Analyzing the transition from single- to double-track railway lines with nonlinear regression analysis

Sogin, S.L., Y-C. Lai, C.T. Dick and C.P.L. Barkan. 2016. Analyzing the transition from single- to double-track railway lines with nonlinear regression analysis. Journal of Rail and Rapid Transit. 230 (8): 1877-1889. doi:10.1177/0954409715616998.


The demand for freight rail transportation in North America is anticipated to substantially increase in the foreseeable future. Additionally, government agencies seek to increase the speed and frequency of passenger trains operating on certain freight lines, further adding to demand for new railway capacity. The majority of the North American mainline railway network is single track with passing sidings for meets and passes. Expanding the infrastructure by constructing additional track is necessary to maintain network fluidity under increased rail traffic. The additional track can be constructed in phases over time, resulting in hybrid track configurations during the transition from purely single track to a double-track route. To plan this phased approach, there is a need to understand the incremental capacity benefit as a single-track route transitions to a two-main-track route in the context of shared passenger and freight train operations. Consequently, in this study, the Rail Traffic Controller software is used to simulate various hybrid track configurations. The simulations consider different operating conditions to capture the interaction between traffic volume, traffic composition and speed differences between train types. A nonlinear regression model is then developed to quantify the incremental capacity benefit of double-track construction through exponential delay–volume relationships. Adding sections of double track reduces train delay linearly under constant volume. This linear delay reduction yields a convex increase in capacity as double track is installed. These results allow railway practitioners to make more-informed decisions on the optimal strategy for incremental railway capacity upgrades.