Quantification of vertical, lateral, and longitudinal fastener demand in broken spike track: Inputs to mechanistic-empirical design

Marcus S Dersch, Matheus Trizotto, J Riley Edwards and Arthur de Oliveira

Abstract
To address a recent challenge related to broken spikes in premium elastic fastening systems that have led to at least ten derailments and require manual walking inspections as well as build upon mechanistic-empirical (M-E) design principles for future fastening system component design, this paper quantifies the vertical, lateral, and longitudinal fastening system loads under revenue service traffic in a curve that has regularly experienced spike fastener fatigue failures. Previous data has indicated that the high rail of Track 3 experienced the most failures at this location. The data from this investigation sheds light into why failures are more predominant at this location than others and how the vertical, lateral, and longitudinal loads cannot be considered independently. Specifically, while the magnitude of the applied loading was the lowest on the high rail of Track 3, the threshold for failure was also the lowest given the operations at this location led to unloading of the high rail, thus indirectly highlighting the importance of friction within a fastening system. The data also show the high rail of Track 3 was subjected to the highest L/V load ratios and was an outlier in the typical lateral load reversals applied likely leading to spike stress reversals and thus a shorter fatigue life. Finally, based upon the data, it is recommended that to mitigate spike failures, as well as similar fastener challenges in other track types (e.g. rail seat deterioration, etc.) railroads should ensure trains operate close to the balance speed and use fastening system that transfer loads through friction. This study also provides novel data for M-E design of fastening systems.

Keywords
Fatigue failure, load characterization, fastening system design, longitudinal loads, operations, field data

Date received: 9 October 2020; accepted: 10 June 2021

Introduction
Approximately 94% of railroad track infrastructure worldwide is supported by ballast. A ballasted track system consists of the rail, fastening systems, sleepers, ballast, sub-ballast, and subgrade. Rail fastening systems, in conjunction with the sleeper, secure the rail to maintain gauge, transmit thermal and service loads, and anchor the rail-sleeper structure against lateral and longitudinal movements. In doing so, fastening systems are required to transmit vertical, lateral, and longitudinal loads. As wheel loads and resulting forces transferred to the track structure have increased over time, and/or geometric tolerances become more stringent, fastening systems are required to perform more rigorous tasks (maintain tighter gauge, provide creep resistance, etc.).

To account for the increased forces and to address conditions symptomatic of track strength and force transfer deficiencies (e.g. plate cutting, rail seat deterioration (RSD), rail rollover, rail pad movement, etc.) the fastening systems have evolved iteratively over time, through a trial-and-error design approach, like many other components in the rail infrastructure. These deficiencies have led to various track component failures (e.g. broken spikes, broken shoulders, and broken shoulders, etc.).

Rail Transportation and Engineering Center – RailTEC, Department of Civil and Environmental Engineering – CEE, Grainger College of Engineering – GCoE, University of Illinois at Urbana-Champaign – UIUC, 1240 Newmark Civil Engineering Laboratory, Urbana, IL, USA

Corresponding author:
Marcus S Dersch, Rail Transportation and Engineering Center – RailTEC, Department of Civil and Environmental Engineering – CEE, Grainger College of Engineering – GCoE, University of Illinois at Urbana-Champaign – UIUC, 1240 Newmark Civil Engineering Laboratory, MC-250, 205 N. Mathews Ave., Urbana, IL 61801, USA. Email: mdersch2@illinois.edu
broken threaded rods, etc.) which have in-turn led to derailments. 4–9 Between 1999 and 2018 there have been 250 FRA-reportable train accidents in the United States that have resulted from “defective or missing spikes or rail fasteners” on mainlines and sidings as reported within the FRA Rail Equipment Accident or Incident Report (REAIR) 6180.54 database as discussed by Wang et al. 10 These failures demonstrate a disconnect between the loading demands placed on the track and strength of track components.

Fastener failures are not isolated to a single method of track construction (i.e. ballasted vs ballastless), nor are they isolated to the types of rolling stock with the highest loads. Force transfer fastener failures have been observed in ballasted sleeper track on heavy axle load (HAL) freight railroads as well as ballastless direct-fixation (DF) track systems used for heavy rail transit infrastructure. Furthermore, fastener failures are not caused by loads acting from a single direction (vertical, lateral, or longitudinal). Rather, most failures occur as a result of a combination of loads (vertical, lateral, and longitudinal).

While there has recently been increased modelling and laboratory testing of fastening system components, 11,12 the development and adoption of new fasteners has still relied heavily on practical experience and monitoring of revenue service field performance. This iterative method relying on field performance has led to inefficient designs and a lack of understanding of the underlying mechanisms that govern system response as a function of changing conditions (input loads, wear of components, support conditions, etc.) which has manifested itself in maintenance and safety problems; as is evident in the review of FRA track-caused accident data.

However, there has been a recent push to apply the principals of mechanistic-empirical (M-E) analysis design, currently used in pavement design, 13 to rail infrastructure component design. Initial suggestions for the application of a M-E analysis and design approach in the rail domain were documented by Van Dyk et al., 14 Csenge et al., 15 and Edwards et al. 16 These were further advanced by Quirós-Orozco 17 and Edwards, 18 leading to the development of a proposed framework for mechanistic-empirical analysis and design of railway track and its components. 19

One of the first steps in the proposed M-E approach is to quantify the inputs of the system; track components, substructure depths, load environment, etc. Recent research has focused on quantifying vertical and lateral wheel loads on HAL freight, intercity passenger, and rail transit operations. 20–24 There has also been significant effort studying the key factors effecting the distribution of the vertical loads 25–27 and to a lesser extent the distribution of lateral loads to the supporting sleepers. 27–33 Finally, though there has been work quantifying longitudinal forces and displacements, 34–40 most studies have focused on quantifying absolute forces on structures or inputs to rail neutral temperature (RNT) models and not quantifying loads on fastening systems or individual rail seats; specifically as a result of a train pass. And once the loads are quantified and the track response is predicted through select models (e.g. fastener performance 11,41 or track behavior 37) the outputs could be combined with track quality index (TQI) models 42,43 which forecast the deterioration of track given various track parameters (e.g. speed and tonnage).

Therefore, researchers from RailTEC at Illinois deployed instrumentation on a demanding revenue-service track that has experienced spike fastener fatigue failures previously to quantify the vertical, lateral, and longitudinal fastening system loading demands from HAL and empty freight traffic as well as passenger traffic. These data will both address a recent challenge related to broken spikes in timber sleeper elastic fastening systems that have led to at least ten derailments in the last twenty years and now require manual walking inspection to identify by quantifying loading conditions and build upon the M-E analysis and design foundation for future fastening system components.

Revenue service field site overview

Instrumentation was installed and data were collected on Tracks 1 and 3 within the full body of a 9.2-degree (623 ft (190 m)) curve located near Altoona, PA. The curve has three ballasted tracks constructed using timber sleepers and elastic fasteners with cut spikes. A visual walking-inspection identified one broken spike prior to instrumentation and tracks that appeared to be in a state-of-good-repair and thus representative of good maintenance practices, crosstie support, and components.

Figure 1 shows an overview of the revenue service field site, primary directions of traffic, generalized (expected) loading (empty vs loaded trains), and other relevant site information as well as the specific instrumentation deployed.

All tracks transport HAL freight and Amtrak intercity passenger trains. Freight operations consist of empty and loaded HAL unit trains, manifest trains, and intermodal trains loaded with containers and/or trailers. However, traffic direction and train type composition is biased for each track. Tracks 1 and 2 are primarily used by loaded freight trains operating downgrade while empty trains primarily operate upgrade on Track 3. Approximately 50 MGT of annual tonnage is accumulated on both Tracks 1 and 3 and they are on a 1.76% grade. Spike fatigue failures occur more frequently on Track 3 compared to Track 1 even though Track 1 transports comparatively more loaded trains. Further, as has been
documented elsewhere,44,45 spike fatigue failure at this location primarily occurs on the high rail. This location was selected because it provided an opportunity to quantify the forces placed on each track while limiting differences in track geometry (e.g. grade, curvature, etc.), climate, and weather. This facilitated isolation of the difference(s) leading to increased spike failures on the high rail of Track 3.

Instrumentation and data collection

Surface strain gauges were installed on the rail using industry-standard circuits and these circuits were calibrated using a loading frame. These calibrated circuits were used to quantify vertical, lateral, and longitudinal wheel-rail loads.37,46 Additional instrumentation shown in Figure 1 was deployed as a part of broader research objective aimed at quantifying displacements but are not included within the scope of the current paper.

Vertical and lateral load circuits

Using the vertical load circuit, the voltages captured under passing wheels were transformed into vertical wheel forces using the calibration factors that were previously obtained. Next, peaks were pulled from the data and compared to the on-site commercially available RSR110 wheel sensor manufactured by Frauscher, to ensure all peaks were identified. Train speeds were estimated using the time between peaks and known locomotive wheelset distances.

To align with industry best practices, the maximum lateral load was quantified as the output from the lateral load circuit at the same timestamp as the application of maximum vertical wheel load. This is important given the signals of the lateral loads are not as consistent as the vertical load and are most reliable when the wheel is immediate over the center of the crib. Lateral forces were considered positive when acting in the direction of the field and negative when acting in the direction of the gauge. An example distance and time history of vertical and lateral load signals is shown in Figure 2.

Longitudinal circuits

Longitudinal rail forces were quantified using a circuit proposed by Harrison et al.37 that includes that installation of gauges on both sides of the web of the rail at the neutral axis. To quantify the longitudinal rail force, the strains from the circuit are multiplied by the Young’s modulus and cross-sectional area of the rail. This method does not allow for the identification of absolute rail axial loads since RNT is unknown but does facilitate the quantification of changes in rail load over time due to temperature changes and passing trains. The longitudinal load circuit does not show peaks under each passing wheel in the same way as the vertical and lateral circuits and requires additional insight to correctly interpret the results. Specifically, longitudinally induced strain from the bending of the rail under vertical and lateral loads overpower longitudinal strains under wheels, making readings inaccurate at those locations. Still, the method produces accurate measurements before the train’s arrival, between the lead and trailing trucks, and after the passage of the train. For this project, longitudinal rail loads were taken at around 10-20 ft (3-6 m) in advance of the first wheel. To compensate for the offset, the measured rail loads are increased according to an exponential trend as described by Kerr27 for a single wheel and more recently confirmed by Trizotto, et al (Under review) for multiple wheels. The superposition of multiple wheels was demonstrated to generate a median increase of 16%. Finally, results indicated that the longitudinal influence zone is significantly longer than what is observed from vertical and lateral load circuits (i.e. >100 ft (30.5 m) as compared to ~10 ft (3.05 m)) (Figure 3).

Data interpretation

A variety of methods were employed to quantify the demands placed on the fastening systems (e.g. rail seats) using wheel-rail forces that were obtained via rail circuits. The following sections detail the method and assumptions used to transform the wheel-rail
load data to rail seat load data. The methods provided below assume uniformly supported sleepers. The authors acknowledge that these assumptions might not account for the maximum stress a component would experience but have confidence that the loads are useful in relation to fatigue of components.

Vertical and lateral rail seat loads

Many analytical techniques have been developed for the quantification of vertical load distribution from multiple wheels to the supporting rail seats, many of which rely on beam on elastic foundation (BOEF) fundamentals. Some of the more recognizable developers of BOEF methods include Winkler, Talbot, and Zimmerman.\(^47,49\) Winkler initially proposed a method based on BOEF theory that stated the reaction at longitudinal supports (e.g. each sleeper rail seat) was proportional to the rail deflection. Talbot and Zimmerman advanced this theory and validated it by comparing analytical results to field data.\(^47,49\) While additional research in this topic has been completed, this foundational method is still widely used and is considered accurate for quantifying rail seat loads. Therefore, applying BOEF theory and assuming a timber sleeper track modulus of 3,500 lb./in./in. (24.270 kN/m/m), sleeper spacing of 19.5 in. (49.5 cm), axle spacing of 81.5 in. (207 cm), 136 RE rail (approximately UIC 60), and 36 in. (91 cm) wheel diameters, and superposition of adjacent wheels, the rail seat load would be 26% of the wheel load.

Vertical rail loads are influenced by multiple variables (e.g. speed of the train,\(^50\) track modulus,\(^51\) and wheel health). In this paper, the applied vertical rail loads are quantified by the instrumentation on the rail that account for these effects. Rail seat loads are also influenced by multiple variables (e.g. sleeper type, fastening system type, and sleeper support). The spike failures are not isolated to poorly supported sleepers given the widespread nature of what has been observed during field inspections (e.g. in one instance up to 10 sleepers in a row and in another instance 121 failed cut spikes (20% of potential spikes in a span of 150 sleepers on the high-rail of a single curve). Given that sleepers and fastening systems at this site were in good health, the authors assumed uniform sleeper...
support. Thus, the relationship between the wheel-rail interface loads and rail seat loads was a fixed value.

Compared to vertical loads, there has been comparatively little research assessing the distribution of lateral loads to the fastening systems. The limited field observations and laboratory studies performed have indicated that lateral loads are distributed to fewer sleepers than vertical loads, thus increasing the maximum percentage of load felt by the center sleeper’s rail seat (AREMA 2017). More specifically, studies on concrete sleepers have found that lateral rail seat loads range between 35 – 60% of the applied wheel load.29,33 Given timber sleepers are less stiff than concrete sleepers, which has been partially offset using premium fastening systems, 35% lateral load transfer was selected for this study.

Longitudinal rail seat loads

Although longitudinal rail load and its distribution has been widely studied with respect to the field of RNT, no research has been aimed at quantifying their distribution to the rail seats. Kerr27 used analytical modeling to describe axial rail load and displacement due to a single longitudinal wheel load. This model uses a bar resting in a longitudinally elastic foundation, analogous to the BOEF method used for vertical load distribution. More elaborate, nonlinear FE models have been developed52 and are even available in commercial software.53 Despite these advancements, rail seat load distribution is not thoroughly described in the context of the loading demands on the fastening system components.

The analytical method developed by Kerr27 and expanded by Trizotto et al.54 quantifies longitudinal rail seat loads by assuming they are proportional to longitudinal rail displacement Equation (1) in the condition that there is no slip at the rail-fastener interface. Moreover, a parametric study was conducted to identify the effect of the superposition of multiple wheel loads and varying track stiffness. The model indicates that (in the elastic region) higher track stiffness (ballast + fastener stiffness) decreases the range of distribution of fastener and rail loads but increases individual fastener loads. Moreover, the superposition effect was found to be significant when multiple wheels are present. Regardless, increasing track stiffness resulted in increased fastener loading and reduced rail loading. The approach developed by Trizotto et al. (Under review) was used to quantify the rail seat loads in this study.

\[
\begin{align*}
 u(x) &= \frac{R}{2kEA} e^{-k|x|} \\
 f(x) &= k_d \frac{u(x)}{2} = \frac{\kappa R}{2} e^{-k|x|}
\end{align*}
\]

(1)

Where:
- \(x \) = location, in relation to the wheel load,
- \(u(x) \) = rail section displacement at location \(x \),
- \(f(x) \) = fastener force per unit length at location \(x \),
- \(R \) = longitudinal wheel load, per rail,
- \(k_d/2 \) = longitudinal track stiffness, per rail,
- \(E \) = Young’s modulus of the rail, and
- \(A \) = cross-sectional area of the rail.

Longitudinal track stiffness varies longitudinally due to variation in ballast condition, spike engagement on the fastener, and magnitude of vertical loads.55 Since the longitudinal modulus of the tracks studied are unknown, a representative (and conservative) longitudinal track modulus of 3,000 lb./in./in. (20,800 kN/m/m) was selected for both tracks. This value is comparable to measured longitudinal modulus of vertically loaded ballasted track sections38 and is believed to bound actual field conditions. Further, Trizotto et al.54 found that while there is a direct nonlinear relationship between longitudinal track modulus and fastener loads, a quadrupling of modulus was required to see a 30% increase in fastener load. Therefore, it is reasonable to believe that any small changes in longitudinal track modulus will have a small effect on the longitudinal fastener loads.

The method used in this paper involves estimating the rail and fastener load distribution for the given longitudinal track stiffness, uniform wheel loads, and each train’s approximate wheel configuration. It considers leading locomotives for uphill and downhill trains and additional cars following the locomotives for downhill trains (to simulate the contribution of all braking axles). Since it is assumed that loads are in the elastic region, these distributions are linearly proportional to the applied wheel loads. Therefore, the distributions are scaled to match the rail axial loads at the first passing wheel and the maximum rail seat load is recorded.

Results

The following sections document the vertical, lateral, and longitudinal wheel-rail and fastener forces and the role they play in spike fatigue failures. Data were recorded on both tracks for a period of nine days. Over 50 train passes were recorded on each track during this period. Only freight trains were considered in the analysis and due to the biased directionality of traffic a comparison is made between trains on Track 1 going downhill and trains on Track 3 going uphill; representing the dominant directions for traffic.

The speeds of the trains were quantified, using the method described previously, and indicate the trains operated at median speeds of 18 and 17 mph (29 and 27 kph) on Tracks 1 and 3, respectively (Figure 4). Given the geometry of the curve (4” (10.2 cm) nominal superelevation and 9.2 degree (623 ft (190 m)) curve), the balanced speed for both tracks was
calculated to be 25.5 mph (41 kph). Therefore, the data indicate that most trains were operating below balance speed. Further, over this range of speeds, the impact of speed on dynamic loading would be minimal as shown by Sadeghi\(^56\) and Van Dyk.\(^50\)

Vertical loading

Utilizing the methods described previously, vertical rail loads and corresponding vertical rail seat loads were quantified (Figure 5). As expected, the vertical demands on Track 1 are significantly greater than Track 3. Median vertical rail seat loads were 7.5 and 7.8 kips (33.4 and 34.7 kN) (high and low rails, respectively) on Track 1 and 2.8 and 4.3 kips (12.5 and 19.1 kN) (high and low rails, respectively) on Track 3. Therefore, the high and low rails of Track 1 are subjected to 4.7 and 3.5 kips (29.1 and 15.6 kN) more vertical force than Track 3, respectively.

While there is a convergence of loading between both rails on Track 1 and the low rail of Track 3 at higher percentiles (i.e. \(>90\%\)) (likely accounting for the locomotives and loaded trains), there is consistently a lower vertical demand on the high rail of Track 3. This unbalance in loads between the high and low rails, aligns with expectations given the operations and balance speed.\(^57\) However, the balance seen in Track 1 indicates either a deviation in actual track geometry from the track charts or an effect of train handling down the grade. It is hypothesized that the underbalanced operations leading to this lower magnitude vertical rail seat load (median value of 2.8 kips (13 kN)) leads to a reduction in frictional capacity at the plate to sleeper interface on the high rail of Track 3 and plays a role in the increased spike failure. Therefore, lower longitudinal or lateral loads would be required to exceed the frictional resistance and transfer additional loads to the spikes.

![Figure 4. Measured speed of trains on Tracks 1 and 3 in July 2019.](image)

![Figure 5. Quantitative data for vertical wheel loads ((a) percent exceedance (b) box-plots and (c) load values at select percentiles table) and rail seat loads ((d) rail seat load values at select percentiles table) for both high and low rails of both tracks.](image)
Lateral loading

Utilizing the methods described previously the lateral rail loads and corresponding lateral rail seat loads were quantified (Figure 6). As expected, the lateral demands on Track 1 are significantly greater than Track 3. Median lateral rail seat loads were 1.61 and 1.98 kips (7.2 and 8.8 kN, respectively) (high and low rails, respectively) on Track 1 and 0.11 and 0.53 kips (0.5 and 2.5 kN, respectively) (high and low rails, respectively) on Track 3. Therefore, the high and low rails of Track 1 are subjected to 1.50 and 1.45 kips (6.7 and 6.5 kN, respectively) more lateral force than Track 3, respectively. However, the high rail of Track 3 is an outlier in that loads generated from trailing axles are most often gage facing as opposed to the more common application of loads toward the field. Therefore, it is the only rail that would regularly be subjected to reverse lateral loads (i.e. alternating field and gage facing). This reversal of load could lead to increased movement of the fastening system and greater fastener component stress ranges. Additionally, when considering fatigue, load reversals lead to a decrease in fatigue life.

The applied lateral to vertical (L/V) load ratio is a numerical ratio of lateral load applied at a point on the rail to the vertical load applied at that same point. Though commonly considered a metric for determining the risk of derailment (e.g. wheel-climb or rail-rollover), L/V is commonly increased during laboratory testing to represent more severe environments. Hay indicates that 0.68 is the threshold in which the rail becomes unstable due to the resultant L and V force passing outside the rail base. Further, though the metric represent the loads applied at the wheel-rail interface, a rail seat L/V (i.e. representing the loads applied at the rail seat) could be more representative of what the fastener would be subjected while also aligning more with the AREMA recommendation which considers L/V ratios above 0.52 to be severe service. The rail seat L/V would be 35% higher than what is seen at the wheel-rail interface, accounting for the parameters previously discussed in this paper (i.e. the vertical and lateral load percentages transferred to the rail seat beneath the point of load application are 26 and 35%, respectively. Table 1 provides the wheel-rail and rail seat L/V ratios for the leading axles of Tracks 1 and 3. The observed wheel-rail L/V ratios were greatest on the high rail of Track 3 and ranged from −0.44 to 0.72 (1st percentile to 99th percentile, respectively). The field side L/V of 0.72 exceeds the threshold proposed by Hay (0.68) indicating that the high rail of Track 3 could be unstable. The 95th percentile rail seat L/V ratios of all rails exceeded the 0.52 threshold recommended by AREMA in Chapter 30 (Ties) for design qualification testing. Track 3 was subjected to L/V magnitudes that were 50% greater at the 95th percentile (0.78) and 87% greater at the 99th percentile (0.97) as compared to the 0.52 threshold. Previous
research by Kerchof62 showed that excess elevation leads to increased L/V load ratios on the high rail and increased gauge widening. Therefore, reducing the elevation of the curve and balancing the forces has already been shown to improve track health and thus could also be expected to mitigate spike failures.

Longitudinal loading

Measured longitudinal rail loads are presented in Figure 7, showing that the mean tensile rail loads were greater on Track 3 than Track 1. The rail seat loads on each track are presented in Figure 8. Results indicate that longitudinal rail seat loads are at least an order of magnitude lower than the longitudinal wheel loads (i.e. <10%). Moreover, the longitudinal demands on Track 3 are greater than the loads imparted on Track 1. The median longitudinal rail seat loads were 0.97 and 0.84 kip (4.3 and 3.7 kN, respectively) (high and low rails, respectively) on Track 1 and 1.29 and 1.39 kips (5.7 and 6.2, respectively) (high and low rails, respectively) on Track 3. Therefore, the high and low rails of Track 1 are subjected to 0.32 and 0.55 kips (1.4 and 2.4 kN, respectively) lower longitudinal force than Track 3, respectively.

Research has shown that a single spike could be subjected to 70% of the applied rail seat load given the likely non-uniform distribution amongst the spikes within a single rail seat.63, 64 Considering this, only the 99th percentile longitudinal load on the low rail of Track 3 exceeds the minimum load required to produce spike fatigue failures of 2,000 lb. (8.9 kN) according to Dersch et al.41 Therefore, the data indicate that there must be a combination of both lateral and longitudinal loads transferred to the spikes to lead to spike fatigue failures.

Table 1. Wheel-rail and rail seat L/V ratios of leading axles of the high and low rails on tracks 1 and 3.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Low</th>
<th>High</th>
<th>Low</th>
<th>High</th>
<th>Percentile</th>
<th>Low</th>
<th>High</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>0.54</td>
<td>0.56</td>
<td>0.48</td>
<td>0.72</td>
<td>99</td>
<td>0.73</td>
<td>0.75</td>
<td>0.65</td>
<td>0.97</td>
</tr>
<tr>
<td>95</td>
<td>0.50</td>
<td>0.50</td>
<td>0.39</td>
<td>0.58</td>
<td>95</td>
<td>0.67</td>
<td>0.67</td>
<td>0.53</td>
<td>0.78</td>
</tr>
<tr>
<td>90</td>
<td>0.48</td>
<td>0.46</td>
<td>0.34</td>
<td>0.49</td>
<td>90</td>
<td>0.64</td>
<td>0.63</td>
<td>0.46</td>
<td>0.65</td>
</tr>
<tr>
<td>50</td>
<td>0.36</td>
<td>0.34</td>
<td>0.12</td>
<td>0.17</td>
<td>50</td>
<td>0.48</td>
<td>0.46</td>
<td>0.17</td>
<td>0.23</td>
</tr>
<tr>
<td>10</td>
<td>0.15</td>
<td>0.21</td>
<td>0.03</td>
<td>–0.19</td>
<td>10</td>
<td>0.21</td>
<td>0.28</td>
<td>0.04</td>
<td>–0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.11</td>
<td>0.17</td>
<td>0.00</td>
<td>–0.27</td>
<td>5</td>
<td>0.15</td>
<td>0.23</td>
<td>0.00</td>
<td>–0.36</td>
</tr>
<tr>
<td>1</td>
<td>–0.01</td>
<td>0.08</td>
<td>–0.05</td>
<td>–0.44</td>
<td>1</td>
<td>–0.01</td>
<td>0.11</td>
<td>–0.07</td>
<td>–0.59</td>
</tr>
</tbody>
</table>

Figure 7. Quantitative data (a) percent exceedance (b) box-plots and (c) load values at select percentiles table) for longitudinal wheel loads for both high and low rails.
Total spike demands considering timing of load application and frictional effects

When considering the combined effect of longitudinal and lateral loads, the timing of load application and quantification of the friction at the plate-sleeper interface is critical. As discussed previously, the longitudinal load zone of influence is significantly greater than either vertical or lateral. Further, the wave action of the rail ahead of a wheel is known to produce rail uplift, as predicted by BOEF models. It is therefore reasonable to assume that the longitudinal loads are applied when there is rail uplift, directly bearing on the spikes (e.g., not carried by friction). Further, based on the sequence of load application, the lateral loads would be applied when there is contact between the plate-sleeper and thus resisted by friction and spike bearing.

The median, 90th, 95th, and 99th lateral and longitudinal rail seat loads from all rails were transformed into spike loads using equations (2) and (3) below, which is similar to the load severity calculation as presented by FRA. Coefficients of friction (μ) between timber and steel can vary from 0.3 and 0.7 depending on moisture content of the timber, surface treatment, or roughness of the plate. The resulting lateral and longitudinal spike loads are plotted in Figure 9 as are the spike endurance limit thresholds for the given rail seat vertical load and μ.

$$P_{\text{Spike, Long}} = 0.7 \cdot F_{\text{Long}} \tag{2}$$

$$P_{\text{Spike, Lat}} = \begin{cases} 0.7(F_{\text{Lat}} - \mu \cdot F_{\text{Vert}}) & \text{if } |F_{\text{Lat}}| > \mu \cdot F_{\text{Vert}} \\ 0 & \text{if } |F_{\text{Lat}}| \leq \mu \cdot F_{\text{Vert}} \end{cases} \tag{3}$$
For a given wheel load, the maximum vertical, lateral, and longitudinal load percentage transferred to the fastening system was approximately 26%, 35%, and <10%, respectively.

- Underbalance operations led to a median rail seat vertical load of 2.8 kips (12.5 kN) on the high rail of Track 3 and thus the lowest friction capacity of all rail seats.
- The higher magnitude vertical loads on both rails of Track 1 and the low rail of Track 3 provide greater frictional resistance as compared to the high rail on Track 3, likely reducing the amount of load transferred into the spikes.
- Longitudinal fastener loads ranged from 1.29 to 2.40 kips (5.8 to 10.7 kN) for Track 3 and 0.84 and 1.64 kips (3.7 to 7.3 kN) for Track 1 for the nominal and 95% loads, respectively.
- Lateral fastener loads ranged from 0.11 to 2.88 kips (0.5 to 12.8 kN) for Track 3 and 1.61 and 5.97 kips (7.1 to 26.6 kN) for Track 1 for the nominal and 95% loads, respectively.
- The 95th percentile rail seat L/V ratio of 0.78 on the high rail of Track 3 is 50% greater than the 0.52 values fastening systems are subjected to during severe service testing as recommended by AREMA.
- Spike fatigue failures are driven through a combination of both lateral and longitudinal loading.
- The longitudinal load magnitudes, which are present even when vertical and lateral loads are not applied, are insufficient to independently cause fatigue failures.

To mitigate spike failures at this location, as well as similar failures in other track types (e.g. rail seat deterioration, etc.) railroads should ensure operations are as close to the balance speed of track as possible. This would increase the vertical force on the high rail of Track 3 while reducing the L/V ratios and lateral load reversal. Finally, encouraging friction between the plate and sleeper is critical in reducing the forces transferred to the spike.66

Authors’ contribution

The authors confirm contribution to the paper as follows: study conception and design: Marcus Dersch, Arthur Lima, Matheus Trizotto, and J. Riley Edwards; data collection: Marcus Dersch, Matheus Trizotto, Arthur Lima; analysis and interpretation of results: Marcus Dersch, Matheus Trizotto, and J. Riley Edwards; draft manuscript preparation: Marcus Dersch, Matheus, Trizotto, J. Riley Edwards. All authors reviewed the results and approved the final version of the manuscript.

Acknowledgements

The material in this paper represents the position of the authors and not necessarily that of sponsors. The authors also would like to thank Brad Kerchof for his continued insight and comments related to broken. Finally, the...
authors acknowledge the following project industry partners for supplying insight, recommendations, and materials to this study: NS; CN; CSX; BNSF; Union Pacific; Volpe Center; Cossloh North America; Progress Rail; Evertrak; Lewis Bolt and Nut; and Pandrol USA. J. Riley Edwards has been supported in part by the grants to the UIUC Rail Transportation and Engineering Center (RailTEC) from CN and Hanson Professional Services.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research effort is funded by the Federal Railroad Administration (FRA), part of the United States Department of Transportation (US DOT). This work was also supported by the National University Rail Center, a U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology Tier 1 University Transportation Center.

ORCID iDs
Marcus S Dersch https://orcid.org/0000-0001-9262-3480
J Riley Edwards https://orcid.org/0000-0001-7112-0956
Arthur de Oliveira https://orcid.org/0000-0002-9642-2931

References

