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ABSTRACT 1 

Rational allocation of resources to reduce train accident occurrence in the most cost-effective 2 

manner is important for the rail industry and government. Accident prevention strategies, 3 

individually and in combination, may result in different safety benefits and corresponding 4 

implementation costs. An appropriate assessment of the cost-effectiveness of accident prevention 5 

strategies is an important step to evaluate, develop and prioritize safety improvement 6 

investments. Both the safety benefit and implementation cost of a strategy may be subject to 7 

uncertainty at the time of decision making. However, little prior research has considered the 8 

effect of uncertainty in evaluating the cost-effectiveness of train accident prevention strategies. 9 

Properly accounting for this uncertainty can improve the efficient allocation of safety resources. 10 

This paper presents a framework to conduct an uncertainty-based cost-benefit analysis. The types 11 

and sources of uncertainty are identified and statistical models are developed to quantify the 12 

effect of uncertainty. The results can aid the rail industry and government to develop more cost-13 

effective strategies to maximize safety given limited resources.  14 

 15 

 16 

 17 

1. INTRODUCTION  18 

Train accidents may result in damage to infrastructure and rolling stock, service disruptions, 19 

casualties and harm the environment. Accordingly, improving train operating safety has long 20 

been a high priority in the rail industry and government. There are a variety of accident 21 

prevention strategies to reduce accident occurrence. These strategies, individually and in 22 

combination, have safety benefits and implementation costs. Assessment of the benefit and cost 23 

of each strategy is important for determining the optimal strategies to invest and the level of 24 

implementation. Both the benefits and costs may be subject to uncertainty at the time of decision 25 

making. Therefore, the evaluation and comparison of different accident prevention strategies 26 

should be based on an appropriate assessment of the uncertainty. Otherwise, it may result in an 27 

inefficient allocation of limited resources for safety improvement. Despite its importance, little 28 

prior work has been developed to quantify the effect of uncertainty in the cost-benefit analysis of 29 

train accident prevention strategies. 30 

 31 

In this paper, we develop a quantitative framework to evaluate cost-effectiveness of accident 32 

prevention strategies under uncertainty. First, we identify and explain the various sources of 33 

uncertainty in train accident analysis. Then, we develop analytical techniques to quantify the 34 

uncertainty using broken rail prevention as an example. Finally, we discuss the implications of 35 

the analysis to train safety policy and practices.  36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 
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2. Framework for Evaluating Cost-Effectiveness of Accident Prevention Strategies  1 

The safety benefit of an accident prevention strategy can be measured by the level of reduced 2 

accident risk. In this study, accident risk is defined as the product of car derailment frequency 3 

and the corresponding average consequence of a derailment (Equation 1). Car derailment 4 

frequency is a product of car derailment rate and traffic exposure (1-5).  5 

 6 

R = Z × M × D                                                                                                                           (1)  7 

 8 

where:  9 

R = accident risk 10 

Z = car derailment rate  11 

M = traffic exposure  12 

D = average consequence of a car derailment  13 

 14 

Car derailment rate is a critical metric to measure railroad transportation safety performance. It is 15 

defined as the number of cars derailed normalized by some measure of traffic exposure, i.e. gross 16 

ton-miles, car-miles or train-miles. Car derailment rates are affected by FRA track class (1, 2, 6, 17 

7), type of track and railroad (2), train length (8, 9), method of operation (7, 10) and traffic 18 

density (7). The consequence of a car derailment may also vary widely depending on the 19 

conditions of infrastructure and rolling stock, accident causes, operational characteristics, type of 20 

traffic, environment, population in the accident location and many other factors. If a car 21 

derailment results in a hazardous materials release, the general accident risk model can be 22 

extended by adding a series of possible consequences and associated probabilities. The safety 23 

benefit of an accident prevention strategy is calculated as the difference between the accident 24 

risk with and without implementation of the strategy (Equation 2). 25 

 26 

B = Rb - Ra                           (2)  27 

 28 

Where: 29 

B = safety benefit of an accident prevention strategy  30 

Rb = accident risk before a prevention strategy is implemented (baseline risk) 31 

Ra = accident risk after a prevention strategy is implemented  32 

 33 

Any accident prevention strategy has an implementation cost. The total implementation cost may 34 

vary depending on which strategies are selected and their level of usage. When both the safety 35 

benefit and cost are evaluated in monetary terms, it is appropriate to assess the net present value 36 

(NPV) of different strategies to compare their cost-effectiveness. The NPV is calculated as the 37 

sum of the safety benefit minus the associated cost, over the time span they are expected to 38 

accrue. The monetary savings of the benefit and cost of implementation are discounted to 39 

constant (year 0) dollars. 40 

 41 

Y
i i

i
i=0

B -C
NPV=

(1+d)
∑                                  (3) 42 

 43 

 44 

 45 



Liu et al 13-1813                                                                                                                            4 
 

4 

 

 1 

Where: 2 

 Bi = safety benefit in year i 3 

 Ci = implementation cost in year i 4 

 d = discount rate  5 

 i = year  6 

 7 

Given traffic exposure M, the NPV of an accident prevention strategy can be calculated using 8 

Equation 4: 9 

 10 

Y
bi bi ai ai i i

i
i=0

(Z D -Z D )M -C
NPV=

(1+d)
∑                             (4) 11 

 12 

 13 

Where: 14 

Zbi  = car derailment rate before an accident prevention strategy is implemented  15 

Zai  = car derailment rate after an accident prevention strategy is implemented  16 

Dbi = average consequence before an accident prevention strategy is implemented 17 

Dai = average consequence after an accident prevention strategy is implemented  18 

Mi  = traffic exposure  19 

Ci  = implementation cost in year i 20 

d  = discount rate 21 

 22 

It is noted that different accident prevention strategies may differently affect car derailment rate 23 

and the average consequence of a car derailment. Ceteris paribus, the reduction in the accident 24 

risk can be estimated as a product of the derailment rate of accident causes that are preventable 25 

by a strategy and the corresponding average consequence cost (Equation 5).  26 

 27 

bi bi ai ai ci ci

c

Z D -Z D = Z D∑                    (5) 28 

 29 

Where: 30 

Zci  = accident-cause-specific car derailment rate that are preventable by the strategy  31 

Dci = average damage cost per derailment due to that accident cause 32 

c  = accident cause  33 

 34 

Equation 5 is based on the assumption that different accident causes are independent of one 35 

another. For example, the safety benefit of broken rail prevention focuses on the reduction of 36 

broken-rail-caused derailments, without accounting for the possible reduction of non-broken-rail-37 

related causes attributable to improved rail condition. Further research is needed to better 38 

understand what the possible interactive effects are, how to quantify them, and their effects on 39 

accident rate estimation and policy evaluation. Based on Equations 1 to 4, the NPV of an 40 

accident prevention strategy can be estimated as: 41 

 42 
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i ic c i iY
c

i
i=0

Z D M -C

NPV=
(1+d)

∑
∑                   (6) 1 

 2 

 3 

Equation 6 shows that the cost-effectiveness of an accident prevention strategy is affected by 4 

accident-cause-specific car derailment rate that is preventable by the strategy, derailment damage 5 

cost, traffic exposure, implementation cost of the strategy, and discount rate. Each of these 6 

factors may be subject to uncertainty at the time of decision making. The input uncertainty 7 

contributes to the uncertainty in the NPV estimation. The objective of this research is to develop 8 

a framework to identify and quantify the uncertainty, in order to assist in making informed-9 

decisions related to railroad safety. In the remaining sections, we first introduce the types and 10 

sources of uncertainty. Next, we discuss methods to analyze the uncertainty propagation. We 11 

then use broken rail prevention as an example to explain how the analytical framework can be 12 

applied to evaluate an accident prevention strategy. Finally, we discuss the policy implications of 13 

the results.  14 

 15 

 16 

3. TYPE AND SOURCE OF UNCERTAINTY  17 

There are two basic types of uncertainty - aleatory and epistemic uncertainty (11-14). Aleatory 18 

uncertainty, also called stochastic uncertainty or random uncertainty, is an inherent variation 19 

associated with a phenomenon or process. By contrast, epistemic uncertainty is derived from 20 

lack of knowledge of the system or the environment (11-14). In the context of rail transportation 21 

safety analysis, each variable may be subject to these uncertainties. For example, the frequency 22 

of train accident occurrence is assumed to follow a Poisson distribution (15-18). 23 

Correspondingly, the actual number of accidents to occur is a random variable. The aleatory 24 

uncertainty is inherent and cannot be reduced by more information and/or accurate 25 

measurements.  26 

 27 

Although the actual number of accidents is random, its mean value can be estimated using 28 

statistical methods. For instance, Poisson regression or negative binomial regression models are 29 

commonly used to estimate the mean accident count (15-18). The discrepancy between the 30 

estimated mean and the “true” mean represents the second type of uncertainty called epistemic 31 

uncertainty, resulting from uncertainties with the variable, model formulation or decisions. 32 

Epistemic uncertainty is commonly derived from statistical inference based on sample data.  33 

 34 

It is neither feasible nor practical to analyze all possible sources of uncertainty. In this study, we 35 

focus on analyzing the aleatory uncertainty (stochastic uncertainty) associated with freight-train 36 

derailment frequency and severity. For example, the objective might be to evaluate the cost-37 

effectiveness of a broken rail prevention strategy over the next 20 years. In each year, the 38 

number of broken-rail-caused car derailments is a random variable, and the consequence of each 39 

car derailment is also random, depending on accident circumstances. The uncertainty of accident 40 

probability and severity affects the estimation of cost-effectiveness of an accident prevention 41 

strategy. Consequently, there is a need to understand the distribution of NPV based on the 42 

information available at the time of decision making. The comparison and prioritization of 43 
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multiple accident prevention strategies should account for the uncertainty. We will explain the 1 

policy implications of uncertainty analysis in more detail in the remaining sections.   2 

 3 

 4 

4. METHODOLOGY 5 

A common method for uncertainty analysis is Monte Carlo simulation. It provides an easier and 6 

practical way to analyze the uncertainty in complex problems and has been used in various fields, 7 

including physics (21), engineering (22-24), statistics (25), public health (26) and finance (27). 8 

In railroad engineering, Monte Carlo simulation has been used to predict track/rail degradation 9 

process (28, 29). There are four basic steps to perform a Monte Carlo simulation:  10 

1) Develop the parametric relationship between the input and output variables  11 

2) Generate random input values from a pre-defined probability distribution 12 

3) Calculate the output value based on each simulated input value and repeat for a large 13 

number of runs  14 

4) Analyze the distribution of the output for all runs  15 

  16 

So far, we have introduced the methodologies for evaluating the cost-effectiveness of accident 17 

prevention strategies under uncertainty. In the second half of this paper, we illustrate the 18 

application of the methodology and its implications to train safety policy using broken rail 19 

prevention as an example. The methodology can be adapted to various other accident prevention 20 

strategies.  21 

 22 

5. CASE STUDY: BROKEN RAIL PREVENTION  23 

In terms of preventing accident causes to reduce car derailment rate, it is first necessary to 24 

identify the distribution of derailment frequency by accident cause. The data used throughout this 25 

study are from the Federal Railroad Administration’s (FRA) Rail Equipment Accident (REA) 26 

database. This database contains information regarding all accidents that exceed a monetary 27 

threshold of damage to on-track equipment, signals, track, track structures, and roadbed. The 28 

reporting threshold is periodically adjusted for inflation, and has increased from $7,700 in 2006 29 

to $9,400 in 2011 (30). This paper focuses on Class I freight railroads (operating revenue 30 

exceeding $378.8 million in 2009), which accounted for approximately 68% of U.S. railroad 31 

route miles, 97% of total ton-miles transported and 94% of the total freight rail revenue (31).  32 

Broken rails are the most common accident causes, accounting for approximately 23% of car 33 

derailments on Class I mainlines from 2001 to 2010 (Figure 1) (32). Broken rail prevention 34 

appears to be a promising accident prevention strategy, so it is used here as an example to 35 

illustrate the methodology for analyzing the cost-effectiveness of an accident prevention strategy 36 

under uncertainty.  37 

 38 

 39 
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FIGURE 1 Car derailment by accident cause,  2 

FRA-reportable freight-train derailments on Class I mainlines, 2001 to 2010 3 

 4 

 5 

Next, we explain the analytical procedures to perform an uncertainty-based assessment of the 6 

cost-effectiveness broken rail prevention.  7 

 8 

5.1 Scope  9 

In terms of broken rail prevention, we focus on broken-rail-caused derailments on Class I 10 

mainlines. We do not consider the possible reduction of non-broken-rail-caused accidents, 11 

attributable to improved rail condition. Furthermore, a number of technologies or operating 12 

practices can prevent broken rails. In this study, we analyze the overall effect of broken rail 13 

prevention strategies, without accounting for a specific broken rail prevention measure. Future 14 

analysis can be developed to analyze the variability of cost-effectiveness for different broken rail 15 

prevention measures, such as rail grinding, increased inspection frequency or an advanced rail 16 

inspection technology.   17 

 18 

5.2  Safety Benefit of Broken Rail Prevention   19 

The safety benefit of broken rail prevention is defined as the reduced broken-rail-caused car 20 

derailment rate multiplied by the corresponding derailment damage cost. An infrastructure index 21 

(MOW-RCR) was developed from components of the AAR Railroad Cost Recovery Index 22 

(AAR-RCR) using the methodology developed by Grimes and Barkan (33, 34). MOW-RCR was 23 

used to adjust car derailment costs at various years in terms of base year prices. Finally, the car 24 

derailment damage cost was multiplied by a factor of 1.65 to account for other loss and damage, 25 
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wreck clearing, and unreported property damage costs that are not included in the FRA-reported 1 

costs (35).  2 

 3 

 4 

5.2.1  Broken-Rail-Caused Car Derailment Rate 5 

It is assumed that the number of broken-rail-caused car derailments for a given traffic exposure 6 

follows a Poisson distribution: 7 

 8 

k
-λλ

P(Y=k)= e
k!

                (7) 9 

 10 

The Poisson mean, λ, is assumed to follow a gamma distribution (15-18): 11 

 12 

- m
µ-1µ

P(λ=m)= m e
Γ( )

f

f

f

f

f

 
 
 

 
 
 

               

(8) 13 

                       14 

It can be proved that the marginal distribution of broken-rail-caused derailment count follows a 15 

negative binomial distribution (36): 16 

 17 

( )
( | ) ( | , )

! ( )

y

y
Poi y Gamma d

y

   Γ +
=    Γ + +   

∫
φ

φ φ µ
λ λ φ µ λ

φ φ µ φ µ
                   (9) 18 

  19 

k

p p

p=0

µ=exp β X M
 
 
 
∑                              (10) 20 

 21 

Where: 22 

µ = expected car derailment count  23 

βp = pth parameter coefficient  24 

Xp = pth explanatory variable  25 

M = traffic exposure (e.g., gross ton-miles)  26 

ϕ = gamma parameter (also called inverse dispersion parameter)  27 

 28 

Equation 9 and 10 represent the widely used Poisson-gamma (negative binomial) regression 29 

model for estimating accident rates (15-18, 36). In this paper, we use annual rail maintenance 30 

cost per track mile as an explanatory variable to estimate FRA-reportable broken-rail-caused car 31 

derailment rate on Class I mainlines. Data from five U.S. Class I railroads (BNSF, UP, NS, CSX 32 

and KCS) from 2002 to 2008 were used to develop the model. The expected car derailment rate, 33 

µ, is a function of annual rail maintenance cost per track mile: 34 

 35 

 36 

 37 

 38 

 39 
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µ=exp(-0.1868-0.3356C)M                           (11) 1 

 2 

where: 3 

C = annual rail maintenance cost per track mile (thousand dollars)  4 

 5 

The overall goodness-of-fit of the model is evaluated by Deviance, which asymptotically follows 6 

a chi-square distribution (37). Based on this criterion, the model exhibits an overall good fit 7 

(P = 0.28 > 0.05).  8 

 9 

 10 

TABLE 1 Broken-Rail-Caused Car Derailment Rate  11 

 12 

Parameter Estimate Standard Error Pr > ChiSq

Intercept -0.1868 0.3053 -0.7852 0.4115 0.5405

Annual Rail Maintenance Cost per Track Mile ($ 000) -0.3356 0.1101 -0.5514 -0.1198 0.0023

Dispersion Parameter (1/Φ) 0.3682 0.0857 0.2333 0.5811

Deviance=37.2 (Degree of Freedom =33)

P = 0.28 > 0.05

 95% Confidence Limits

 13 

 14 

 15 

Table 1 shows that the expected broken-rail-caused car derailment rate declines as rail 16 

maintenance increases, given all else being equal. The probability of a given number of broken-17 

rail-caused car derailments can be estimated using Equation 12:  18 

 19 

 20 

2.7159 y

Γ(y+2.7159) 2.7159 exp(-0.1868-0.3356C)M
P(y)=

y!Γ(2.7159) 2.7159+exp(-0.1868-0.3356C)M 2.7159+exp(-0.1868-0.3356C)M

   
   
   

       (12)                           21 

 22 

 23 

 24 

Figure 2 shows the distribution of annual total number of broken-rail-caused car derailments on 25 

Class I mainlines assuming that annual rail maintenance cost (C) is $2,000/track-mile or 26 

$4,000/track-mile. It is also assumed that annual traffic exposure (M) is 3,446 billion gross ton-27 

miles. It shows that the higher the rail maintenance cost, the smaller the mean and variance of car 28 

derailments.  29 

 30 
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 2 

FIGURE 2 Probability distribution of broken-rail-caused  3 

car derailments on Class I mainlines by annual rail maintenance cost  4 

(only part of the distribution is displayed here) 5 

 6 

 7 

 8 

5.2.2  Derailment Damage Cost  9 

Track and equipment damage costs of train accidents are recorded in the FRA’s REA database. 10 

Broken-rail-caused car derailment damage cost was fitted by common distributions (Beta, 11 

Normal, Logistic, Weibull, Gamma). The goodness-of-fit of a distribution is evaluated by 12 

Kolmogorov-Smirnov (K-S) test (38). A curve-fitting software EasyFit was used to perform the  13 

K-S test for each selected distribution, and rank the relevant distributions by their test values. 14 

The “best-fit” of the average broken-rail-caused car derailment cost follows a Weibull 15 

distribution: 16 

 17 

α

d
P(D d)=1-exp -

β

  
 ≤     

                 (13) 18 

Where: 19 

P(D ≤ d) = probability that FRA-reportable track and equipment cost does not exceed d ($) 20 

α, β = parameters of the Weibull distribution (α=1.3483 ; β=41,459) 21 

 22 
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Figure 3 shows the fitted distribution of FRA-reportable broken-rail-caused track and equipment 1 

cost per car derailment. The average cost is $38,026, with a standard deviation of $28,505. The 2 

derailment cost may be affected by derailment speed, car type, track condition and many other 3 

factors. The variance in derailment cost contributes, in part, to the uncertainty in estimating the 4 

safety benefit of accident prevention strategies.  5 

 6 
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 9 

FIGURE 3 Fitted distribution of track and equipment cost per derailed car 10 

due to broken rails on class I mainlines  11 

 12 

 13 

 14 

5.2.3 Uncertainty-Based Cost-Benefit Analysis  15 

A Monte Carlo simulation model is developed to analyze the effect of uncertainty on the cost-16 

effectiveness of broken rail prevention. First, the number of broken-rail-caused car derailments is 17 

randomly generated from a negative binomial distribution with and without the implementation 18 

of broken rail prevention, respectively (Equation 12). For each car derailment, the average FRA-19 

reportable track and equipment damage cost is randomly generated from a Weibull distribution 20 

(Equation 13) and multiplied by 1.65 to account for other non-FRA-reportable damage costs (34). 21 

The following input variables are assumed: 22 

• A broken rail prevention measure increases annual rail maintenance cost from $2,000 to 23 

$4,000 per track mile 24 

• annual traffic exposure is 3,446 billion gross ton-miles  25 
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• 160,240 track miles on Class I mainlines  1 

• 20 years study period  2 

• 5% annual discount rate  3 

 4 

The analytical process of a Monte Carlo simulation in train accident analysis is presented in 5 

Figure 4.  6 

 7 
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 8 

 9 

FIGURE 4 Monte Carlo simulation for evaluating the NPV of  10 

accident prevention strategies   11 

 12 

 13 

 14 

 15 

 16 
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5.2.4 NPV Distribution  1 

The NPV distribution using Monte Carlo simulation is presented in Figure 5:  2 
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FIGURE 5 Estimated NPV distribution of broken rail prevention,  11 

(a) probability density function, (b) cumulative distribution function 12 
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The results above should be interpreted with caution. Due to data constraints, not all possible 1 

benefits and costs of broken rail prevention strategies are considered. For example, we do not 2 

consider the reduction of casualties due to broken rail prevention. When all these and other 3 

factors are taken into account, the estimated NPV and the corresponding conclusion may change. 4 

When more data become available, the Monte Carlo simulation model can be adapted to account 5 

for these changes.  6 

 7 

 8 

6. Discussion  9 

6.1 Uncertainty in the estimation of NPV 10 

The principal proposition of this paper is to treat the estimated NPV as a random variable, rather 11 

than a single-point value. Many traditional approaches compare accident prevention alternatives 12 

solely based on estimates of their mean. In such an analysis the accident prevention strategy with 13 

a higher estimated NPV may be chosen. However, the NPV is estimated based on information 14 

from multiple sources that are generally subject to uncertainty. Therefore, the estimated NPV 15 

may differ from the actual NPV. This discrepancy reflects the uncertainty in evaluating cost-16 

effectiveness of accident prevention strategies. One common measure of the uncertainty is 17 

variance, representing the spread of possible values around the mean.   18 

 19 

For example, consider two accident prevention strategies with different NPV distributions 20 

denoted as NPV1 and NPV2 (Figure 6). The two distributions have the same mean (average) 21 

value, but NPV2 has lower variance (uncertainty). Assuming that the decision-maker is risk-22 

averse, the second alternative would be chosen. In the more realistic case in which both the mean 23 

and variance of the NPV distributions differ, which one is preferred will depend on the risk 24 

sensitivity of the decision-maker and possible non-linearities in the utility function associated 25 

with NPV. 26 

 27 

 28 
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 29 

FIGURE 6 Comparison of two hypothetical NPV distributions 30 

 31 

 32 

 33 
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Although new in the rail industry, uncertainty-based cost-benefit analysis is receiving increasing 1 

interest in various fields. Graham (1981) developed an economic model to analyze the 2 

uncertainties in the cost-benefit analysis (39). Thompson and Graham (1996) accounted for the 3 

uncertainty in the cost-benefit analysis in the public health-related decisions (40). Yokomizo et al. 4 

(2011) analyzed optimal decisions under uncertainty in the cost-benefit analysis in biological 5 

research (41). Hauer (2012) discussed the application of uncertainty-based cost-benefit analysis 6 

in highway safety research and quantified the value of research in reducing the uncertainty (42). 7 

The methodology developed in this paper could potentially be used to facilitate a better-informed 8 

decision making related to train safety.  9 

 10 

 11 

6.2 Comparison of different accident prevention strategies   12 

When NPV distributions differ in both mean and variance, decision-making should account for 13 

the effect of each (Fig. 7). For illustration, we consider two broken rail measures: 14 

 15 

Option A: Increase annual rail maintenance cost from $2,000 to $4,000 per track mile 16 

Option B: Increase annual rail maintenance cost from $2,000 to $6,000 per track mile  17 

 18 

Using Monte Carlo simulation, the distribution of two broken rail prevention measures are 19 

presented below:  20 

 21 
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FIGURE 7 NPV distribution by annual rail maintenance cost 25 

 26 

Option B has a greater increase in the rail maintenance cost, thus it results in a greater mean of 27 

estimated NPV. However, there is more uncertainty associated with option B (the NPV 28 

distribution has a larger variance). Which option is more favorable depends on the decision 29 
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maker’s utility and trade-off between the mean and variance. Define a decision variable C, which 1 

accounts for both the mean and variance of a NPV distribution.  2 

 3 

(1 )C lm l s= − −                 (14) 4 

 5 

Where: 6 

C = decision variable  7 

λ = trade-off between the mean and variance (0≤ λ≤1) 8 

µ = mean of NPV distribution  9 

σ = standard deviation (square root of variance) of NPV distribution  10 

 11 

The trade-off parameter λ (0≤ λ≤1) reflects the decision maker’s trade-off between the mean and 12 

variance. When λ=1, the mean NPV will be the only criterion for comparing risk reduction 13 

alternatives, and the risk reduction strategy with the higher mean will be chosen. When λ=0, the 14 

risk reduction strategy with a lower variance (uncertainty) will be chosen. For any values of λ 15 

between 0 and 1, the decision is based on both the mean and variance.  16 

 17 

For example, the mean and variance of NPV distribution for option A and option B are estimated 18 

using Monte Carlo simulation:  19 

 20 

                                                       Option  A                           Option B 21 

Mean (µ)                                    $ -3.71 billion                    $ -3.40 billion 22 

Standard deviation (σ)               $  0.15 billion                    $  0.22 billion 23 

 24 

 25 

For illustration, it is assumed that λ=0.8. Using Equation (14),  26 

 27 

CA = 0.8×(-3.71) -  (1-0.8) ×0.15 =  -3.00  28 

CB = 0.8×(-3.40) -  (1-0.8) ×0.22 =  -2.76  29 

Because CB > CA, option B is chosen.  30 

 31 

 32 

However, if λ=0.05, Using Equation (14),  33 

CA = 0.05×(-3.71) -  (1-0.05) ×0.15 =  -0.328  34 

CB = 0.05×(-3.40) -  (1-0.05) ×0.22 =  -0.379  35 

Because CA > CB, option A is chosen.  36 

 37 

The analysis indicates that, in the presence of uncertainty, the decision is affected by the trade-38 

off between the mean and variance. Accounting for the uncertainty in the cost-benefit analysis 39 

could potentially facilitate development of robust safety improvement decisions.  40 

 41 

 42 

 43 

 44 

 45 

 46 
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7. CONCLUSIONS 1 

This paper develops a quantitative framework to account for the uncertainty in the cost-2 

effectiveness analysis of accident prevention strategies. A Monte Carlo simulation model is 3 

developed to estimate the distribution of NPV based on the probability distribution of broken-4 

rail-caused car derailments and derailment damage cost, respectively. The model provides a 5 

practical way to quantify uncertainty propagation in train accident analysis. The potential 6 

application of this model is to analyze and compare different accident prevention strategies. 7 

Compared to the traditional single-point estimation of the NPV, understanding the distribution of 8 

NPV provides additional information regarding its range and variability that may aid decision 9 

makers to develop better-informed train safety policy.   10 

 11 

8. FUTURE RESEARCH  12 

The next step of this research is to apply the model to other accident prevention strategies, such 13 

as detection of mechanical failures using wayside detection technologies or improving operating 14 

practices to reduce human errors. The comparison and integration of different accident 15 

prevention strategies enables the development of an optimal portfolio of strategies to reduce train 16 

accident risk in the most efficient manner. In addition, more advanced simulation methods, such 17 

as importance sampling, will be developed to improve computational efficiency.   18 

 19 
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