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Abstract

This paper deals with the determination of the stress propagation in the HH10 type of steel railroad
ties under dynamic loads.

The HH10 type of steel ties were tested for fatigue at the University of Illinois at Urbana-
Champaign. Simultaneously with the laboratory fatigue tests, I was modelling the stress distribution
in the tie due to the dynamic loads with using finite-element software ‘ABAQUS’.

After the introduction, the laboratory arrangement of the tie fatigue test will described in
Chapter 2. Chapter 3 details the steps in building up the finite-element model of the ‘HH’ railroad
ties. In Chapter 4, the stress pattern and numerical values for the stresses and displacements of the tie
due to dynamic loads as results of the finite-element program will be presented. The most important
results will be summarized in Chapter 5.

Keywords:railroad ties, sleepers.

1. Introduction

In academic year 1998/1999 I stayed at the Department of Civil Engineering, Uni-
versity of Illinois at Urbana–Champaign, in the United States of America under
Dr. Imre Korányi’s scholarship. The purpose of my stay was to carry out a research
in the field of railway engineering, with emphasis on railway tracks, that is related
to my professional field of research towards the degree of PhD.

A railroad tie manufacturer company charged the University with testing the
HH type of railroad steel ties for fatigue. I had the job to determine the stress
pattern in the ties due to dynamic loads, by using finite-element method software
‘ABAQUS’.

In this paper, I summarize the results and some intermediate steps of my
research.

1Summary of results of research, carried out at the University of Illinois at Urbana – Champaign,
USA, in academic year 1998/99
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2. Testing of the ‘HH’ Railroad Ties for Fatigue at the University of
Illinois [1]

2.1. Description of the ‘HH’ Types of Railroad Ties

The HH types of railroad ties are manufactured of three different thickness, 10 mm,
12 mm and 14 mm. Their symbols are HH10, HH12 and HH14. The HH10 type
of railroad tie is illustrated inFig. 2...1 modelled by the finite element software
‘ABAQUS’.

The HH10 type of railroad ties that have a thickness of 10 mm is intended to
be used in side tracks, industrial tracks, classification yards and in tracks with low
speed limit. The HH12 ties are planned to be used on heavy-axle-load main lines;
and the HH14 ties are planned for wide gauge railroad lines. Only the HH10 ties
were tested for fatigue at the University of Illinois [4].

Fig. 2...2 indicates the cross-section of the HH10, HH12 and HH14 ties. It has
been drawn based on the drawings of the manufacturer. Some sizes are intentionally
missing [2].

The material of the tested ties is A36 steel according to the ASTM Standards.

Fig. 2...1. The HH10 type of steel tie modeled by finite-element software ABAQUS

2.2. Laboratory Arrangement for the Tie Fatigue Test

The laboratory testing has the aim to investigate the fatigue limits of the railroad
ties with the purpose to forecast the life cycle of the ties in specific railroad traffic
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Fig. 2...2. Cross-section of the HH10, HH12 and HH14 ties. Some sizes are intentionally
missing.

conditions, such as speed, axle load, etc.
The laboratory testing arrangement is illustrated inFig. 2...3. A hydraulic

cylinder loaded a horizontal, thick steel beam with very high inertia against bending.
A loading head was joined with a rotating joint to both ends of the steel beam that
were shaped to load the rails so that the load applied to the rails has the required
angle and goes through the required point of the rail head (Fig.2...3). The direction
of the force loading the railhead had an angle of 21◦ to the vertical.

The rail fastening system is Pandrol. Elastic pads should be placed under the
rail, between the rail and the tie, whose elasticity is minimum 150 kN/mm.

The ties are supported by rubber pads that should be placed so that the outer
end of the rubber pads coincide with the inner end of the end spade rounding of the
tie. The pads are 800 mm long and their width is equal to the width of the top surface
of the tie. The thickness of the pads may not be more than 0.25 times the width.
The compliance of the rubber pads should be in the range of 0.025− 0.035 mm/kN
in case of the test frequency. The rubber pads are supported by steel pads whose
surface is shaped the same way as the bottom surface of the top section of the tie.

2.3. Loads Applied to the Ties

The tie fatigue tests were carried out at a frequency of 3 Hz and 7 Hz. The shape
of the dynamic load wave was sinusoidal.

The maximum value of the applied dynamic load was changed from series to
series. Tests were carried out with the maximum load value of 200 kN, 220 kN,



128 N. LIEGNER

235 kN, 250 kN, 280 kN and 300 kN as well. The minimum value of the dynamic
load was 10 per cent of the maximum value. The maximum accuracy of the applied
load is 2 per cent that means that the magnitude of the applied load may not deviate
more than 2 per cent of its theoretical value at all times from the theoretical value.

The direction of the load had an angle of 21◦ to the vertical.

Fig. 2...3. Testing of the HH 10 steel tie for fatigue at the University of Illinois

2.4. Results of the Laboratory Tests

The laboratory tests for fatigue finish with either a run-out or a failure. A test
finishes with a run-out if a crack longer than 3 mm cannot be observed by the
Magnetic Particle Inspection after 5 millions of load repetition had been applied to
the tie. The test should be terminated if a crack becomes visible on the surface of
the tie before 5 millions of load repetition is applied. If a crack longer than 3 mm
can be observed on the tie by the Magnetic Particle Inspection, the tie also fails the
fatigue tests.



DETERMINING THE STRESS PATTERN 129

3. Steps in Building up the Finite-Element Model of the ‘HH’ Railroad Ties

3.1. Description of Finite-Element Computer Software ‘ABAQUS’ [3]

‘ABAQUS’ is a suite of powerful engineering simulation programs, based on the
finite element method that can solve problems ranging from relatively simple linear
analyses to the most challenging nonlinear simulations. ABAQUS contains an ex-
tensive library of elements that can model virtually any geometry. It has an equally
extensive list of material models that can simulate the behaviour of most typical
engineer materials including metals, rubber, polymers, composites, reinforced con-
crete, crushable and resilient foams, and geotechnical materials such as soils and
rock. Designed as a general-purpose simulation tool, ABAQUS can be used to study
more than just structural (stress/displacement) problems. It can simulate problems
in such diverse areas as heat transfer, mass diffusion, thermal management of elec-
trical components (coupled thermal-electrical analyses), acoustics, soil mechanics
(coupled pore fluid-stress analyses), and piezoelectric analysis.

3.2. The Coordinate System

The ABAQUS models of the ties are fixed in a spatial, right-hand coordinate sys-
tem. The ‘1’ axis of the coordinate system is included by the longitudinal plane
of symmetry and normal to the lateral plane of symmetry. The ‘2’ axis of the
coordinate system is included by the lateral plane of symmetry and normal to the
longitudinal plane of symmetry. The ‘3’ axis of the coordinate system is identical
to the intersection line of the two planes of symmetry of the tie. The origin of the
coordinate system is located so the ‘3’ coordinate of the points top surface of the tie
in the lateral plane of symmetry is equal to the height of the tie at that cross-section.
Fig. 2...1 shows the coordinate system and the model of the HH10 tie.

3.3. The Applied Mesh of the Tie

Fig. 2...1 illustrates the meshed model of the HH10 tie. The element library of
ABAQUS offers several different types of elements. The sufficient element type is
C3D20R that is 3 dimensional 20-node cubic brick element with reduced integration.

3.4. Material Properties

A test was made to measure the Young’s modulus of the rubber pad. The material
properties of the steel and the rubber pad defined in the model, are summarized in
Table3...1:
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Table 3...1. Material properties of the steel and the rubber pad

Material Material properties
Young’s modulus Poisson’s ratio

Steel 2.1∗ 105 N/mm2 0.3
Rubber 6.9357 N/mm2 0.3

3.5. Boundary Conditions

The ties are supported by rubber pads and the rubber pads are supported by steel
pads whose surface is shaped the same way as the bottom surface of the top section
of the tie. The support system is described in more details in Chapter 2.2.Fig.3...1
shows a quarter of the HH10 tie and the rubber pad.

The following boundary conditions are defined in the ABAQUS model:

• The bottom nodes of the rubber pads are fixed.
• The same nodes define the top surface of the rubber pads as those define the

bottom surface of the tie.
• It has also been checked that it is enough to model half of the tie or quarter

of the tie, with employing the necessary boundary conditions representing
symmetry.

3.6. Definition of Loads

In the ABAQUS model, the loads are defined that were actually applied in the labo-
ratory during the fatigue test. The shape of the dynamic load wave was sinusoidal.
The maximum value of the axle load is 200 kN and 250 kN in the computations.
The minimum value of the load is 10 per cent of its maximum value in all cases.
Dynamic assessments were carried out with the frequency of the load of 3 Hz, 5 Hz,
7 Hz and 10 Hz.

Half of the axle load is applied to one rail. The direction of the load has an
angle of 21◦ to the vertical. The loading system of the ties is described in Chapter
2.3.

In ABAQUS, these loads can be modelled by the following components:

• A uniformly distributed pressure perpendicular to the surface of the tie under
the rail base;

• A triangularly distributed pressure perpendicular to the surface of the tie to
model the bending moment;

• Nodal forces parallel to the surface of the tie to model the horizontal compo-
nents of the applied load.
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Fig. 3...1. A quarter of the tie (bottom view) and the rubber pad indicated in green

In the computations, the magnitude of the dynamic load is defined in a tabular
form, ie. at discrete points of time in a cycle of loading. The load is defined at
16 time points within one cycle as illustrated inFig.3...2. The points on the curve
indicate at which time points the load is defined. Previously it was checked at how
many time points the load has to be defined in order to obtain sufficient accuracy in
the calculations.

The elapsed time between two time points in which the load is defined is one
time increment.

Load definition #1 (f=5Hz)
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Fig. 3...2. Load definition
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3.7. Node Numbering

Node 144001 and node 144201 have special importance in the results of the compu-
tations.Fig.3...3indicates the location of the fastening hole and the ballast inspection
wholes.Fig. 3...4shows the node numbering around the outer fastening whole.

inner ballast inspection whole

outer ballast inspection whole

inner fastening whole

outer fastening whole

Nodes 142001

142003

144001

144003

Fig. 3...3. Illustration of the node numbering on half of the tie

Node 144001

Node 144003

Node 144001Node 144001Node 144001

Fig. 3...4. Illustration of the node numbering around theouter fastening hole
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3.8. Type of Analysis

All computations were made with linear elasticity and linear dynamics.

4. Dynamic Assessment of the HH10 Tie

Dynamic assessments of the HH10 tie have been carried out for the following axle
loads and frequencies:
HH10 tie: 200 kN 3 Hz

250 kN 3 Hz
200 kN 5 Hz
200 kN 7 Hz
200 kN 10 Hz

4.1. Stress Response in the Tie due to Dynamic Load

4.1.1. Assessment of Response of Transverse Stress

The dynamic load applied to the tie with a frequency of 3 Hz is illustrated in
Fig. 4...1. Fig. 4...3 shows the load with a frequency of 7 Hz, andFig.4...5 shows the
load with a frequency of 10 Hz. The top magnitude of the load applied to one rail
is 100 kN in all cases.

A comprehensive research has shown that it is the transverse normal stress
(σ22) – of the six stress components (longitudinal, lateral and vertical normal stress
and the three shear stress components) – that has the highest values through the
evaluation period.

The transverse normal stress reaches its maximum values in compression in
node 144001 and in tension in node 144201. These nodes are located on the inner
edge of the outer fastening whole, along the longitudinal plane of symmetry. Node
144001 is on top surface, node 144201 is on the bottom surface. For illustration,
please seeFig. 3...3– 3...4and4...7 – 4...10.

The response – the magnitude of the transverse normal-stress in element
142001 is illustrated inFig. 4...2 in case when the frequency of the load is 3 Hz, in
Fig. 4...4 in case when the frequency of the load is 7 Hz, and inFig.4...6 when the
frequency of the load is 10 Hz. Nodes 144001 and 144201 are nodes of element
142001.
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Frequency: f= 3 Hz
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Fig. 4...1. The applied wheel load in func-
tion of time (frequency of 3 Hz)
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increment 65

increment 94

Fig. 4...2. The transverse normal-stress
(σ22) in respect of time in
element 142001 (f = 3 Hz)

Frequency: f= 7 Hz
Applied wheel load f=7Hz, Fmax=100kN
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Fig. 4...3. The applied wheel load in func-
tion of time (frequency of 7 Hz)
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Fig. 4...4. The transverse normal-stress
(σ22) in respect of time in
element 142001 (f = 7 Hz)

Frequency: f= 10 Hz
Applied wheel load f=10Hz, Fmax=100kN
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Fig. 4...5. The applied wheel load in func-
tion of time (frequency of 10 Hz)
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Fig. 4...6. The transverse normal-stress
(σ22) in respect of time in
element 142001 (f = 10 Hz)
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Table4...1shows the absolute maximum and some of the local maximum values
of the transverse stress in function of time in the HH10 tie loaded by an axle load
of 200 kN with frequencies of 3 Hz, 7 Hz and 10 Hz. All maximum values of the
transverse normal stress in compression (shown inTable4...1) arise in node 144001
and in tension in node 144201. Values marked with ‘absolute maximum’ are the
absolute maximum values of the transverse stress through the entire evaluation
period. The time increments are illustrated inFigs.4...2, 4...4, and4...6.

Table 4...1. Absolute maximum and some of the local maximum values of the transverse
stress (σ22), in function of time

Frequency of The number Total accumulated Maximum ofσ22 Maximum ofσ22 Remark
load of increment time [seconds] for compression for tension

in the tie [MPa] in the tie [MPa]
(in node 144001) (in node 144201)

3 Hz 6 0.125 586.7 −569.5 local maximum
35 0.729 649.5 −566.5 local maximum
65 1.35 821.1 −707.7 absolute max.
94 1.96 780.9 −694.1 local maximum

7 Hz 5 0.04464 690.7 −733.9 absolute max
26 0.232 218.8 −260.3 local maximum
43 0.384 399.2 −380.9 local maximum
75 0.670 516.7 −467.5 local maximum

10 Hz 6 0.0375 686.0 −731.3 absolute max.
19 0.119 517.4 −589.2 local maximum
64 0.400 302.1 −408.8 local maximum

122 0.762 612.6 −599.7 local maximum

4.1.2. Assessment of Response of Longitudinal and Vertical Stresses

For theHH10 tie loaded by anaxle load of 200 kNwith a frequency of 3 Hz,
Table4...2 indicates the values of the transverse stress (σ22), the longitudinal stress
(σ11), and the vertical stress (σ33) in node 144001in the same time-increments as in
Table4...1 in case of a frequency of 3 Hz.Table4...3 indicates the values of the
transverse stress (σ22), the longitudinal stress (σ11), the vertical stress (σ33) in node
144201in the same time increments as those inTable4...1 in case of a frequency of
3 Hz.

Tables4...2and4...3show that the longitudinal and the vertical normal stress have
a low value at nodes 144001 and 144201 in time increments when the transverse
stress reaches its maximum.

Comprehensive computations also prove that transverse, longitudinal and the
vertical stress components reach their maximum values at different locations in the
tie and in different time increments.
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Table 4...2. Values of the transverse (σ22), longitudinal (σ11) and vertical (σ33) stresses at
node 144001 in the same time increments as inTable4...1 in case of a frequency
of 3 Hz

The number Total accumulated Value of stress in node 144001 (f = 3 Hz)
of increment time (seconds) σ22 [MPa] σ11 [MPa] σ33 [MPa]

6 0.125 −569.5 12.83 1.583
35 0.729 −566.5 6.401 2.938
65 1.35 −707.7 6.463 4.258
94 1.96 −694.1 5.415 4.026

Table 4...3. Values of the transverse (σ22), longitudinal (σ11) and vertical (σ33) stresses at
node 144201 in the same time increments as inTable4...1 in case of a frequency
of 3 Hz

The number Total accumulated Value of stress in node 144201 (f = 3 Hz)
of increment time (seconds) σ22 [MPa] σ11 [MPa] σ33 [MPa]

6 0.125 586.7 −4.094 −8.062
35 0.729 649.5 −2.888 −8.098
65 1.35 821.1 −2.855 −9.811
94 1.96 780.9 −4.498 −9.587

4.1.3. Effect of Frequency of Load on Frequency of Response of Stress

Based on the results of the computations and onFigs.4...1– 4...6 it can be concluded
that there is no correlation between the frequency of the load and the frequency of
the response. The magnitude of the stresses in function of time is not periodic, the
frequency of the response is not equal to the frequency of the load.

4.1.4. Effect of Frequency of Load on Magnitude of Response of Stress

Based on the results of comprehensive computations and on the values ofTable4...1
it can be concluded that there is no correlation between the frequency of the load
and the maximum values of the stresses. With increasing the frequency of the load,
the maximum values of the stresses neither strictly increase nor strictly decrease.
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4.1.5. Effect of Magnitude of Load on the Responses

Based on the computations, it can be concluded that when linear dynamics are used,
if the load is increased by a factor, all stress, strain and displacements responses
will increase by the same factor in the tie. Increasing the magnitude of the load will
not modify the frequency of the response.

4.2. Distribution of the Transverse Stress in the Tie

4.2.1. Distribution of the Transverse Stress in the Tie due to Dynamic Load with a
Frequency of 3 Hz

In case when the HH10 tie is loaded by an axle load of 200 kN with a frequency
of 3 Hz, the transverse normal stress, σ22, reaches its absolutemaximum valuein
increment 65during the total time period of the assessment. It is707.7 MPa for
compressionand this value arises on the top surface of the tie, on the inner side
of the outer fastening whole where the longitudinal plane of symmetry intersects
the whole. The number of this node is 144001 and the element number is 142001.
The absolutemaximum value of the transverse normal stress in tension is 821.1
MPa and this value arises on the bottom surface of the tie, on the inner side of
the outer fastening whole where the longitudinal plane of symmetry intersects the
whole. The number of this node is 144201 and the element number is 142001.
Node numbering is illustrated inFig.3...4.

Fig. 4...7shows the pattern of the transverse stress on the top surface of the tie
in increment 65. in case of an axle load of 200 kN with a frequency of 3 Hz, and
Fig. 4...8 indicates the transverse stress on the bottom surface. The same pattern of
transverse stress is obtained in increments 2, 6, 21, 35, 65, 94 and in increments
when the transverse stress reaches its absolute maximum value or a local maximum
value in function of time that is close to the absolute maximum.

Figs.4...7and4...8 indicate that the high stress concentrations on the inner side
of the outer fastening whole decrease rapidly on the surface of the tie as the distance
increases from the whole.Table4...4summarizes the values of the transverse stress
(σ22) at nodes 142001, 142003, 144001, 144003 and also contains the distance
of these nodes from node 144001. These nodes are on the top surface of the tie.
Table4...5 summarizes the values of the transverse stress (σ22) at nodes 142201,
142203, 144201, 144203 and also contains the distance of these nodes from node
144201. These nodes are on the bottom surface of the tie.

Tables4...4 and4...5 indicate that the stress values decrease down to 57.4% to
68.0% of the maximum value over a distance 8.9 to 10.5 mm. Therefore, high stress
peaks arise only in a little, concentrated area.
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Node 144001

Node 142001

Node 144003

Fig. 4...7. Pattern of the transverse stress (σ22) on top surface of the HH10 tie loaded by an
axle load of 200 kN with a frequency of 3 Hz. Increment: 65, total accumulated
time: 1.35 sec. Maximum value of the transverse stress: 821 MPa for tension;
708 MPa for compression.

Table 4...4. The values of the transverse stress (σ22) at nodes 142001, 142003, 144001,
144003 in increment 65 and the distance of these nodes from node 144001

Node number Value of transverse stress Distance of node from
σ22 [Mpa] in increment 65 node 144001 [mm]

144001 −707.7 0.00
144003 −427.9 10.45
142001 −534.2 8.88
142003 −494.8 11.78

4.2.2. Distribution of the Transverse Stress in the Tie Due to Dynamic Load with a
Frequency of 7 Hz

In case when the HH10 tie is loaded by an axle load of 200 kN with a frequency
of 7 Hz, the transverse normal stress, σ22, reaches its absolutemaximum value
in increment 5during the total time period of the assessment. It is733.9 MPa for
compressionand this value arises on the top surface of the tie, on the inner side of the
outer fastening whole where the longitudinal plane of symmetry intersects the whole
(element number 142001, node number: 144001). The absolutemaximum value of
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Node 144201

Node 144203

Node 142201

Node 142203

Node 144001

Fig. 4...8. Pattern of the transverse stress (σ22) on bottom surface of the HH10 tie loaded by
an axle load of 200 kN with a frequencyof 3 Hz. Increment: 65, total accumulated
time: 1.35 sec. Maximum value of the transverse stress: 821 MPa for tension;
708 MPa for compression.

Table 4...5. The values of the transverse stress (σ22) at nodes 142201, 142203, 144201,
144203 in increment 65 and the distance of these nodes from node 144201

Node number Value of transverse stress Distance of node from
σ22 [Mpa] in increment 65 node 144201 [mm]

144201 821.1 0.00
144203 471.9 10.45
142201 558.7 8.88
142203 531.6 11.78

the transverse normal stress in tension 690.7 MPaarises on the bottom surface of
the tie, on the inner side of the outer fastening whole where the longitudinal plane of
symmetry intersects the whole (element number 142001, node number: 144201).

The transverse stressalso reaches a high value inincrement 75. This is a
local maximum that is close to the absolute maximum. The value of the stress is
516.7 MPafor tension in node 144201 and it is467.5 MPafor compression in node
144001. The same stress pattern is obtained in increment 5, 75 and in increments
when the transverse stress reaches its absolute maximum value or a local maximum
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value in function of time that is close to the absolute maximum.

Node 144001

Node 142001

Node 142003

Node 144003

Fig. 4...9. Pattern of the transverse stress (σ22) on top surface of the HH10 tie loaded by an
axle load of 200 kN with a frequency of 7 Hz. Increment: 75, total accumulated
time: 0.670 sec. Maximum value of the transverse stress: 517 MPa for tension;
468 MPa for compression.

Fig. 4...9 shows the pattern of the transverse stress on top surface of the tie
in increment 75 in case when the tie is loaded by an axle load of 200 kN with a
frequency of 7 Hz.

Fig. 4...9 indicates that the high stress concentrations on the inner side of the
outer fastening whole decrease rapidly on the surface of the tie as the distance
increases from the whole.Table4...6 summarizes the values of the transverse stress
(σ22) at nodes 142001, 142003, 144001, 144003 in increment 75 and also contains
the distance of these nodes from node 144001. These nodes are on the top surface
of the tie. Table4...7 summarizes the values of the transverse stress (σ22) at nodes
142201, 142203, 144201, 144203 and also contains the distance of these nodes
from node 144201. These nodes are on the bottom surface of the tie.

Tables4...6 and4...7 indicate that the stress values decrease down to 65.5% to
68.8% of the maximum value over a distance 8.9 to 10.5 millimeters. Therefore,
high stress peaks arise only in a little, concentrated area.

4.2.3. Distribution of the Transverse Stress in the Tie Due to Dynamic Load with a
Frequency of 10 Hz

In case when the HH10 tie is loaded by an axle load of 200 kN with a frequency
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Table 4...6. The values of the transverse stress (σ22) at nodes 142001, 142003, 144001,
144003 in increment 75 and the distance of these nodes from node 144001

Node number Value of transverse stress Distance of node from
σ22 [Mpa] in increment 75 node 144001 [mm]

144001 −467.5 0.00
144003 −316.6 10.45
142001 −354.9 8.88
142003 −324.1 11.78

Table 4...7. The values of the transverse stress (σ22) at nodes 142201, 142203, 144201,
144203 in increment 75 and the distance of these nodes from node 144201

Node number Value of transverse stress Distance of node from
σ22 [Mpa] in increment 75 node 144201 [mm]

144201 516.7 0.00
144203 338.5 10.45
142201 352.6 8.88
142203 330.0 11.78

of 10 Hz, the transverse normal stress, σ22, reaches its absolutemaximum value
in increment 6during the total time period of the assessment. It is686.0 MPa in
tensionand this value arises on the bottom surface of the tie, on the inner side of the
outer fastening whole where the longitudinal plane of symmetry intersects the whole
(node number 144201, element number 142001). The absolutemaximum value of
the transverse normal stress in compression is 731.3 MPaand this value arises on
the top surface of the tie, on the inner side of the outer fastening whole where the
longitudinal plane of symmetry intersects the whole (node number 144001, element
number 142001).

The transverse stressalso reaches a very high value, a local maximum in
function of time that is close to the absolute maximum, inincrement 122. The
value of the stress is612.6 MPain tension (node number 144201) and599.7 MPa
in compression (node number 144001). The same stress pattern is obtained in
increments 6, 122 and in increments when the transverse stress reaches its absolute
maximum value or a local maximum value in function of time that is close to the
absolute maximum.

When the HH10 tie is loaded by an axle load of 200 kN with a frequency of
10 Hz, the total accumulated time until increment 6 is 0.0375 seconds and until
increment 122 it is 0.762 seconds. The total accumulated time until increment 6 is
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too short, it is not enough for the dynamic waves to propagate and to be generated
due to the initial inertia of the tie. Therefore, the values that should be considered
as maximum values of the transverse normal stress is612.6 MPain tension (node
number 144201) and599.7 MPain compression (node number 144001).

Fig. 4...10shows the pattern of the transverse stress on bottom surface of the
tie in increment 122 in case of an axle load of 200 kN with a frequency of 10 Hz.

Node 142001

Node 144203

Node 144001

Node 142201
Node 144201

Node 142203

Fig. 4...10. Pattern of the transverse stress (σ22) on bottom surface of the HH10 tie loaded
by an axle load of 200 kN with a frequency of 10 Hz. Increment: 122, total
accumulated time: 0.762 sec. Maximum value of the transverse stress: 613 MPa
for tension; 600 MPa for compression.

Fig. 4...10 indicates that the high stress concentrations on the inner side of
the outer fastening whole decrease rapidly on the surface of the tie as the distance
increases from the whole.Table4...8 summarizes the values of the transverse stress
(σ22) at nodes 142001, 142003, 144001, 144003 in increment 122 and also contains
the distance of these nodes from node 144001. These nodes are on the top surface
of the tie. Table4...9 summarizes the values of the transverse stress (σ22) at nodes
142201, 142203, 144201, 144203 and also contains the distance of these nodes
from node 144201. These nodes are on the bottom surface of the tie.

Tables4...8 and4...9 indicate that the stress values decrease down to 52.4% to
67.5% of the maximum value over a distance 8.9 to 10.5 millimeters. Therefore,
high stress peaks arise only in a little, concentrated area.
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Table 4...8. The values of the transverse stress (σ22) at nodes 142001, 142003, 144001,
144003 in increment 122 and the distance of these nodes from node 144001

Node number Value of transverse stress Distance of node from
σ22 [Mpa] in increment 122 node 144001 [mm]

144001 −599.7 0.00
144003 −362.0 10.45
142001 −463.0 8.88
142003 −415.1 11.78

Table 4...9. The values of the transverse stress (σ22) at nodes 142201, 142203, 144201,
144203 in increment 122 and the distance of these nodes from node 144201

Node number Value of transverse stress Distance of node from
σ22 [Mpa] in increment 122 node 144201 [mm]

144201 612.6 0.00
144203 327.6 10.45
142201 413.5 8.88
142203 384.1 11.78

4.3. Distribution of the Longitudinal Normal Stress, the Vertical Normal Stress,
and Shear Stress Components in the Tie Due to Dynamic Load

The absolute maximum value of the longitudinal stressσ11 (S11) is less than the
half of that of the transverse stress.

The absolute maximum value of the longitudinal normal-stress or a local
maximum that is close to the absolute one may occur at either of two pairs of
locations. One pair of location is on the edge of the outer fastening whole at the end
of the radii perpendicular to the longitudinal plane of symmetry or on the outermost
edge of the side of the tie. Where the transverse stress reaches its maximum value,
the longitudinal stress has a neutral value and where the longitudinal stress reaches
its maximum value, the transverse stress has a low value.

Fig.4...11indicates thelongitudinal stresson top surface of the HH10 tie loaded
by an axle load of 200 kN with a frequency of 3 Hz in increment 65.

The vertical normal stress(σ33) is in a neutral state on the top section of
the tie in the regions where the transverse and the longitudinal stresses reach their
maximum values.

Shear stresscomponents have very low values in the points where the trans-
verse and the longitudinal stresses reach their maximum values.
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Node 144001

Local maximum of longitudinal

stress at edge of the tie

Maximum of longitudinal stress at node 148005

Fig. 4...11. Pattern of the longitudinal stress (σ11) on top surface of the HH10 tie loaded by an
axle load of 200 kN with a frequency of 3 Hz. Increment: 65, total accumulated
time: 1.35 sec. Maximum value of the longitudinal stress: 273 MPa for tension;
343 MPa for compression.

4.4. Displacement of the Tie Due to Dynamic Loads

In case when the HH10 tie is loaded by an axle load of 200 kN with a frequency
of 7 Hz, the total accumulated time until increment 5 is 0.0446 seconds and until
increment 75 it is 0.670 seconds. The total accumulated time until increment 5 is
too short, it is not enough for the dynamic waves to propagate and to be generated
due to the inertia of the tie. This statement is supported by comparing thedisplaced
shapeof the tie in increment 5(Fig. 4...12) and in increment 75(Fig. 4...13). In
increment 5, only the rail-seat area of the tie is displaced, the middle section does
not move. However, until increment 75, there is sufficient time for the dynamic
waves to propagate. InFig. 4...13the propagation of at least two wave peaks can be
seen clearly in increment 75.

In real railway tracks, the tie receives the first load impulse gradually in-
creased, due to the moving-approaching of the train. In other words, the first load
impulse has a much lower frequency. In the laboratory the first load impulse is
applied suddenly according to the frequency set in the machine. Based on this fact,
the first stress peaks in the calculations may be neglected and the stress peaks that
occur in later increments should be taken into account.

Therefore the values that should be considered as maximum values of the
transverse normal stress are516.7 MPain tension (node number 144201) and
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Fig. 4...12. Total displacement of the HH10 tie loaded by an axle load of 200 kN with a
frequency of 7 Hz. Increment: 5, total accumulated time: 0.04464 sec. A
quarter of the tie is indicated.

Fig. 4...13. Total displacement of the HH10 tie loaded by an axle load of 200 kN with a
frequency of 7 Hz. Increment: 75, total accumulated time: 0.670 sec. A quarter
of the tie is indicated.
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467.5 MPain compression (node number 144001).

Fig. 4...14. Vertical displacement (u3) of the HH10 tie loaded by an axle load of 200 kN
with a frequency of 7 Hz. Increment: 75, total accumulated time: 0.670 sec.
Maximum value of the vertical displacement: 1.23 mm downward; 0.672 mm
upward.

Fig. 4...14shows thevertical displacement(u3) of the HH10 tie loaded by an
axle load of 200 kN with a frequency of 7 Hz in increment 75. Its maximum value
is 1.23 mm downward and 0.672 mm upward. Greater vertical displacements will
occur in other increments.Fig. 4...11shows the original and the displaced shape of
the HH10 tie. The original, unloaded shape of the tie is illustrated in green colour
and the deformed shape of the loaded tie in dark brown colour.

Table4...10shows the values of the vertical displacement (u3) of node 144001
in the same time-increments as those inTable4...1 ( f = 3 Hz).

Table 4...10. Values of the vertical displacement of node 144001, in certain time increments
( f = 3 Hz)

The number of Total accumulated Vertical displacement of node 144001
increment time [seconds] [mm]

6 0.125 2.634
35 0.729 1.664
65 1.35 1.461
94 1.96 1.616
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5. Conclusions of the Dynamic Assessments of the HH10 Ties

Based on the results of the dynamic assessments of the HH10 ties, obtained in case
of an axle load of 200 kN and 250 kN with frequencies of 3 Hz, 5 Hz, 7 Hz and
10 Hz, the following conclusions can be drawn:

• If the load is increased by a factor, all stress, strain and displacement responses
will be increased by the same factor in the tie. Increasing the magnitude of
the load will not modify the frequency of the response.

• The pattern of thetransverse stressis the same in increments when it reaches
its absolute maximum value or a local maximum value in function of time
that is close to the absolute maximum. In such increments the pattern is
independent of the frequency of the load (Figs.4...7–4...10).

• When the transverse stress reaches its absolute maximum value or a local
maximum value in function of time that is close to the absolute maximum, it
will reach it in node 144001 for compression and in node 144201 for tension
(Figs.4...7–4...10).

• In increments when the maximum value of the transverse stress in the tie
is much less than the absolute maximum value over the total assessment
time period, the maximum value of the transverse stress will occur along the
longitudinal plane of symmetry. This is either in a point of the end-spade-
rounding or on the edge of one of ballast inspection wholes or of the fastening
wholes.

• Irrespective of the frequency of the load, the absolute maximum value of the
longitudinal normal stressσ11 is less than the half of that of the transverse
stress in the same increment (Fig.4...11).

• Where the transverse stress reaches its maximum value, the longitudinal stress
has a neutral value and where the longitudinal stress reaches its maximum
value, the transverse stress has a low value. The maximum values of the
transverse and the longitudinal stresses do not occur at the same position, in
the same increment (Figs.4...7–4...11andTables4...2–4...3).

• Irrespective of the frequency of the load, the absolute maximum value of the
longitudinal normal-stress or, a local maximum that is close to the absolute
one may occur at either of two pairs of locations. One pair of location is on
the edge of the outer fastening whole at the end of the radii perpendicular to
the longitudinal plane of symmetry or on the outer-most edge of the side of
the tie (Figs.4...11).

• Thevertical normal-stress and the shear stressesare in a neutral state on the
top section of the tie in the regions where the transverse and the longitudinal
stresses reach their maximum values.

• The frequencies of the stressresponsesin element 142001 of the HH10 ties to
200 kN of axle load with different frequencies differ from each other. It might
be due to that the natural frequency of the system modelled in computation
might be close to the frequency of the applied load (Figs.4...2, 4...4, 4...6).
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• The frequency of the stress, strain and displacement responses of the ties does
not equal the frequency of the load (Figs.4...1–4...6).

• There is no correlation between the frequency of the load and the maxi-
mum values of the stresses. With increasing the frequency of the load, the
maximum values of the stresses neither strictly increase nor strictly decrease
(Tables4...1).
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