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ABSTRACT 
Contact between the wheel and rail can have a significant 

effect on the dynamics of vehicle/track interaction models. 

Many existing rail surface models rely on curve based geometry 

which may lead to some geometric inaccuracy in the case of 

variable cross-section rails. This investigation will focus on the 

development of a new spatial geometry based rail surface 

description which reduces this geometric inaccuracy. It has been 

shown in literature that certain CAD geometry types, such as B-

Spline curves and surfaces, may be converted to equivalent 

absolute nodal coordinate formulation (ANCF) finite elements 

without a loss of geometric accuracy. To this end, a new ANCF 

surface description of variable cross-section rails is developed.  

This investigation also demonstrates the feasibility of using, in 

the future, 3D surface scanning techniques as well as profile 

curve measurements to develop a rail surface geometry model 

using the new ANCF surface which can be systematically 

integrated with complex multibody system (MBS) models. A 

realistic railroad vehicle example of a turnout, which includes 

variable cross-section rails, is tested for the case of the new 

ANCF surface. A study of the numerical results reveals the 

benefits of using the ANCF surface geometry developed in this 

investigation. 

 
1. INTRODUCTION 

 In the analysis of railroad vehicle system dynamics, contact 

between the wheel and rail is a fundamental feature in any 

realistic model. To this end, many methods have been 

introduced which rely on curve geometry to represent the 

contact surfaces such as the curve network representation [12]. 

In this technique, the profile curve of the rail surface is swept 

along a space curve which represents the centerline of the rail. 

It has been shown that this method is viable in the case where 

the profile of the rail is constant; however it is insufficient for 

rail sections that have geometry which varies along the rail 

space curve. A number of approaches have been introduced in 

literature to produce a geometric approximation of the variable 

cross-section rail surfaces. The bulk of these methods rely on 

direct interpolation of a series of rail profile curves. This 

procedure is well suited for the case in which off-line tabular 

contact procedures are employed. However when on-line non-

linear contact evaluation procedures are employed, such as 

those presented by Shabana et al.[12], a poor description of the 

wheel/rail interaction forces is produced. Recently, Hamper et 

al. [4] presented a new surface based description of the rail 

surfaces which alleviates this issue. It is the main objective of 

this investigation to elaborate on how this technique may be 

integrated with modern virtual prototyping and measurement 

tools. 

 In off-line contact search methods, a significant amount of 

work is performed at a pre-processing stage to determine the 

location of a contact point under a limited range of scenarios. 

This data is then compiled in tabular form as a function of a 

small set of parameters which are interpolated at runtime to 

determine the location of the contact point as well as other 

parameters required to determine the contact forces. Due to the 

complexity of the problems, these tables are often formed under 
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the assumption that one rail is fully constrained to the ground. 

One such method is that applied by Kassa et al. [6] in which a 

contact table is formed to solve the wheel/rail contact problem 

of variable cross-section rails. A similar approach is presented 

by Alfi and Bruni [1]. Sugiyama et al. [18] employed a 

procedure in which the derivatives of the profile curves, which 

are described using three-layer splines, are also computed via 

linear interpolation of two adjacent profiles. Kassa et al. uses 

the distance traveled along the rail and the lateral shift of the 

vehicle to define a set of tabular contact functions which 

contain the information necessary to define the location and 

forces associated with the wheel/rail contact. Linear 

interpolation between these contact functions is performed at 

runtime with some success as is demonstrated by Kassa and 

Nielsen [7] where a series of tests were performed to compare 

measured and numerical results. It is important to note that 

many tabular based contact evaluation methods do not account 

for relative rotations between the wheel and rail. In many 

scenarios this approximation is sufficient as is demonstrated by 

the validation presented in the literature [7], however this 

assumption is only valid provided that the relative rotations 

remain small. 

 In on-line contact search methods, computational geometry 

(CG) methods are employed at runtime to determine the 

location of a contact point. Additional parameters are often 

computed in order to determine the associated wheel/rail 

interaction forces. Many authors have made use of curve 

geometry for the on-line contact problem with some success. 

For example, Schupp et al. [11] presented a method in which 

linear interpolation between two adjacent profiles is used at 

runtime to determine an intermediate profile of the rail at the 

current location. Wan et al. [19] presented a method of reducing 

the three dimensional problem to a two dimensional case in 

which only the distance along the trajectory curve and vertical 

height of the rail profiles are considered. The common feature 

of these approaches is the use of curve geometry to represent 

three dimensional surfaces. As with the tabular approach, this 

method is successful over a range of scenarios but cannot 

capture the full range of features available in surface based 

geometric methods. 

 Since the contact problem is highly non-linear, the off-line 

approach has a advantage in computation time; however this 

method is limited to the range of scenarios calculated at the pre-

processing stage, giving the on-line approach a advantage in 

robustness. However, there exists an additional limitation in the 

direct profile curve interpolation method presented by Schupp 

et al. [11] when employed in conjunction with either the three 

dimensional non-conformal elastic or constraint contact 

approaches [12]. As was discussed by Sinokrot et al. [15], the 

elastic contact approach requires second order spatial derivative 

continuity ( 2
C ) of the wheel and rail surfaces while the 

constraint contact approach requires third order derivative 

continuity ( 3
C ). Clearly a surface created via linear 

interpolation using more than two profile curves will have a 

discontinuity in the first order derivatives at the location of each 

interior profile, thus the surface has only position level 

continuity ( 0
C ). A direct consequence of this, as will be shown 

in the numerical results of this investigation, is a fictitious spike 

in the predicted contact forces at the location of the spatial 

derivative discontinuity. It is for this reason that a new 

technique was developed to model variable cross-section 

surfaces without the need for direct interpolation between 

profiles when the on-line approach is employed. 

 Rather than using the curve based approach previously 

discussed, the new technique developed relies on the 

construction of a surface at a pre-processing stage using a mesh 

of absolute nodal coordinate formulation (ANCF) thin plate 

elements which employ bi-quintic interpolation [4]. It was 

shown by Hamper et al. that under the appropriate 

circumstances, which will be discussed in this investigation, a 

surface created using these elements has   continuity. The most 

direct approach to generating a surface of ANCF thin plate 

elements begins with constructing a B-spline surface which may 

be converted into a collection of ANCF thin plate elements 

without any loss of geometric accuracy using the technique 

discussed by [4, 8, 9]. Due to the fact that B-spline surfaces 

may employ a very fine discretization, this conversion may also 

be applied by direct evaluation of the position and spatial 

derivatives of the B-spline surface to generate the ANCF nodal 

coordinates. This provides the option for the user to select a 

smaller subset of the potential ANCF nodes thereby producing a 

more coarse mesh than is generated by direct transformation 

from B-spline to ANCF. The following sections of this 

investigation will present methods which may be used to 

construct an ANCF surface model of variable cross-section rails 

using data generated by modern measurement and virtual 

prototyping technologies.  

 This paper is structured as follows: the ANCF 

representation of a surface is reviewed in Section 2; a 

discussion of surfaces created using profile curves generated by 

either measurement or virtual prototyping is presented in 

Section 3, a discussion of a procedure with which an ANCF 

surface may be constructed using measured data from 3D 

scanning devices is provided in Section 4; a numerical example 

of a vehicle negotiating the tangential route of a turnout is 

presented in Section 5 with results from the cases in which the 

rail contact surface is generated via linear profile interpolation 

and ANCF geometry being compared to demonstrate the 

benefits of the ANCF surface based geometry; and a summary 

of the conclusions drawn in this investigation are presented in 

Section 6.. 

2. ANCF SURFACES 

 Typically, ANCF finite elements are employed to 

model a continuum material [14], however the robust geometric 

properties of these elements lend themselves easily to the 

description   of   arbitrary    curves   and   surfaces.   Similar   to 
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Figure 1. ANCF Thin Plate Element in Parametric (left) and 

Physical (Right) Domains 

conventional finite elements, interpolation within the element is 

performed by making use of a set of nodal coordinates and 

polynomial shape functions which map an undeformed or 

reference configuration to a deformed or physical configuration 

as shown in Fig. 1. This relationship is defined algebraically by 

( ),ξ η=r S e , where r  is the position of a point in an element, 

S  is the matrix of shape functions, e  is the vector of nodal 

coordinates, and ξ  and η  are the coordinates of the reference 

domain. In the case of a rigid surface modeled with ANCF thin 

plate elements, the configuration of the rail surface does not 

change with time and takes the physical configuration at the 

initial time step. In this case, the reference configuration 

represents a parametric domain in which two surface 

parameters, defined as 1s and 2s , are used to identify a specific 

point on the surface mesh. Unlike conventional finite elements, 

however, ANCF elements make use of both position and a 

collection of spatial derivative vectors to define the coordinates 

at each node. This allows ANCF elements to be developed 

which have an arbitrary polynomial interpolation order 

provided the correct nodal coordinates are chosen.  

 In the modeling of the rail surface for the contact 

problem, it is important to have fine control over the 

polynomial interpolation order as different contact formulations 

require different levels of spatial derivative continuity. For 

example, the on-line three-dimensional non-conformal elastic 

contact formulation employed in this investigation, denoted as 

the elastic contact formulation - algebraic equations (ECF-A), 

has been shown to require continuity in the spatial derivatives 

up to the second order by Sinokrot et al. [15]. Therefore, 

Hamper et al. [4] developed an ANCF thin plate element which 

satisfies this condition throughout the entire rail surface mesh. 

This element, shown in Fig. 1, is a four node quadrilateral 

which employs bi-quintic interpolation and requires nine 

coordinate vectors at each node. These coordinate vectors 

include the position and all mixed partial spatial derivatives up 

to the second order with respect to both the X and Y 

coordinates. It was demonstrated by Hamper et al. [4] that the 

second order spatial derivative continuity is satisfied in only the 

case where the reference configuration of the mesh forms a 

rectangular grid,  meaning  all  elements  in a row have the same 

 
Figure 2. Right Hand Turnout Diagram [12] 

 
Figure 3. ANCF Thin Plate Mesh With Physical Discontinuity 

(Left: Reference Domain, Right: Physical Domain) 

height and all elements in a column have the same width. 

Considering that it is the physical configuration which takes the 

shape of the rail surface and not the reference configuration, it 

is a trivial matter to ensure this condition is satisfied for a rail 

which has a variable cross-section. 

 The physical geometry of a rail surface need not be 

continuous in the general case. Take for example a turnout, as is 

shown in Fig. 2, which is composed of multiple rail segments 

which have physical discontinuities between them. However, 

ECF-A may suffer from numerical instabilities when the 

reference domain is discontinuous. It would be inappropriate to 

model the surface at the interface between two of these 

segments with position or spatial derivative continuity. To insert 

physical discontinuity into an otherwise continuous mesh, the 

rail surface may be generated from multiple rectangular grids 

which are joined only in the reference domain. In other words, 

the rectangular grids would share no nodes or elements in 

common, however the reference domains of the two grids would 

share a common boundary along the direction of one of the 

surface parameters thus allowing a continuous description in the 

reference domain. An example of this configuration is provided 

in Fig. 3 in which two rectangular grids have been combined in 

a single mesh with a common boundary along the longitudinal 

direction. Using this approach, one may generate a variety of 

rail surfaces which are composed of multiple consecutive 

rectangular grids which have a physical discontinuity at the 

boundaries in the physical domain while retaining positional 

continuity at the boundaries in the reference domain. 

3. MINIPROF/VIRTUAL PROTOTYPING TECHNOLOGY 

 In this section, two methods with which a rail surface 

may be constructed using profile curves are considered. The 

first procedure, which is similar  to  that presented by Schupp et 
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Figure 4. Linear Profile Interpolation Surface 

al.  [11],  involves  making  use  of  direct  linear  interpolation 

between profile curves of the rail to generate a model of the 

rail's surfaces. This procedure will be referred to as linear 

profile curve interpolation. The second procedure, which is 

similar to the procedure presented by Piegl and Tiller [10], 

makes use of non-linear interpolation between a series of profile 

curves to develop a surface model. This procedure will be 

referred to as lofting. The benefit of choosing either of these 

two methods is primarily based on the lack of restriction on the 

source data. Rail profile curves may be measured directly using 

modern technology such as MINIPROF systems, or they may be 

generated using computer aided drafting (CAD) systems. The 

use of measured data is ideal for the case where a simulation is 

focused on the vehicle/track interaction of a physical rail 

system, this would be highly effective if employed in accident 

investigation simulations involving derailments at turnouts or 

crossings. The use of profile curves generated via CAD systems 

would be of less value in this case, however it would be a highly 

effective tool for the virtual prototyping process for new wheel 

or rail designs. 

 There are two primary differences between the two 

methods. First, in the linear profile curve interpolation method, 

all interpolations are performed between only two profile curves 

while in the lofting procedure a global interpolation is 

performed over the entire set of profile curves provided. The 

second, and more important distinction, is that while the linear 

profile curve interpolation method is limited to linear 

interpolation between profile curves, the lofting procedure 

allows for the use of arbitrary order polynomial interpolation to 

be employed. This difference can become quite significant 

when spatial derivative continuity requirements are imposed on 

the surface to be generated. It is clear that the linear profile 

interpolation   procedure   cannot   guarantee  continuity  in  any  

 
Figure 5. Normal Force at Left Contact Linear Interpolation Vs. 

Quintic Plate 

(  Linear Interpolation,  Quintic Plate) 

longitudinal spatial derivatives, thus this method is a poor 

choice for a contact formulation, such as ECF-A, which requires 

continuity in the second order spatial derivatives. The lofting 

procedure, however, does not suffer this limitation as the 

interpolations may be performed using an arbitrary polynomial 

order. 

 In the linear profile curve interpolation method, 

individual profile curves are often modeled with cubic 

interpolation, while the surface between two of these profiles is 

modeled using a linear interpolation scheme. An example of a 

generic surface created using this procedure is shown in Fig. 4. 

This figure illuminates the primary limitation which arises from 

the use of this procedure. As was previously discussed, the 

discontinuity in the longitudinal spatial derivatives as can be 

seen by the sharp corners produced at the location of the 

internal profile curves. This type of discontinuity can in turn 

effect the prediction of the contact forces. Take for example a 

suspended wheelset traveling along the tangential route of a 

turnout which is modeled using the linear profile curve 

interpolation procedure while the contact is modeled with ECF-

A. Figure 5 shows the predicted normal contact force as a 

function of the wheelset distance, note the large spikes in this 

figure. The majority of these spikes directly coincide with the 

location of intermediate profile curves. These spikes are directly 

caused by the spatial derivative discontinuity caused by the use 

of the linear interpolation. From this, it is clear that this model 

of the rail surface should not be employed using similar contact 

evaluation procedures. The linear profile curve interpolation 

method is best employed when off-line tabular approaches to 

contact evaluation are employed, such as those found in the 

work of Kassa et al. [6, 7] or Alfi and Bruni [1]. This contact 

evaluation approach does not necessarily require continuity of 

the spatial derivatives of the rail surfaces, and consequently 
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may not suffer from the same spikes in the predicted contact 

forces. 

4. 3D SURFACES SCANNING TECHNIQUES 

 3D scanning technology has recently become one of 

the most popular data acquisition techniques where it is 

necessary to construct surface models in a wide variety of 

applications including medical, geological, and robotics. The 

data extracted from these devices are often referred to as point 

clouds, which are a set of 3D data points taken with high 

enough density such that they offer an accurate approximation 

to the shape of the surface. An example of a point cloud is 

shown in Fig. 6, where a point cloud describing a turnout is 

generated using a combination of CG methods and a random 

number generator. Hieu et al. [5] made use of point cloud data 

from 3D scanning devices to reconstruct the surfaces of a 

variety of different biological components including damaged 

skulls, teeth, and hip joints to assist in the development of 

various patient specific medical implants. Slob and Hack [17] 

employed surface scanning and reconstruction techniques to 

develop highly accurate surface models of a variety of different 

terrain and demonstrated the ability to generate large-scale 

topographic maps using these techniques. Cole and Newman [2] 

were able to use real time 3D surface scanning to allow an 

autonomous robot to navigate outdoor terrain with some 

success. In part, these developments are due to the increasing 

commercial availability of 3D surface scanning devices ranging 

from the stationary mounted variety to hand-held devices which 

one may use outdoors. Notable devices in this category include 

the Creaform Handyscan 3D, Nikon Metrology's ModelMaker, 

and the Polhemus FastScan. These are highly portable handheld 

3D scanning devices which may be employed to measure 

surface geometry in much greater detail than profile curve 

measurement devices allow as the density of the measured 

points is significantly greater than would be practical with 

profile curve measurement. The measurement accuracy of most 

devices is high enough for rail applications, for example the 

Handyscan 3D may take measurements with a resolution of up 

to 0.002 in. (0.0508 mm). Of course, these devices must be 

tested for this specific application before their use can be 

recommended for the case of track measurement. 

 While the resolution of 3D surface scanning devices is 

much greater than that of profile curve measurement, surface 

reconstruction from the point cloud data generated by these 

devices is much more complicated. There exists in literature 

many publications which detail various methods of surface 

reconstruction. According to Gálvez and Iglesias [3], these 

typically fall into one of three categories: polygonal meshing, 

constructive solid geometry (CSG), and free-form parametric 

surfaces. Polygonal meshing involves the generation of surfaces 

by drawing lines between data points and constructing polygons 

from the generated lines. This results in spatial derivative 

discontinuities so this method is not considered in this paper. 

The CSG approach involves taking simple primitive objects and  

 

Figure 6. Point Cloud Data for a Left Hand Turnout 

 

employing Boolean addition/subtraction operations to construct 

a surface. It would require undue effort to maintain the 

appropriate spatial derivative continuity using this approach and 

this is also not considered. The free-form parametric surface 

approach, however, is well suited to the topic of this paper as 

surfaces of this type may be generated with arbitrary spatial 

derivative continuity. Geometric definitions of this type, such as 

B-Spline or NURBS, are the most widely used of this type and 

are often employed in commercial CAD systems. 

 Gálvez and Iglesias [3] also present an excellent 

survey of the current state of the art in methods of scattered data 

(point cloud) surface reconstruction. Following this, the authors 

present a new technique which may be used to recover NURBS 

type surface geometry from scattered point data, such as that 

measured by a 3D scanner. One may easily use this technique to 

develop a NURBS surface from which ANCF nodal coordinates 

may be extracted with ease using software packages such as 

SISL [16]. It is the opinion of the authors that this procedure 

may be implemented without difficulty thus allowing for the 

construction of variable cross-section rail surfaces for use in 

dynamic vehicle/track interaction simulations. 

5. NUMERICAL EXAMPLE 

 In this section, a simple example is presented to 

demonstrate the techniques discussed in this work. A suspended 

wheelset traveling at a constant velocity over a partial left hand 

turnout is chosen as an idealized scenario in which a railroad 

vehicle may encounter a rail with a variable profile. The 

numerical simulations are carried out for three different 

scenarios that correspond to the three surface types: linear 

interpolation, an existing cubic ANCF thin plate, and the newer 

quintic ANCF thin plate. The results obtained using the three 

different surfaces are compared. The simulations are carried out 

using the general purpose multibody package SAMS/2000 [13]. 
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Figure 7. Suspended Wheelset 

5.1 Simulation Parameters 

The suspended wheelset used in this example is composed 

of a single wheelset and a frame connected by linear spring-

damper elements as is shown in Fig. 7. The stiffness and 

damping of the suspension components are defined as 

1 2 14l lk k= = kN/m (925 lbf/ft), 1 2 25t tk k= = kN/m (1713 

lbf/ft), 1 2 1l lc c= = kN·s/m (68.5 lbf·s/ft), and 1 2 1t tc c= =  

kN·s/m (68.5 lbf·s/ft). A constant velocity constraint is applied 

to the frame with a value of 4.47 m/s (10 mph) to simulate the 

vehicle motion while an axle load of 98 kN (22,000 lbs) is 

applied to the wheelset to simulate the vehicle weight. The 

frame has a mass of 10,000 kg (685.2 slug), with roll, pitch, and 

yaw mass moments of inertia defined as 1,799.03, 1,799.03, and 

2,499.96 kg·m
2 

(1,326.9, 1,326.9, and 1,807.0 slug·ft
2
) 

respectively; while the wheelset has a mass of 1,567.39 kg 

(107.4 slug), with roll, pitch, and yaw mass moments of inertia 

defined as 655.94, 167.99, and 655.94 kg·m
2
 (483.8, 123.9, and 

483.8 slug·ft
2
) respectively. The wheel profile used in the 

example is the AAR-1B-WF which is positioned such that a 

flange clearance of 0.73914 cm (0.291 inches) is maintained in 

the equilibrium position. 

 A partial turnout is considered for the track model; the 

components included are the left and right stock rails, the left 

switch point and lead rail. For simplicity of the analysis, the 

guard, frog, and right switch point sections are not included in 

the model. Each of the three geometric models is created from 

the same set of rail profiles. The left rail is modeled using 36 

profiles for the stock rail and 28 profiles for the tongue and lead 

rails while the right rail is modeled using 36 profiles. These 

profiles were developed based on CAD drawings provided by 

Cleveland Track Materials (CTM).  The stock profile of the rail 

used in this model is the 136 RE, while the tongue and lead rails 

belong to a No. 9 left hand turnout typically used in yards with 

a maximum speed rating of 6.67 m/s (15 mph). The rails are 

positioned such that the track gage is 1.4351 m (56.5 inches) 

and the switch point is located at 6.858 (270 inches) along the 

left stock rail. 

 The linear interpolation surface is generated by direct  

 
Figure 8. ANCF Quintic Plate Turnout 

 
Figure 9. Y Coordinate of Contact Point on Left Rail 

(  Linear Interpolation,  Quintic Plate,  

Cubic Plate) 

interpolation of the aforementioned profiles. The ANCF thin 

plate meshes were generated by extracting the nodal coordinates 

from a B-spline surface created by the NURBS package SISL 

[16]. A total of 12,500 thin plate elements are used to model the 

left rail, while 10,000 are used to model the right rail. In this 

example, approximately 150 ANCF elements are used per foot 

of stock rail. Each rail is modeled as a separate surface with a 

unique parametric domain. Figure 8 shows the geometry of the 

turnout as produced by the quintic ANCF thin plate mesh. 

5.2 Numerical Results 

Among the three models, the best agreement is found in the 

location of the contact point. In Fig. 9, it is shown that the 

difference in the computed lateral position of the contact point 

is negligible between the cubic and quintic ANCF thin plate 

models while the discrepancies are more pronounced when  
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Figure 10. Z Coordinate of Contact Point on Left Rail 

(  Linear Interpolation,  Quintic Plate,  

Cubic Plate) 

 

Figure 11. Trace of Contact Point along Quintic ANCF Thin 

Plate Turnout 

compared to the linear profile interpolation method. Note that 

the large shift in the location of the contact point at 7.95 m (313 

inches) corresponds to time at which the contact point switches 

from the stock rail to the switch point. A similar phenomenon 

can be seen in the plot of the vertical position of the contact 

point shown in Fig. 10. There is a small vertical shift downward 

as the contact point transitions from the stock rail to the switch 

point. Following this, the contact point shifts vertically by 0.635 

cm (0.25 in) as per the design of the switch point which 

includes this elevation increase. It is also important  to  note  the  

linear  nature  of  the change in the vertical position of the 

contact  point  in   the  case  of  the  direct  profile  interpolation 

 
Figure 12. Normal Force at Left Contact Cubic Plate Vs. 

Quintic Plate 

(  Cubic Plate,  Quintic Plate) 

method. Recall that linear interpolation is used in the 

longitudinal interpolation between any 2 profiles, consequently 

this leads to a linear change in the height of the profile along the 

rail space curve. This phenomenon is less pronounced in the 

lateral shift as the individual profiles are described with cubic 

splines. Figure 11 shows the trace of the contact points along 

the left rail in the proximity of the switch point. Here the cause 

for the lateral shift is more pronounced: the contact point shifts 

laterally to follow the stock rail until such a time that the 

primary contact point transitions from the stock rail to the 

switch point.   

 The difference between the three examples is much 

more pronounced in the normal contact forces. In Fig. 5, a 

comparison was shown for the normal contact force at the left 

wheel/rail interface between the direct linear interpolation 

method and the quintic ANCF thin plate mesh. Here it was seen 

clearly that the linear interpolation method produced fictitious 

spikes in the forces which is certainly an undesirable and 

unrealistic feature. However, the trend line of the linear 

interpolation method follows the same path as the quintic plate 

between these fictitious spikes. The contact forces are far more 

similar when the cubic and quintic plates are compared as is 

shown in Fig. 12. However, it is clear that some small fictitious 

force spikes are still predicted in the case of the cubic ANCF 

thin plate.  

It is also important to note that the linear interpolation 

method required less CPU time than the ANCF methods in a 

serial program run on a personal computer. The cubic ANCF 

method required 7% more CPU time than the linear 

interpolation method while the quintic ANCF method required 

24% more CPU time. Considering that CPU time is not 

penalized too greatly for the quintic ANCF method, the 

improved accuracy provided by this method suggests that it 
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would be a better choice than the other two methods in the case 

in which minimal CPU time for the application is not critical. 

6. CONCLUSIONS 

 In this investigation, three different methods that may 

be used to define variable cross-sectional profile rail surfaces 

are discussed. In the first method, a linear interpolation between 

two profiles is used to define the surface between them. As a 

consequence, fictitious spikes in the contact forces are produced 

due to first and second order spatial derivative discontinuities 

which are unavoidable with this method. In the second method, 

a surface mesh is produced using a collection of cubic ANCF 

thin plate elements. This method shows marked improvement 

over the direct profile interpolation method, however some 

small fictitious spikes in the contact forces are predicted due to 

second order derivative discontinuities at the element 

boundaries. In the third method, a surface mesh is produced 

using a series of the newly developed quintic ANCF thin plate 

elements. This element has natural   continuity in a mesh and as 

a result does not produce fictitious spikes in the forces due to 

spatial derivative discontinuities when used in combination with 

ECF-A. It was demonstrated that the linear interpolation 

method produces reasonable accuracy in predicting the location 

of the contact point. For such analyses that are not highly 

concerned with the contact forces, this method is ideal due to 

the simplicity of model creation. The cubic ANCF thin plate 

model produces nearly identical results at the position level 

when compared with the quintic ANCF thin plate model; the 

only discrepancy is related to some small fictitious spikes in the 

normal contact forces. Taking into consideration that model 

construction and implementation is nearly identical for the two 

types of ANCF thin plate elements, it is advisable to choose the 

quintic plate in place of the cubic plate as the increased 

accuracy in the force prediction outweighs the slight increase in 

the number of nodal coordinates when the quintic plate is 

chosen. It has also been shown in the literature that a linear 

transformation may be used to convert this quintic plate element 

to a quintic Bezier patch. With this procedure, one may easily 

develop a procedure to convert virtual prototyping, profile 

curve, or 3D surface scanning data to the rail surface geometry 

used in the contact evaluation procedures used in vehicle/track 

interaction simulations with little loss of geometric accuracy. 
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