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FIGURE 1 (continued) Negative cumulative frequency distribution of train velocity (a-b) 3 

and cumulative frequency distribution of runtimes (c-d) for 24 and 36 trains per day 4 
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The 95th percentile train velocity was plotted for each combination of MAS and schedule 1 

flexibility for both 24 and 36 trains per day (Figure 2a and 2b). Both graphs display a linear 2 

function with similar slopes for all levels of schedule flexibility and a steeper slope for structured 3 

operation. As MAS is increased, structured operation sees a greater increase in train velocity 4 

compared to the scenarios with schedule flexibility.  The greater the schedule flexibility, the less 5 

train velocity benefit is obtained from increases in MAS.  A slight shift from structured to 6 

flexible operation (black 0 minutes to blue 10 minutes line) leads to a steep penalty in 95th 7 

percentile train velocity.  For both traffic volumes, approximately the same (or faster) 95th-8 

percentile train velocity can be achieved with a lower 35 mph MAS and structure operations and 9 

a higher 50 mph MAS and 240 minutes of schedule flexibility.  Achieving the same train 10 

velocity with lower MAS could allow for less stringent maintenance standards and potential fuel 11 

savings.  The maintenance and fuel costs of higher MAS to maintain a baseline train velocity 12 

represent another potential cost of introducing schedule flexibility.  13 

 14 

Regression Analysis of Train Runtime 15 

After the scenarios were simulated, a multivariable regression model was constructed to predict 16 

95th percent runtime performance based on MAS, schedule flexibility, and volume as inputs 17 

(Equation 1).  18 

ܴ ൌ 29.2 ൅ 0.12ܸ െ 0.96ܵ ൅ ܨ0.0045 ൅ 0.00062ܸଶ ൅ 0.01ܵଶ  (1) 	19 

െ4 ൈ 10ି଺ܨଶ െ 0.002ܸܵ ൅ ܨ0.00008ܸ െ  ܨ0.000084ܵ

where,  20 

R is the 95th percentile runtime (minutes);  21 

V = volume (trains per day);  22 

S = MAS (mph)   23 

F = schedule flexibility (minutes) 24 

   25 

The model has an R-squared of 0.97 and significant interactions with p-values below 0.01. 26 

Thus, the model should be a good predictor of the runtime for the range of simulated factor 27 

levels. By examining the combinations of schedule flexibility and MAS that correspond to a 28 

given 95% runtime, the data can be transformed to illustrate the relationship between schedule 29 

flexibility and MAS required to provide a particular 95th percentile runtime for a given traffic 30 

volume (Figure 3a and 3b).  31 

Starting from structured operations (zero minutes of schedule flexibility), initial increases 32 

in schedule flexibility require an increase in MAS to maintain runtime.  At a certain MAS the 33 

operation is unaffected by further increases in schedule flexibility. To maintain the desired 34 

runtime, a railway operator may not need to further increase MAS once schedule flexibility 35 

approaches 480 minutes. 36 

  37 
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FIGURE 2 95th percentile train velocity for combinations of schedule flexibility and MAS 3 

with a) 24 and b) 36 trains per day 4 

16

18

20

22

24

26

28

30

32

34

36

30 35 40 45 50

95
th

 p
er

ce
n

ti
le

 T
ra

in
 V

el
oc

it
y,

 m
p

h

MAS, mph

0

10

40

240

Schedule 
Flexibility (min)

Structured 
operation 
envelope

(a) 24 tpd

16

18

20

22

24

26

28

30

32

34

36

30 35 40 45 50

95
th

 P
er

ce
n

ti
le

 T
ra

in
 V

el
oc

it
y,

 m
p

h

MAS, mph

0

10

40

240

Schedule 
Flexibility (min)

Structured 
operation 
envelope

(b) 36 tpd



Sehitoglu et al 18-03149      15 

 
 

 1 

 2 

FIGURE 3 Relationship between schedule flexibility and MAS under contours of fixed 3 

runtime in hours for a) 36 trains per day and b) 44 trains per day 4 

 5 

  The tradeoff between schedule flexibility and MAS is more apparent at MAS above 40 6 

mph. Speed must increase sharply to maintain a given runtime when schedule flexibility is 7 

initially increased. Higher volumes, such as 44 trains per day, are also more sensitive to the 8 

initial increase in schedule flexibility, and therefore require higher speeds to maintain runtime 9 

(Figure 3b). At 44 trains per day, structured operations must shift from 40 to 50 mph service to 10 

maintain a 10.5-hour runtime during a major disruption that introduces substantial schedule 11 

flexibility. To be immune to such disruptions, the MAS must be kept at 50 mph.   12 
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  From the perspective of a capacity planner, these results suggest that when structured 1 

operations encounter small disruptions, speed increases may be necessary to maintain runtime 2 

performance. To ensure efficient operations, planners could opt for a faster MAS that ensures 3 

runtime regardless of schedule flexibility. Conversely, if a planner is confident in their ability to 4 

maintain structured operations, they have the ability to lower the MAS. Lower MAS has the 5 

benefit of reduced track maintenance, reduced fuel consumption and lower horsepower-per-ton 6 

ratios that may even reduce the number of locomotives required on some trains.   7 

 8 

Runtime Curve Regression 9 

Although the 95th percentile runtime is important, not all train operations can be dictated from 10 

one metric that does not fully capture reliability. All levels of train velocity and runtime 11 

performance may be relevant to railways. The entire distribution of train runtime performance 12 

must be assessed to properly quantify reliability.  13 

Rather than fitting a Weibull curve or other distributions to the data, this research 14 

employed a different approach to quantify reliability and its relationship to different 15 

experimental factors.  A set of 18 regressions were performed at intervals between the 5th and 16 

95th percentile runtime in increments of five percent, using the regression methodology described 17 

previously. All the models have an R-squared of at least 0.97 and significant interactions with p-18 

values below 0.01. The resulting set of expressions can be used to model the entire runtime 19 

distribution with volume, MAS and schedule flexibility as inputs, and percentiles of runtime as 20 

the output.   Comparing the cumulative raw data with the cumulative curves developed through 21 

the regression process suggests these three experimental factors are together good predictors of 22 

runtime at all levels of performance. 23 

From the perspective of the service planner, the method of constructing a model of 24 

runtime distribution curves from a series of regressions on raw data can provide additional 25 

insight on the changing relative impact of speed, volume and schedule flexibility parameters on 26 

different runtime percentiles.  In comparing the regression equations used to predict the different 27 

percentiles of the runtime distribution, the relative influence of each factor changes across the 28 

percentiles.  Since the magnitudes of each coefficient in the regression differ greatly, to illustrate 29 

the relative change of each coefficient across the percentiles, the coefficients for each term in 30 

model were normalized relative to their values in the regression equation for the 5th percentile 31 

and then plotted across all percentiles (Figure 4). For the first-order coefficients (Figure 4a), 32 

schedule flexibility shows the greatest relative change from the 5th percentile to the 95th 33 

percentile while volume also shows increasing importance beyond the 70th percentile. In contrast, 34 

MAS and the constant coefficient remain mostly stable even in the higher percentiles. For the 35 

second-order coefficients (Figure 4b), those with flexibility and/or volume show the greatest 36 

relative change with increasing percentile. For service planners, this relative magnitude 37 

comparison indicates that higher-percentile runtimes are increasingly sensitive to changes in 38 

volume and schedule flexibility while the influence of MAS remains relatively constant.39 
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 2 
FIGURE 4 Magnitude of regression model coefficients for different percentiles of runtime 3 

normalized relative to 5th-percentile coefficients 4 
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Elasticity of Factors to Freight Train Runtime 1 

To better quantify the relative influence of each parameter, arc elasticity was calculated for each 2 

factor (25). The elasticity index is used to demonstrate the relative influence of the factors 3 

considered in this study on train runtime. It is an appropriate index, since it considers the 4 

different magnitudes of each regression input to provide valid factor comparisons regardless of 5 

the original units and numeric ranges. The elasticity values are obtained using runtime values 6 

provided by the regression model and varying the three factors from baseline conditions.  The 7 

positive and negative elasticities are related to maximum increase or decrease in the value of 8 

each respective factor.  9 

According to elasticity values (Figure 5), runtime is most sensitive to changes in the 10 

MAS. This is not an unexpected result as MAS is obviously linked to runtime; it is the relative 11 

sensitivity of MAS and the other factors that is of interest.  A one percent reduction in train 12 

speed leads to a 1.19% increase in runtime, whereas a one percent increase in train speed 13 

corresponds to 0.36% reduction in average train runtime. This runtime saving is equivalent to 14 

reducing the volume in the route. Faster trains operating at a higher volume will have greater 15 

conflict resolution than a slower train operating in a lower volume setting.  16 

 17 

 18 
FIGURE 5 Elasticity of a) 95th percentile and b) 5th percentile runtime to factors AS = 19 

allowable speed, V = volume and SF = schedule flexibility. 20 
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Second to speed, traffic volume is the most significant factor with more traffic resulting 1 

in higher runtimes. The elasticity suggests that a reduction in volume has a bigger effect than an 2 

increase. Schedule flexibility had a very small effect on overall runtime in comparison to MAS 3 

and volume.  4 

In addition to the elasticity index based on the 95th percentile, the elasticity at the 5th 5 

percentile demonstrates how the influence of the experimental factors varies at different levels of 6 

train performance.  Compared to the 95th percentile, the 5th percentile is much less sensitive to 7 

changes in schedule flexibility and volume.  At low percentiles, changes in schedule flexibility 8 

do not affect runtime to the same extent as trains with much longer runtimes. The 5th percentile 9 

trains operate relatively freely, and extra meet pass interactions due to increased schedule 10 

flexibility are less impactful to runtime performance. Similarly, volume increases have less 11 

influence on 5th percentile runtime performance because this percentile of trains tends to stay 12 

very close to ideal train paths.  13 

The performance of the best 5 percent of trains is primarily driven by the MAS while the 14 

performance of the worth 5 percent of trains is more related to traffic volume and schedule 15 

flexibility.  From the perspective of a capacity planner, these relative effects are of interest if 16 

only a portion of the traffic on a route is premium service that demands high train velocity and 17 

consistent runtimes under increasing schedule flexibility.  18 

 19 

CONCLUSIONS AND FUTURE WORK 20 

For a given track infrastructure and fixed volume, runtime increases and train velocity decreases 21 

as schedule flexibility increases. Consistent with previous research, runtime conditions became 22 

insensitive to further increases in schedule flexibility above 120 minutes. Reducing schedule 23 

flexibility with the desire to decrease MAS showed little return until operations became more 24 

structured.   25 

Rail operators can mitigate increases in runtime due to increased schedule flexibility by 26 

increasing the MAS of trains, particularly at lower initial speeds. Conversely, by moving from 27 

flexible operations to structured operations, small decreases in MAS can be made while 28 

maintaining train velocity and total runtime. Although these decreases in MAS may decrease fuel 29 

consumption, for the tested conditions, the small decrease in MAS is unlikely to result in large 30 

savings from reduced track maintenance and fewer locomotives assigned to trains. 31 

An increase in schedule flexibility or traffic volume leads to a wider runtime distribution 32 

and lower reliability while higher MAS leads to a narrower runtime distribution. The most 33 

consistent performance with a narrow runtime distribution is achieved by structured operations 34 

with no schedule flexibility. Structured operations with higher volumes and lower allowable 35 

speed can surpass the runtime reliability of flexible operations with fewer trains and higher 36 

speeds.  An added benefit of the slower structured operations is that on a train-by-train basis, 37 

daily runtimes are more consistent potentially offering a more predictable level of service to 38 

railway customers.  39 
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The factors of volume and schedule flexibility showed significantly less effect on the best 1 

performing trains, while MAS remained dominant. The iterative regression model was able to 2 

predict the entire runtime distribution based on the three experimental factors. To create a more 3 

robust model, additional experimental factors could be introduced and added to the iterative 4 

regression to predict the runtime curve of more complex traffic. Introducing various random 5 

disruptions during scheduled operation and allowing increased velocity to return to scheduled 6 

path could be another take on the problem.  7 

This study only considered the “line of road” performance of trains between terminals.  8 

Future work will consider the influence of schedule flexibility on the performance and reliability 9 

of yards and terminals and the resulting contribution to overall freight transit times.  Through this 10 

future work there is potential to link the delay and speed-related costs of schedule flexibility to 11 

decisions to deviate from planned schedules to maximize the revenue of individual trains.  This 12 

future work could influence railroad operating practices as they compete with highways for 13 

freight with increasing demand for highly-reliable and predictable service times. 14 
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