1x1x1 + b2x2 x2+… + bnxn xn 

False positives 

False negatives 
(missed 
failures) 

Labeled failures 

Predicted failures 

False negatives  

False positives 

True positives 
(good 
predictions) 
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Regression Model Alternatives 

  Potential Failure (85% of the data for model construction and 15% for 
test) 

–  WPD critical variables (failure and non-failure records) 

–  WILD critical variables (failure and non-failure records) 

–  Combined WPD and WILD critical variables  

  Sparse data to perform True Failure (verified repair) analysis 

  Used unit-less values for all critical variables in regression models: 
                

(measurement – non-failure mean)/non-failure mean × 100 
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Regression Model: Data Structure for Data Analysis 
based on WILD Potential Failure  

(Absolute Value for Lateral Forces) 

  Logistic Regression (if Dynamic Ratio is ignored): 

 
 
 
  The critical variables in the model (0.1 significance):  

–  Vertical Average Force(0.001), Vertical Peak Force(0.001), and 
Lateral Peak Force(0.1), respectively 

–  Loading condition(0.01) has also been considered in this model 
–  Significance Test of Logistic Regression: 

             H0: coefficients=0; H1: O.W. 
   The test is rejected, therefore the regression model 

between the dependent and independent variables is 
significant with p-value=0.002 

 

 

P(z) =
1

1+ e−z

 

z = 0.4002 - 0.0211x1 + 0.0261x2 - 0.0031x3 - 0.6290x4
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Test of Logistic Regression using the 15% Unseen 
WILD Data: without Dynamic Ratio 

(Absolute Value for Lateral Forces) 

Failure Probability >=0.2 >=0.3 >=0.4 >=0.5 >=0.6 >=0.7 >=0.8 >=0.9 

True Failure 101 95 94 91 85 81 76 59 

False Positive 33 31 15 5 3 3 2 2 

False Negative 0 6 7 10 16 20 25 42 
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Summary of Regression Model 
Performance Using the 15% Unseen Data 

Model True Failure Type I Error Type II Error 

WILD-w/out Dyn. Ratio 90% 15% 10% 

WILD-w/ Dyn. Ratio 89% 15% 11% 

WPD 40% 0% 60% 

WPD & WILD-w/out Dyn. 
Ratio 20% 0% 80% 

WPD & WILD-w/ Dyn. 
Ratio 60% 0% 40% 

Promising	
  
results	
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Conclusion 

  We developed a methodical, controlled approach to analyze data by 
comparing failed and non-failed cases on the same truck 

–  Reduce variance to make it easier to identify critical variables and 
develop good prediction models 

  We found promising results with about 90% efficiency to predict high 
wheel impact train stops in the next 30 days based on the most recent 
WILD measurements 

  Detailed analysis of individual data sources enable further understanding 
of information availability and limitations 

–  Increase value proposition by identifying potential new rules to avoid 
service failures and derailments 
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Conclusion 

  The lack of symmetry between the total number of WILD and WPD 
records prohibit development of a reliable combined model 

  Difficulty in analyzing combined data from different sources/detectors 
reflects the need to focus on data from different detectors located at the 
same location 

–  Could be helpful to guide future plan to install which detectors at 
super sites 
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 QUESTIONS? 
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Appendix 
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Regression Model: Data Structure for Data Analysis 
based on WILD Potential Failure  

(Absolute Value for Lateral Forces) 

  Logistic Regression (if Dynamic Ratio is considered): 

 
 
 
  The critical variables in the model (0.01 significance):  

–  Dynamic Ratio(0.001) 
–  Loading condition(0.01) has also been considered in this model 
–  Significance Test of Logistic Regression: 

 H0: coefficients=0; H1: O.W. 
   The test is rejected, therefore the regression model 

between the dependent and independent variables is 
significant with p-value=0.013 

 

 

P(z) =
1

1+ e−z

 

z = 0.4103 +0.0256x1 - 0.6036x2
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Test of Logistic Regression using the 15% Unseen 
WILD Data: with Dynamic Ratio 

(Absolute Value for Lateral Forces) 

Failure Probability >=0.2 >=0.3 >=0.4 >=0.5 >=0.6 >=0.7 >=0.8 >=0.9 

True Failure 101 96 94 90 84 81 74 63 

False Positive 33 33 13 5 3 3 3 2 

False Negative 0 5 7 11 17 20 27 38 

Confusion	
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  for	
  Data	
  Mining	
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Regression Model: Data Structure for Data Analysis 
based on WPD Potential Failure 

  Logistic Regression: 

 
 
 
  The critical variables in the model (0.1 significance):  

–  Rim Thickness(0.05) and Flange Angle(0.1), respectively 
–  Significance Test of Logistic Regression: 

 H0: coefficients=0; H1: O.W. 
   The test is rejected, therefore the regression model 

between the dependent and independent variables is 
significant with p-value=0.031 

 

 

P(z) =
1

1+ e−z

 

z = −1.1029 - 0.0416x1 + 0.0272x2
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Test of Logistic Regression using the 15%  
Unseen WPD Data 

Failure Probability >=0.2 >=0.3 >=0.4 >=0.5 >=0.6 >=0.7 >=0.8 >=0.9 

True Failure 3 3 3 2 1 0 0 0 

False Positive 8 5 2 0 0 0 0 0 

False Negative 2 2 2 3 4 5 5 5 

Confusion	
  Matrix	
  for	
  Data	
  Mining	
  Model	
  
Evalua�on	
  (P>=50%):	
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Regression Model: Data Structure for Data Analysis based 
on WPD and WILD Potential Failure 

(Absolute Value for Lateral Forces) 

  Logistic Regression (if Dynamic Ratio is ignored): 

 
 
 

  The critical variables in the model (0.001 significance):  
–  Vertical Peak Force (0.001) 
–  Significance Test of Logistic Regression: 

 H0: coefficients=0; H1: O.W. 
   The test is rejected, therefore the regression model 

between the dependent and independent variables is 
significant with p-value=6.283e-10  

 

 

P(z) =
1

1+ e−z

 

z = −2.4402 +0.0300x1
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Test of Logistic Regression using the 15% Unseen WPD & 
WILD Data: without Dynamic Ratio 

(Absolute Value for Lateral Forces) 

Failure Probability >=0.2 >=0.3 >=0.4 >=0.5 >=0.6 >=0.7 >=0.8 >=0.9 

True Failure 1 1 1 1 1 1 1 1 

False Positive 0 0 0 0 0 0 0 0 

False Negative 4 4 4 4 4 4 4 4 

Confusion	
  Matrix	
  for	
  Data	
  Mining	
  Model	
  
Evalua�on:	
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Regression Model: Data Structure for Data Analysis based 
on WPD and WILD Potential Failure  

(Absolute Value for Lateral Forces) 

  Logistic Regression (if Dynamic Ratio is considered): 

 
 
 
  The critical variables in the model (0.1 significance):  

–  Dynamic Ratio (0.001), and Lateral Average Force(0.1), 
respectively 

–  Significance Test of Logistic Regression: 
 H0: coefficients=0; H1: O.W. 

   The test is rejected, therefore the regression model 
between the dependent and independent variables is 
significant with p-value=1.305e-09 

 

 

P(z) =
1

1+ e−z

 

z = −2.3057 +0.0317x1 + 0.0107x2
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Test of Logistic Regression using the 15% Unseen WPD & 
WILD Data: with Dynamic Ratio 

(Absolute Value for Lateral Forces) 

Failure Probability >=0.2 >=0.3 >=0.4 >=0.5 >=0.6 >=0.7 >=0.8 >=0.9 

True Failure 3 3 1 1 1 1 1 1 

False Positive 0 0 0 0 0 0 0 0 

False Negative 2 2 4 4 4 4 4 4 

Confusion	
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  for	
  Data	
  Mining	
  Model	
  
Evalua�on	
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