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ABSTRACT

Individual railroad track maintenance standards and the Federal Railroad Administration (FRA)
Track Safety Standards require periodic inspection of railway infrastructure to ensure safe and
efficient operation. This inspection is a critical, but lalmersive task that results in large
annual operating expenditures and has limitations in speed, quality, objectivity, and scope. To
improve the coseffectiveness of the current inspection process, maecisien technology can

be developed and used as a gilBupplement to manual inspections. This paper focuses on the
development and performance of machine vision algorithms designed to recognize turnout
componentsas well asghe performance of algorithniesigned to recognize and detect defects

in othertrack components. In order to prioritize which components are the most critical for the
safe operation of trains, a ritlased analysis of the FRA Accident Database was performed.
Additionally, an overview of current technologies for track and turnout ooemt condition
assessment is presented.

The machine vision system consists of a video acquisition sy&iemecording digital
images of track and customized algorithms to identify defects and symptomatic conditions within
the images. A prototype machiuesion system has been developed for automated inspection of
rail anchors and cut spikes, as well as tie recognition. Experimental test results from the system
have showrgood reliability for recognizing ties, anchors, and cut spiké&gis machine visio
system, in conjunction with defect analysis and trending of historical data, will enhance the
ability for longerterm predictive assessment of the health of the track system and its
components
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INTRODUCTION

Railroads conduct regular inspections of theack in order to maintain safe and efficient
operation. In addition to internal railroad inspection procedures, periodic track inspections are
required under the Federal Railroad Administration (FRA) Track Safety Standards. The
objective of this reseah is to investigate the feasibility of developing a machine vision system
to make track inspection more efficient, effective, and objective. In addition, interim approaches
to automated track inspection are possible, which will potentially lead to igieafection
effectiveness and ffeciency prior to full machine vision system development and
implementation. Interim solutions include video capture using vehmolented cameras, image
enhancement usingnageprocessingsoftware, and assisted automatasing machinevision
algorithms {).

The primary focus of this research is inspection of North American Class | railroad
mainline and siding tracks, as these generally experience the highest traffic densities. High
traffic densities necessitate frequemspection and more stringent maintenance requirements,
and leaverailroads less time to accomplish it. This makes them the most likely locations for
costeffective investment in new, more efficient, but potentially more cajpitahsive inspection
techrology. The algorithms currently under development will also be adaptable to many types of
infrastructure and usage, including transit and some components espaght rail (HSR)
infrastructure.

The machine vision system described in this paper was g&ekldhroughan
interdisciplinary research collaboration at the University of lllinois at Udémampaign
(UIUC) between the Computer Vision and Robotics Laboratory (CVRL) at the Beckman
Institute for Advanced Science and Technology and the Railroad EngigeProgram in the
Department of Civil and Environmental Engineering.

CURRENT TRACK INSPECTION TECHNOLOGIES USING MACHINE VISION

The international railroad communihas undertakengnificant research to develop innovative
applications for advanced tawlogies with the objective of improving the process of visual
track inspection. The development of machine vision, e inspection technology which
uses video cameras, optical sensors, and custom designed algorithms, begaariy 18800s
with work analyzingrail surface defect&).

Machine vision systems are currently in use or under development for a variety of
railroad inspection tasks, both wayside and mobile, including inspection of joint bars, surface
defects in the rail, rail profile, dakt profile, track gauge, intermodal loading efficiency, railcar
structural components, and railcar safety appliante821, 23. The University of lllinois at
UrbanaChampaign (UIUC) has been involved in multiple railroad machisien research
projects sponsored by the Association of American Railroads (AAR), BNSF Railway,
NEXTRANS Region V Transportation Center, and the Transportation Research Board (TRB)
High-Speed Rail IDEA Progrant{11).

In this section, we provide a brief overview of machinsion condition monitoring
applications currently in use or under development for inspection of railway infrastructure.
Railway applications of machingision technology have three main elemerttse image
acquisition systemthe image analysis systemdatine data analysis systed).( The attributes
and performance of each of these individual compordatesmineghe overall performance of a
machine vision system. Therefore, the following review includes a discussion of the overall
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machine vision syste, as well asapproaches to imagacquisition, algorithm development
techniques, lighting methodologies, and experimental results.

Rail Surface Defects
The Institute of Digital Image Processing (IDIP) Awstria has developed a machine vision
system for ail surface inspection during the rail manufacturing proc&&s (Currently, rail
inspection is carried out by humans and comphastwith eddy current system$he objective
of this machine vision system is to replace visual inspections on rail pioduines. The
machine vision system uses spectral image differencing procedure (SIDP) to generate three
dimensional (3D) images and detect surface defects in the rails. Additionally, the cameras can
capure images at speeds up to 37 miles per hour Xni@h kilometers per houckph)).
Although the system is currently being used only in rail production lines, it can also be attached
to an inspection vehicle for field inspection of rail.

Additionally, the Institute of Intelligent Systems for Automatid8IA) in Italy has
been researching and developing a system for detecting rail corruge8jonThe system uses
images of 5122048 pixels in resolution, artificial light, and classification of texture to identify
surface defects. The system is capatfl@cquiring images at seds of up to 125 mph (200
kph). Three imagegrocessing methods have been proposed and evaluated by IISA: Gabor,
wavelet, and Gabor wavelet.Gabor was selected as the preferred processing technique.
Currently, the technology hdseen implemented through the patented system known as Visual
Inspection System for RailwayVISyR).

Rail Wear

The Moscow Metro and the State of Common Means of Moscow developed photonic system to
measure railhead wealt4). The system consists of 4 CGlameras and 4 laser lights umbed

on an inspection vehicleThe cameras are connected to a central computer that receives images
every 20 nanoseconds (ns). The system extracts the profile of the rail using two methofds (cut
and tangent) and the rdisuare ultimately compared with pestablished rail wear templates.

Tie Condition

The Georgetown Rail Equipment Company (GREX) has developed and commercialized a
crosstie inspection system called AURORK)( The objective of the system is to inspact
classify the condition of timber and concrete crossties. Additionally, the system can be adapted
to measure rail seat abrasion (RSA) and dedetects in fastening systems®\URORA uses
high-definition cameras and higloltage lasers as part of thgHting arrangement and is
capable of inspecting 70,000 ties per hour at a speed4% 3@ph 4872 kph). The system has

been shown to replicate results obtained by track inspectors with an accuracy of 88%.

Since 2008, Napier University in Sweden hasbesearching the use of machine vision
technology for inspection of timber crosstid$)( Their system evaluates the condition of the
ends of the ties and classifies them into one of two categories: good ofadlassification is
performed by evalating quantitative parameters such as the number, length, and depth of cracks,
as well asthe condition of the tie plateExperimental results showed that the system has an
accuracy of 90% with respect to the correct classification of Besure reseah work includes
evaluation of the center portion of the ties and integration with othedesmnuctive testing
(NDT) applications.
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In 2003, the University of Zaragoza Bpain began research on the development of
machine vision techniques to inspechciete crossties using a steraetric system to measure
different surface shape&?d). The system is used to estimate the deviation from the required
dimensional tolerances of the concrete ties in produdiites. Two CCD cameras with a
resolution of B8x512 pixels are used for image capture and laserased for artificial lighting.

The sysem has been shown to produce reliable resultsgjumuttifiable results were not found in
the available literature.

Ballast

The ISSIA has also been developingsystem capable of reconstructing 3D surfaces of the
ballast section18). The objective of the system is to detect anomalous conditions within the
ballast surface that are indicative of situations that couldtresal loss of track stability.The

sysem finds the depth of ballast voids from a set of 2D imagdésxt, the system uses high
definition cameras of 2048 pixels per line and uses stereo matching techniques to generate the
3D images. Since the method employed to process images requiresangrabmputational

power, future work will be aimed at improving the analysis technique in order to make the
systenfeasible for revenue service

Fastening Systems

Visual Inspection System for RailwayVISyR) is a patented commercial system that has been
developed for detecting hexagonal bolts in European fastening syst8nsVISyR collects
reattime image data at a maum speed of 125 mph (200 RphCameras capture images of
1,024 pixels per line and artificial lighting (OSRAM 41 850 FL) is usegrtivide adequate
illumination for image captureThe image processing system uses discrete wavelet transforms
for bolt detection in redime. VISyR also includes a module for detecting rail surface defects.
The system has an accuracy of 99.6% foraetg visible bolts and ®% for detecting missing
bolts. It has also been tested for the detection of elastic fasteners with similar accuracies.

The University of LoughboroughEfgland has developed a machine vision system
capable of detecting missingastic fastening clips on concrete ti@g)( The system was tested
using a camera mounted near a train wheel and it also incorporated artificial ligftieg.
images were obtained using a resolution of X288 pixels. Experimental results showed
accuraees of 84.7% in detecting missing clips and 95.3% in clip recognition.

General Track Structure Inspection
The University of Central Florida has been developing a system for measuring track gauge and
inspecting fasteners2f). The system uses higipeed ©D cameras with a resolution of
1,024768 pixels. The camera is synchronized with strobe lights to minimize the difference
contrast during the dayAdditionally, sun shields were mounted in the cart to eliminate the
effect of shadows in the image$he system detects the edges of the rails, and by exploiting the
known distance between the two cameras, provides an estimate for track famge work
includes the implementation of the system for revenue service and the development of
algorithms to deect other type of track component defects.

The FRA and ENSCO began development of a maehsien-based joint bar inspection
system in 202 (22). The system uses higksolution camerawith high-powered xenon lights
to capture images of joint bardt collectsimages at a maximum speeifl 65 mph (105 kph
ENSCO has incorpated this technology into theifisiRail™ Joint Bar Inspection SystenThe
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system primarily findsexternal cracks in joint bars. Currentihetsystem requires manual
interpretdion of image data to determine true joint conditidixperimental results showed an
accuracyof 98%, butunder nonideal track conditionshe joint detectioraccuracy rate declines
to 85%. ENSCO is continuing work on improving their algorithms to insesdhe crack
detection rate without increasing the number of false positives.

CybernZtix, in conjunction with the French National Railways (SNCF), has developed a
commercial system for inspecting rails, fastening systems, the rail gap in joint bars, and
reconstructing the ballast profil@). The system uses an optical system and machine vision
algorithmsto capture data at speeds of u2@® mph (320 kip). The system is currently being
used by SNCF for track inspection.

Summary of Inspection Technologes

Many machine vision techniques have been investigated and systems deti®lopgkout the

world to inspectailroad track components including: rail, tiégstening systemgoint bars,and

ballast. Thesesystemshave demonstrated the potential foachine vision to enhance the
inspection of railway infrastructure. In many cases, experimental results have shown accuracies
greater than 80% and measurement speeds of up to 200 mph (320Fkgure work includes

further experimentation with variableghting conditions, especially adverse situations such as
weathesrelated events and darkness.Additionally, more research is needed tmprove
algorithmprocessingspeedsand study theintegraton of machine vision withother NDT
systemdo perform reatime data analysis and improxaiability.

RISK-BASED PRIORITIZATION OF TURNOUT COMPONENTS
Safe and efficient network operation is of utmost importance to the rail industry. In order to
determine which infrastructure components are most critical teafee operation of trains, an
analysis of the FRA Accident Database was condu@ed,(24. Previous research direction
and prioritization was based on the frequency of derailments, available technology, severity of
defects and their potential contribari to accident prevention, and input from railway industry
experts 8, 4, §. This approach provided the following initial priorities for machine vision
inspection of railway infrastructure:

1. Raised, missing, or inappropriate patterns of cut spikes

2. Displaced, missing, or inappropriate patterns of rail anchors

3. Turnout component inspection

Although the initial approach is valid, other variables, such as the number of cars
derailed, can provide additional information on the risk associated with specificnaarail
causes and track component failur2S)( Therefore, a riskased prioritization approach was
used to select the turnout components that are most critical to the safe operation. It should also
be noted that none of the aforementioned machine viaitway applications addressed turnout
component inspection, hence our interest in researching this area of the railway infrastructure.

Analysis of the FRA Accident Database

The initial data analysis for the riddased prioritization of track componentsed trackcaused
derailment data from 1998 to 2009. The data were classified into five-eéSRAhlished
derailment cause categorieBigqure ). Some components, such as those associated with
roadbed and geometry, are currently being inspected by othénotegies including
autonomous track geometry cars and ground penetrating radar (GPR). Additideédigts
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related to category one (rail, joint bar, and rail anchoring) were taken into account in the initial
prioritization and subsequent research. tha reason, category three (frog, switches and track
appliances) was selected for further evaluation. Most of these components are currently
inspected using manual, visual inspection and may be amenable to machine vision inshection (
4).

Rail, Joint Bar and Rail Anchoring

Track Geometry

Frogs, Switches and Track
Appliances

Roadbed

Other Way and Structure

400 800 1200 1600
Numer of Accidents

o

FIGURE 1 Top Track-Related Derailment Causes by Track Category from 1992009,
Used for Track Component InspectionPrioritization.

Risk-Based Turnout Component Inspection Prioritization
Using data from the FRA Accident Database, a detailed evaluation of deradlatarfor track
classes 4 and 5 was performed to quantify the risk of derailments at turnouts. Risk can be
defined as the probability of an accident occurring multiplied by its consequ#sca/ith this
being said, we selected the number of cars ddradea proxy for consequence.
For the period of 1998 through 2009, the numbederhilments (derailment frequency)
was plotted against the number of cars derailed (consequence) for each derailmerfigavse.
2 was divided into four quadrants basedtiba average value of each axi§he vertical dotted
line represents the average derailment frequency and the horizontal dotted line represents the
average number of cars derailed for all turr@liited derailment causes.
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FIGURE 2 Railroad Track-Causel Derailments by Cause Severity on
Track Classes 4 and 5, from 19982009.

Each quadrant in Figure 2 has a different meaning, and provides valuable insight into the
prioritization of turnout components for machine vision inspection. For example, the l&ftv
guadrant represents infrequent accident causesa$idt in low consequence derailmeniche
causes contained in the upper left quadrant are also rare, but theirusortssgare higher than
average. The values in the lower right quadrant arerencommon but they are associated with
low-consequence derailment®f greatest importance are the accident causes in the upper right
guadrant, as they occur at abawerage frequencies and result in haginsequence
derailments.

The causes containedtime upper quadrants were included in our priorities for inspection
primarily due to the severity of these types of defects. Additionally, they account for almost
80% of turnout deramhents on track classes 4 andlbis interesting to note that no cagswere
classified in the lower right (high fregncy / low severity) quadrantThe end result of the
analysis was the selection of the following ramilered turnout components/defects for
inspection using machine vision:

1. Switch point - worn or broken

2. Other frog, switch, and track appliance defects

3. Turnout frog- worn or broken

4. Switch connecting or operating redbroken or defective

5. Switch point - gap between switch point and stochk rai

In addition to the five tasks selected for inspection, misbwlts and cotter pins were
included into our initial turnout inspection priority, since the inspection of these components in
turnouts is conducted primarily using visual means and they are suitable candidates for
inspection using machine vision.
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Track inspection requirements for turnout components

The FRA Track Safety Standard) contain specific regulations for the inspection of track and
turnout components, and provide guidance as to which components should be inspected using
machine vision. Accaing to the regulations for worn or broken switch points (section
213.135(h)): OUnusually chipped or worn switch points shall be repaired or reg2&)ededr

this particular case, the criterion for the allowable magnitude of cracks is not establitisec

partially because these defects may cause a derailment in conjunction with other conditions, such
as the improper wheel/rail interaction, thus it is harder to define an acceptable defect threshold.
Therefore, experience of the inspector and mfivmanagement must be used to determine
specific conditions that should be repaired to reduce the risk of derail@@ntsAlternatively,

in the case of frogs points (section 213.137(b)), regulations are more specific and frogs worn or
broken more than/8 inch downward and 6 inches back from the point of frog are not allowed
for track classes with speeds greater that 10 mplkgh). Moreover, it is required that the
flangeway may not be less than 1 1/20 in depth and width for FRA track classes B Hroug
Finally, section 213.137(c) restricts the maximum operational speed over a frog to 106mph
kph) if the tread is worm more than 3/80.

Additionally, the FRA Track Safety Standards provide regulatory guidance as to how to
maintain the switch stand @mods and state thabEach switch stand and connecting rod shall be
securely fastened and operable without excessive lost mo26phOl this case, a broken or
defective connecting switch road could generate (in conjunction with the train movergapt) a
between the switch points and the stock rail, resulting in a possible derail8patific defects
are dependant on the switch stand design, thus different types of conditions and component
designs should be incorporated into the machine vision ihepesystem.

Finally, the FRA requires that the switch points fit securely against the stock rail when
the switch is operating in either position. This will allow the wheels to pass safely through the
switch points. An mandated range of values for measyithe gap between switch point and
stock rail is not provided, but the FRA Track Safety Standards Compliance Mamuatdtes
that most industry standards have defined 4! inches between switch point and stock ralil
measured at rod number 1 as acceptable

In addition to the FRA Track Safety Standards, Class | track engineering standards and
the Track Safety and Condition Index (TSCI) were used to determine guidelines and procedures
for turnout component inspectio28, 29, 30. Similar considerations wermade in previous
work (1, 3, 4, 5 focusing on anchor and cut spike inspection, taking into account the expertise of
track inspectors, researchers, and track maintenance managers at Class | railroads.

OVERVIEW OF PREVIOUS WORK

Collecting images and videof track components is a critical part in the development of a
machine vision system. There are important t@itle between where the candidate components

are located in the view, how many components can be seen in a single view, and how many
unique vews are required to perform the desired inspections. Views of the components must not
only show the entire component in its functional position(s), but also be conducive to
distinguishing the component from background objects and be oriented propeolytdoring
necessary measurements during the inspection of these components. In addition, the cameras
must be placed to provide views that permit the machine vision algorithms to consistently and
reliably detect the track components of intetexder varios conditions
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Experimental Data Acquisition System
Securing time to test the image acquisition system on active track during the developmental
phases proved difficult, thus\artual Track Model (VTM) was created using North American
recommended practisdor track designil( 31).

Initial experimentation with th&/ TM camera angles resulted in the selection of two
camera views for inspection: the latevadw (Figure 3\) and the ovetherail view (Figure 3B)
(1, 3,4, 5. The lateral view provides a safile view of tie plates, spikes and anchors. The-over
therail view provides perpendicular views of the spike and anchoraddition, virtual views
were used to generate synthetic imaffesn these viewdor initial development ofmachine
vision algorthms. They provided insight into challenges such asumiiorm lighting, variation
in component design, and defect recognitibn (

A: Lateral View. B: Overtherail View.

FIGURE 3 Camera Views.

Beyond the virtual images, a thed to capture video that would be representative of
future cameras attached to a track inspection vehicle was needed for further development of the
machinevision inspection algorithms. For this reason an experimental data acquisition system
called theVideo Track Cart (VTC) was designed for collecting continuous video of track
sections of interest on ledensity track1).

Three main components were considered in developing the experimental video
acquisition system: the camera, lens, andging hardwae. A detailed evaluation of different
factors () led to the selection of a Dragonfly’2 DRZOL camera for video data collection.

This camera has an image resolution of 640x480 pixels (VGA) and can record video at up to 60
frames per second (fps) withudter speeds as fast as 1/100,000 secad®)s (The camera is
equipped with a 6 mm (widangle) lens. The laptop selected uaddicrosoft Windows XP
Professional operating system, has 4 GB of RAM, an Intel” Core @ 2 Duo P9600 2.66 GHz
processor, and ldigh Performance Solid State Drive.

Additional considerations are being studied in the approach to ligflngently, we are
investigating lowwattage LED lighting, which will be powered by our VTC-board battery
system. The addition of lighting shduimprove the consistency and reliably in detecting the
components of interest against a backgrooingimilar color and texture (e.g. steel)

Field Work

The VTC has been used on lalensity track, where track occupancy time is easier to obtain.
Video recording sessions have taken place at the Monticello Railway Museum in Monticello, IL
as well as Class | track. During these field visits, we captured video of tangerdagraehtl as
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turnoutsof varying designs and conditionsin addition, we capturedideo under a variety of
natural lighting conditions, levels of vegetation, ballast types, and levels of ballast fouling in
order to develop statistics on consistent component recognition under realistic field conditions.
Additionally, experimerdtionto identify the transition between the tangent and turnout sections
of trackwas performed in ordeo invoke the appropriate inspection algorithihs

Early Algorithm Development and Spike and Anchor Inspection
Early algorithm development focused on spikechor, and tie detection and defect recognition.
These algorithms can be summarized as a coadfsee approach for detecting objects. We first
locate the track components with low variability in appearance and predictable locations (e.g. the
rail), and then locate objects that are subject to high appearance variability (e.g. spike heads and
anchors) in subsequent stagd® increase robustness to changing environmental conditions and
changes in object appearantecal featuressuch asedgesand texture informationwere also
included in the mod€lL, 3, 4, 5.

The spikes are locatagsing spatial correlationvith a previously developed templatk (
3, 4. The search area for the spikes is limited after the tie plate and rail are both delineated
given that spikes will only be found in certain positions. The search area for the anchors is
restricted to were the rail meets the ballasAnchors are detected by identifying their parallel
edges], 3,4, 5.

Experimental Results for Spikes, Anchors and’ies

To measure the systemOs performance, we monitor the accuracy of theasy#téentifies
raised spikes.In order to identify raised spikes, the distance from the-basail to the spike
head is measured This requires that both the spike heaull dhe basef-rail are correctly
localized, but localization is only possible after the components are first detected.

Sinceour algorithmsdentify defects ircomporents that are near or over a tie (e.g. spikes
and anchors) it is important to detect tiee and tie components reliably before localizing the
exact parts of the components that will be used in distance measurements. For evaluating the
detection algorithms, we differentiate between precision and recall, since precision penalizes the
erroneos detection of an object that is not present (i.e. false positives), and recall penalizes the
missed detection of an object that is in fact present (i.e. false negatives).

We also measure the accuracy of the localization of certain parts of the comp@ants.
goal is to correctly localize the basérail and the edge of the spike head. Detecting the base
of-rail is trivial since all rails will have a base, but accurately localizing the exact line in the
image that corresponds to the bas$eail is morechallenging.

Experimental results show an accuracy of 100% for the-tfassel localizationusing the
lateral view, and 76% for the ovérerail-view. In the case of spikes, both views resulted in
71% accuracyfor spike head localizationFor individual components, 93% of the ties were
detected without false positivestimelateral view. For overtherail view, all ties were detected,
however 8%of the detected ties werklse positives. Finally, 100% of the anchors were
detected(100% recall), howeer only 80% of objects that were detected as "anchors" were in
fact anchors (80% precision).

APPROACH FOR TURNOUT INSPECTION USING MACHINE VISION
Track components in turnouts differ in both size and shape from those found in normal tangent
or curved trak. For this reason we must correctly identify the specific section of the track the
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system is inspecting and whether it contains spéxaakwork. To accomplish thiswe have
developed algorithms to look for periodic components (T) indicative of ttsneuch as frog
bolts or joint bar boltsKigure 4).

A: Original Image Switch Point Bolts.

e
i e

B: Panoramic Mosaic fronné Mid-rail Area.
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FIGURE 4 Turnout Component Recognition.
The estimation of periodic component location within turnouts is carried out by

converting the middle portion of thedeo, containing theail weh into a paoramic mosaic
(Figure 8). The periodicity of the components in the panoramic masdlenestimated, and
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the components subsequently localized. Detecting periodicity in the spatial domain is unreliable
due to the variability of component appearanced the sporadic noise from nqeriodic
components (or similar components in other areas of the track striixtige insulated rail
joints). Alternatively, it is more reliable to investigate periodicity in a domain of texture
responses, since each coment typically has a characteristic shape that is captured as a texture
response in the Gabor frequency doma).(

The image is transformed in a bleskse manner into the Gabor frequency domain
(Figure ). Each blockOs height is identical to the heiglthe rail web area shown Figure
4B, and each blockOs response is computed using an overlapping width with its right neighboring
block (Figure 4C). This blockwise Gabor response is then processed as dliorensional
signal Figure D). Spectral malysis is subsequently performed to find periodic components
(Figure £). Spectral analysis is a technique in which a received signal is analyzed for the
frequency components that it contains. We use the Multiple Signal Classification (MUSIC)
algorithmdue to its ability to extract frequencies from a signal containing multiple superimposed
signals of different frequencie34).

The MUSIC algorithm outputs a frequency analysis, in which the input signalOs
frequency response is computed for each frequéfigure £). Dominant frequencies are then
detected. The output éfigure £ shows the power at each radial frequenty, Each radial
frequency relates to the period, T, by the formula2! /T. Hence, when the peak is located at
T=0.14 , the component repeats every T=14.3 blo&&. ( This is a satisfactory approximation
since the distance between bolts is not alwaysteon Figure 4A), and can vary depending on
the turnout angle, component and turnout design, and turnout manufacturer. Nevertheless, this
approximation allows us to reliably identify the switch area in a section of fapkré 8).

Spectral estimatioprovides frequency detection, but not phase estimation. Because of
this, we are able to detect the presence of a turnout, but we are not able to localize the repeating
component using only spectral estimation. In the future, if localization is needsd, th
autocorrelation can be performed on the blocks in the Gabor frequency domain. Candidate
blocks would be proposed that have a strong Gabor frequency respomses (4°). The
autocorrelation between a candidate block and all blocks that are nT bjmaitsweuld be
measured, where n is a positive integer. Blocks that yield a strong Gabor response and that are
highly correlated to blocks nT awayeconsidered repeating components

The use of this periodicity detection algorithm, which can identify iBpesections of
track based on the appearance of pericdimponent locatia) will be key to invoking distinct
machine vision algorithms to identify and inspect unique components found in track.

FUTURE WORK

Future work involves refinement of the machiision algorithms to improve the reliability of

spike and anchor detection. Also, we will experiment with several malgameng methods to
perform component detection in the presence of anomalies such as leaves. Additionally, since
machine vision algrithms require previously stored models of the textures and components, we
will research methods of dynamically updatthg models. Once the algorithms and lighting for
inspection of spikes, anchors and turhcomponents have been refingde system u be
adapted for testing on a higail vehicle.
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CONCLUSION

The inspection of most railroad track components is currently conducted using manual, visual
inspections. These inspections are labor intensive and lack the ability to easily record and
compare data to perform adequate trend analyses. Moreover, they are subject to variability and
subjectivity in different inspectorsO abilities and interpretation of what they observe.
Additionally, it is impractical to manually catalog the condition of sadarge number of track
components, thus it is difficult to develop a quantitative understanding of exactly how the non
critical or symptomatic defects may contribute to the occurrence of critical defects or other track
problems. Based on analysis of tesad derailment statistics and input from subjaettter
experts, we have focused our research efforts on inspection of cut spikes, rail anchors, and
turnout components.Our algorithms use edge detection and texture information to provide a
robust meanof detectingtrack componeniswhich narrows the search area. Within this
restricted area, knowledge of probable component locations allows the algorithms to determine
the presence of spikes and rail anchors even when there are variations in the appédhenc
components. Experimental results using this approach have shgaod reliability for
component inspection using machine visidRecent work on periodicity detection methods, for
automatically identifying transitions from tangent or curved triat& special trackworke(g.
turnouts), can now be used to initiate specialized machine vision algorithms to inspect particular
components critical to these areas.
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