Optimal Fueling Strategies for Locomotive Fleets in Railroad Networks

William W. Hay Railroad Engineering Seminar
February 17, 2012

Seyed Mohammad Nourbakhsh
Yanfeng Ouyang

UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN
Outline

• Background
• Model Formulation
• Optimality Properties and Solution Techniques
• Case Studies
• Conclusion
Fuel Price

- Fuel-related expenditure is one of the biggest cost items in the railroad industry
- Railroad fuel consumption remains steady
- Crude oil price sharply increases in recent years
Fuel Price

• Fuel (diesel) price influenced by:
 – Crude oil price
 – Refining
 – Distribution and marketing
 – Others

Source: Energy Information Administration.
Fuel Price

• Fuel price vary across different locations

• Each fuel station requires a long-term contractual partnership
 – Railroads pay a contractual fee to gain access to the station
 – Sometimes, a flat price is negotiated for a contract period

• US national fuel retail price, by county, 2009
Locomotive Routes in a Network

Candidate fuel station

Contracted fuel station
Motivation

• Usage of each fuel station requires a contractual partnership cost

• Hence, should contract stations and purchase fuel where fuel prices are relatively low (without significantly interrupting locomotive operations)
 – In case a locomotive runs out of fuel, emergency purchase is available anywhere in the network but at a much higher price
 – Each fueling operation delays the train
The Challenge
The Challenge

- Fuel cost vs. contract cost
 - Too few stations = high fueling cost (e.g., emergency purchase)
The Challenge

- Fuel cost vs. contract cost
 - Too many stations = high contracting costs
Problem Objective

• To determine:
 – Contracts for fueling stations
 – Fueling plan for all locomotives
 • Schedule
 • Location
 • Quantity

• To minimize:
 – Total fuel-related costs:
 • Fuel purchase cost
 • Delay cost
 • Fuel stations contract cost
Outline

• Background
• **Model Formulation**
• Optimality Properties and Solution Techniques
• Case Studies
• Conclusion
Notation

• Set of candidate fuel stations, $N = \{1, 2, \ldots, |N|\}$
• Set of locomotives, $J = \{1, 2, \ldots, |J|\}$
• Sequence of stops for locomotive j, $S_j = \{1, 2, \ldots, n_j\}$, for all $j \in J$

For any location i
- $c_i = \text{Unit fuel cost}$
- $a_1 = \text{Delay cost per fueling stop}$
- $a_2 = \text{Contract cost per fuel station per year}$
- $M_i = \text{Maximum number of locomotives passing}$

$p = \text{Unit fuel cost for emergency purchase (} p > c_i \text{ for all } i)$
Notation

- Set of candidate fuel stations, $N = \{1, 2, \ldots, |N|\}$
- Set of locomotives, $J = \{1, 2, \ldots, |J|\}$
- Sequence of stops for locomotive j, $S_j = \{1, 2, \ldots, n_j\}$, for all $j \in J$

For any locomotive j
- b_j = Tank capacity
- r_j = Fuel consumption rate
- n_j = Number of stops
- f_j = Travel frequency
- g_j = Initial fuel
Notation

- Set of candidate fuel stations, $N = \{1, 2, \ldots, |N|\}$
- Set of locomotives, $J = \{1, 2, \ldots, |J|\}$
- Sequence of stops for locomotive j, $S_j = \{1, 2, \ldots, n_j\}$, for all $j \in J$

$l_{s}^{j} = \text{Distance between the } s^{th} \text{ and } (s+1)^{th} \text{ fuel stations that locomotive } j \text{ passes}$
Decision Variables

• For each station, contract or not?
 – \(z_i = 1 \) if candidate fuel station \(i \) is contracted and 0 otherwise

• For each locomotive, where to stop for fuel?
 – \(x_{s,j} = 1 \) if locomotive \(j \) purchases fuel at its \(s^{th} \) station and 0 otherwise
 – \(y_{s,j} = 1 \) if locomotive \(j \) purchases emergency fuel between its \(s^{th} \) and \((s+1)^{th}\) station and 0 otherwise

• How much to purchase?
 – \(w_{s,j} \) = Amount of fuel purchased at stop \(s \) of locomotive \(j \)
 – \(v_{s,j} \) = Amount of emergency fuel purchased between the \(s^{th} \) and \((s+1)^{th}\) stations of locomotive \(j \)
Formulation

\[
\begin{align*}
\min \quad & \sum_{j=1}^{[J]} \sum_{s=1}^{n_j} f_j \left[\sum_{i=1}^{[N]} (c_i q_i s w_i^j + (p v_i s^j)) \right] + \alpha_1 \sum_{j=1}^{[J]} \sum_{i=1}^{n_j} f_j (x_i^j + y_s^j) + \alpha_2 \sum_{i=1}^{[N]} z_i \\
\text{s.t.} \quad & g_j + \sum_{s=1}^{k} (w_i^j + v_s^j - r_i^j l_s^j) \geq 0, \quad \forall j \in J, \quad \forall k = 1, 2, \ldots, n_j - 1 \\
& \sum_{s=1}^{k} (w_i^j + v_s^j - r_i^j l_s^j) \geq 0, \quad \forall j \in J, \quad k = n_j \\
& g_j + \sum_{s=1}^{k-1} (w_i^j + v_s^j - r_i^j l_s^j) + w_k^j \leq b_j, \quad \forall j \in J, \quad \forall k = 1, 2, \ldots, n_j \\
& w_i^j \leq b_j x_i^j, \quad \forall j \in J, \quad \forall s = 1, 2, \ldots, n_j - 1 \\
& v_s^j \leq b_j y_s^j, \quad \forall j \in J, \quad \forall s = 1, 2, \ldots, n_j - 1 \\
& \sum_{j=1}^{[J]} \sum_{s=1}^{n_j} q_i^j s x_i^j \leq M_i z_i, \quad \forall i \in N \\
& x_i^j, y_s^j, z_i \in \{0, 1\} \quad \forall j, \forall s = 1, 2, \ldots, n_j - 1 \\
& w_i^j, v_s^j \geq 0, \quad \forall j \in J, \quad \forall s = 1, 2, \ldots, n_j - 1 \\
\end{align*}
\]

- Fueling cost + delay cost + contract cost
- Never run out of fuel
- Tank capacity never exceeded at fuel stations
- Must stop before purchasing
- Tank capacity never exceeded at emergency purchase
- Must contract fuel stations for usage
- Integrality constraints
- Non-negativity constraints
Problem Characteristics

- The MIP problem is NP hard…
 - Integration of facility location and production scheduling
- The problem scale is likely to be large
 - \(2 \sum_{j=1}^{|J|} n_j + |N| \) of integer variables, \(4 \sum_{j=1}^{|J|} n_j + |N| \) of constraints
 - For \(|J|=2500\) locomotives each having \(n_j=10 \) stops among \(|N|=50\) fuel stations, there are 50,050 integer variables and 100,050 constraints
- Commercial solver failed to solve the problem for real applications
- Hence, to solve this problem
 - Derive optimality properties to provide insights
 - Develop a customized Lagrangian relaxation algorithm
Outline

• Background
• Model Formulation
• **Optimality Properties and Solution Techniques**
• Case Studies
• Conclusion
Theoretical Findings

Optimality Condition 1

There exists an optimal solution in which a locomotive stops for emergency fuel only when the locomotive runs out of fuel.
Theoretical Findings

Optimality Condition 2

There exists an optimal solution in which a locomotive purchases emergency fuel only if the following conditions hold:

– Its previous fuel purchase (from either an emergency or fixed station) must have filled up the tank capacity
– If the next fuel purchase is at a fixed stations, then the purchased fuel should be minimum; i.e., the locomotive will arrive at the next station with an empty tank
Theoretical Findings

Optimality Condition 3

If a locomotive purchases fuel at two fixed fueling stations s_1 and s_2 (not necessarily adjacent along the route) but no emergency fuel in between, then there exists an optimal solution in which the locomotive either departs s_1 with a full tank, or arrives at s_2 with an empty tank.

Diagram:
- Fuel level vs. Tank capacity
- Station s, $s+1$
- Not optimal
- Either of these two is optimal
Lagrangian Relaxation

- Relax hard constraints:
 \[
 \sum_{j=1}^{\left|J\right|} \sum_{s=1}^{n_j} q_{i,s}^j x_s^j \leq \sum_{j=1}^{\left|J\right|} M_i z_i, \quad \forall i \in N
 \]

- Then add them to the objective function with penalty:
 \[
 \sum_{i=1}^{\left|N\right|} u_i \left(\sum_{j=1}^{\left|J\right|} \sum_{s=1}^{n_j} q_{i,s}^j x_s^j - \sum_{j=1}^{\left|J\right|} M_i z_i \right)
 \]

Structure of the constraints:

- Fueling plan for locomotive 1
- Fueling plan for locomotive 2
- Fueling plan for locomotive \(j \)

Constraints

Variables

Facility location and fueling constraints
Formulation of Relaxed Problem

\[
\begin{align*}
\min & \quad \sum_{j=1}^{|J|} \sum_{s=1}^{n_j} f_j \left[\sum_{i=1}^{|N|} (c_i q_i^j w_s^j) + (p v_s^j) \right] + \alpha_1 \sum_{j=1}^{|J|} \sum_{i=1}^{n_j} f_j (x_i^j + y_i^j) + \alpha_2 \sum_{i=1}^{|N|} z_i + \sum_{i=1}^{|N|} \left(\sum_{j=1}^{n_i} q_i^j x_s^j - \sum_{j=1}^{n_i} M_i z_i \right) \\
\text{s.t.} & \quad g_j + \sum_{s=1}^{k} (w_s^j + v_s^j - r_j l_s^j) \geq 0, \quad \forall j \in J, \ \forall k = 1,2,\ldots,n_j - 1 \\
& \quad \sum_{s=1}^{k} (w_s^j + v_s^j - r_j l_s^j) \geq 0, \quad \forall j \in J, \ k = n_j \\
& \quad g_j + \sum_{s=1}^{k} (w_s^j + v_s^j - r_j l_s^j) + w_k^j \leq b_j, \quad \forall j \in J, \ \forall k = 1,2,\ldots,n_j \\
& \quad w_s^j \leq b_j x_s^j, \quad \forall j \in J, \ \forall s = 1,2,\ldots,n_j - 1 \\
& \quad v_s^j \leq b_j y_s^j, \quad \forall j \in J, \ \forall s = 1,2,\ldots,n_j - 1 \\
& \quad x_s^j, y_s^j, z_i \in \{0,1\} \ \forall j, \forall s = 1,2,\ldots,n_j - 1 \\
& \quad w_s^j, v_s^j \geq 0, \quad \forall j \in J, \ \forall s = 1,2,\ldots,n_j - 1
\end{align*}
\]
Relaxed Problem

- After relaxing hard constraints the remaining problem could be decomposed into sub-problems
 - Each sub-problem solves the fueling planning for each locomotive

\[
\text{relaxed objective} = \sum_{j=1}^{\lfloor J \rfloor} z_j(u) + \sum_{i=1}^{\lfloor N \rfloor} z_i(\alpha_2 - u_i M_i)
\]

where \(z_j(u) \) is optimal objective function of \(j^{th} \) sub-problem
Sub-problem for the j^{th} Locomotive

$$\min z_j(u) = \sum_{s=1}^{n_j} f_j \left(\sum_{i=1}^{[N]} (c_{i,s,j} w^j_s + p v^j_s) \right) + \alpha_1 \sum_{s=1}^{n_j} f_j (x^j_s + y^j_s) - \sum_{i=1}^{[N]} \sum_{j=1}^{[J]} \sum_{s=1}^{n_j} q_{i,s} x^j_s$$

s.t. \quad g_j + \sum_{s=1}^{k} (w^j_s + v^j_s - r^j l^j_s) \geq 0, \quad \forall k = 1,2,\ldots,n_j - 1

$$\sum_{s=1}^{k} (w^j_s + v^j_s - r^j l^j_s) \geq 0, \quad k = n_j$$

$$g_j + \sum_{s=1}^{k-1} (w^j_s + v^j_s - r^j l^j_s) + w_x^j \leq b_j, \quad \forall k = 1,2,\ldots,n_j$$

$$w^j_s \leq b_j x^j_s, \quad \forall s = 1,2,\ldots,n_j - 1$$

$$v^j_s \leq b_j y^j_s, \quad \forall s = 1,2,\ldots,n_j - 1$$

$$x^j_s, y^j_s, z_i \in \{0,1\}, \quad \forall s = 1,2,\ldots,n_j - 1$$

$$w^j_s, v^j_s \geq 0, \quad \forall s = 1,2,\ldots,n_j - 1$$
Sub-problem for Individual Locomotive

- Three types of possible “optimal” fuel trajectory
 - Type a: From one station to nonzero fuel at another station
 - Type b: From one station to zero fuel at another station, without emergency purchase
 - Type c: From one station to zero fuel at another station, after one or more emergency fuel purchases
Shortest Path Method

- We find a way to apply a simple shortest path method to solve the sub-problem
Outline

• Background
• Model Formulation
• Optimality Properties and Solution Techniques
• Case Studies
• Conclusion
Test Case

Network Information

Diagram showing network information with values along the axes and connections between points.
Test Case

Locomotive Route Information
Test Case

- 12 nodes, 8 locomotives
- $\alpha_1=100$, $\alpha_2=10,000$
- Tank capacity=2500
- Different fuel price for fixed stations between 2 to 5 and 7 for emergency
- Frequency assumed 1 for all locomotives
- Consumption rate assumed 1 for all locomotives
Optimal Fuel Stations

$2 \quad $3 \quad $3.5 \quad 5

$2 \quad $3 \quad $5 \quad 2

$3 \quad $2 \quad $2.5 \quad 4
Optimal Fueling Plan: Locomotive 1

- $2
- $3
- $3.5
- $5

$2 → $3 (1700) → $5 → $2 (2500)

$3 (1000) → $2 (2500) → $2.5 (750) → $4
Optimal Fueling Plan: Locomotive 2

(2100) $2 → (650) $3 → (1000) $3 → (2500) $2 → (2100) $3

$2, $3, $3, $2

$3.5, $5, $5, $2

$2.5, $4
Optimal Fueling Plan: Locomotive 8
Real World Case Study

- Full railroad network of a Class-I railroad company
- 50 potential fuel stations
- Thousands of predetermined locomotive trips (per week)
- Fuel price from $1.9 - $3.0 per gallon with average $2.5 per gallon
- Tank capacity 3,000 - 5,000 gallons
- Consumption rate 3 - 4 gallons per mile
- Contracting cost of fuel stations $1 - $2 billion per year
Real World Case Study

- Algorithm converges after 500 iterations in 1200 CPU seconds
- The optimality gap was less than 6%
- This model can efficiently reduce the total cost of the system
Real World Case Study

- Solution 1: Benchmark (current industry practice)
- Solution 2: Optimal fueling schedule using all current stations
- Solution 3: Global optimum (using an optimal subset of stations)
Outline

• Background
• Model Formulation
• Optimality Properties and Solution Techniques
• Case Studies
• Conclusion
Conclusion

• A Mixed Integer Programming (MIP) model
 – Integrates fuel schedule problem and station (location) selection problem
 – Considers fuel cost, delay, and fuel station contracting costs
• LR and other heuristic methods are developed for large-scale problem with good computational performance
• We developed a network representation and shortest path method for solving scheduling sub-problems
• This problem was later used as a competition problem at INFORMS Railway Applications Section (RAS)
Thank you.
nourbak1@illinois.edu
yfouyang@illinois.edu